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Abstract

Omics studies attempt to extract meaningful messages from large-scale and high-dimensional data sets by treating the
data sets as a whole. The concept of treating data sets as a whole is important in every step of the data-handling
procedures: the pre-processing step of data records, the step of statistical analyses and machine learning, translation of
the outputs into human natural perceptions, and acceptance of the messages with uncertainty. In the pre-processing, the
method by which to control the data quality and batch effects are discussed. For the main analyses, the approaches are
divided into two types and their basic concepts are discussed. The first type is the evaluation of many items individually,
followed by interpretation of individual items in the context of multiple testing and combination. The second type is the
extraction of fewer important aspects from the whole data records. The outputs of the main analyses are translated into
natural languages with techniques, such as annotation and ontology. The other technique for making the outputs
perceptible is visualization. At the end of this review, one of the most important issues in the interpretation of omics data
analyses is discussed. Omics studies have a large amount of information in their data sets, and every approach reveals
only a very restricted aspect of the whole data sets. The understandable messages from these studies have unavoidable
uncertainty.

Omics studies

In omics studies, a particular type of molecule in samples is
measured in terms of character and quantity as a whole, and
the patterns and/or relation to the sample attributes are
investigated. Genomic studies measure DNA molecules,
whereas epigenomic, transcriptomic, proteomic, and meta-
bolomic studies measure the chemical states of DNA and its
binding proteins, RNA, proteins, and metabolites, respec-
tively. The concept of —omics, or collective measurement, is
applied not to molecules, but rather to various measurable
targets, such as a set of traits (phenome), states of brain
neural networks (connectome), and bacterial florae (meta-
genome) [1].

In omics studies each experimental instance generates a
huge amount of information simultaneously. For example, a
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next-generation sequencing (NGS) experiment produces
billions of short reads for a genomic, epigenomic, or tran-
scriptomic study [2]. Another example is gas chromato-
graphy mass spectrometry for a metabolomic study that
produces a spectrum that contains all of the information of
various metabolites [3].

Principles of data-handling: good laboratory
practice for omics studies

For small-scale manual experiments, (i) defining, storing,
and archiving the raw data; (ii) transparent descriptions of
data processing steps; (iii) software validation; and (iv)
ensuring complete reproducibility of the final results
with respect to the raw data are recommended as
good laboratory practice [4]. In addition, unlike small-
scale experiments, omics requires (v) checking the dis-
tribution of all data values and of their quality measures,
as well as the consideration of batch effects [5], so that
the records that could be considered to have poorer
quality are included in the analyses with probabilistic
interpretation. In the following sections, this additional
principle will be described for the various steps
processing steps.
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Fig. 1 Distribution of quality. a Intra-experimental quality heterogeneity.
When many data records are produced by a single experiment, the quality
of these records can vary. The majority of the records are good, but a tail
of poorer quality is generated due to multiple factors. b Inter-experimental
quality heterogeneity is shown as the difference of quality distributions.
¢ When the quality of a small fraction of experiments is apparently poorer
than the majority, a particular cause is strongly suspected, which gives
good reason to remove the fraction of the experiments by setting a
threshold to discriminate these experiments. d When the quality dis-
tribution is smooth, the selection of a threshold value can be arbitrary

Inability to redo omics experiments and
intra-experimental and inter-experimental
quality variations: batch effect and filtering
threshold

Inter-experimental quality variation

Experiments are not always perfect when conducted manually
on a small scale or when performed with expensive highly
automated high-throughput machines, which are both true
cases for omics experiments. The main difference between
these two settings is that manual experiments can be re-per-
formed, but omics experiments cannot be repeated even if the
quality of a small fraction of the outputs is unsatisfactory,
because the selected fraction cannot be repeated separately.
One omics experimental procedure corresponds to a large
number of single experiments conducted simultaneously and
the quality among the experiments can vary (Fig. 1a). This is
referred to as intra-experimental quality heterogeneity. In
addition, a set of data records from one omics experimental
procedure is affected by factors shared by all of the records,
and another set of data records from another omics procedure
are affected differently (Fig. 1b). This is referred to as inter-
experimental heterogeneity and the procedure-dependent
batch effect.
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For example, in the case of an NGS, the quality among
the reads always varies, i.e., intra-experimental quality
heterogeneity exists (Fig. 1a). When two NGS are run for
two DNA samples, the first set of reads of the NGS may
tend to be better than the second set of reads, for example,
because the DNA sample conditions are different. This is
referred to as inter-experimental heterogeneity (Fig. 1b).

Intra-experimental quality variation

There is intra-experimental heterogeneity in data quality
in addition to the inter-experimental heterogeneity. Many
experiments are performed on a single occasion, and the
quality of the experiments can vary. Some data records
are filtered out with a cut-off value of a quality measure
(Fig. 1c, d; the arrows indicate cut-off values and the
shadowed reads will be removed). This procedure may
decrease the concern that the poor quality data should
produce wrong results. However, the concern cannot be
eliminated completely, because some data records that are
filtered-in still have some ambiguity. In the omics set-
tings, the output based on the higher quality should be
considered to be closer to the truth and the output based
on the poorer quality should be considered to be more
likely to be farther from the truth. Since the stricter quality
requirement reduces the number of usable data records
and because fewer records makes the output more likely to
be farther from the truth, the filtering cutoff should set so
as to balance its effects on the output regarding reliability.
Regardless of the filtering threshold, there exists quality
heterogeneity among data records to be used for analyses
and the quality of individual records can be used in
interpreting the output, depending on whether poorer
records are instrumental in obtaining the output. This
interpretation cannot be performed dichotomously, but
rather in a stochastic manner [6].

Quality control of data: absolute quality and
relative quality

The brief discussion on the inter- and intra-heterogeneity of
data quality in the previous section is based on the belief
that the quality of data records is absolutely meaningful. In
this section, two issues are discussed regarding quality
measures: [1] absolute quality vs. relative quality and [2]
whether noisiness of quality can be the target of study.

Absolute and relative quality
The majority of experiments measure physical signals, such

as light-signal strength, weight, length, or location in space
and time (Fig. 2a). Stronger signals or closer measurements
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Fig. 2 Absolute quality and relative quality. a Example of absolute
quality. Intensity of physical measure, for example, fluorescence
intensity, may indicate the quality of observation. b Example of
relative quality. The registered reference sequence and the true
sequence of a sample are shown at the top and bottom, respectively, by
uppercase letters. The different bases are indicated by colors. Three
experimental reads are shown in the middle of the figure by lowercase
letters. The first read is of the best quality when compared with the

to precise values indicate better quality. Let us refer to this
type of quality as absolute quality.

The quality of data records can be measured as the fitness
to a representative or standard in the life science field. For
example, short reads are data records of NGS, and the
reference genome sequence is the representative (Fig. 2b).
Although genome sequences of individuals have a great
deal in common with the reference sequence, some
sequences are definitely different from the reference
because of genetic heterogeneity. Therefore, short reads that
are perfect from an absolute quality standpoint can have a
non-perfect matching measure when compared with the
reference. The number of unmatched bases can be used to
quantify the goodness of reads, and the mismatches can be
due to poor quality in the sense of absolute quality, but may
be due to biological heterogeneity. The latter can be referred
to as the relative quality. These relative quality measures
should be handled carefully in order to optimize the study
objectives. In the mapping step of NGS, the choice of
mapping algorithm and the setting of parameter values
should be optimized [6].

Noisiness can be the target of biological studies

The sequence heterogeneity of DNA can be the target of a
biological study. The difference of expression profiles
between cancer and normal cells is the target of a biological
study [7]. The expression profiles of cancer cells are not
identical, but rather have a distribution, and the cells from a
normal region have another distribution. We may find a
small number of cells that are significantly deviated from
the two distributions. This deviation can be due to an
experimental outlier in terms of absolute quality. However,
the deviation can be due to the biological truth. A small

reference sequence, but may be of poor quality for this particular
sample. The quality of the second read is best for this particular
sample, but when the true sequence of a sample is unknown, the
quality cannot be determined. The third sequence only has one base
mismatch with respect to the true sample sequence but has three
mismatches with respect to the reference sequence. The quality of this
read is somewhat poor for this particular sample and might be too poor
compared with the reference sequence

(a)

Fig. 3 Noisiness. a Assume the observation on the left panel. When
this observation is obtained as multiple signals from one point, as
indicated in the middle panel, the deviation of dots from the cross
should be interpreted as random noise. When the observation is
obtained as multiple samples from a population with heterogeneity in
terms of this measurement, the variation of dots is the most important
information. The population’s heterogeneity is represented by contour
lines in the top right panel. b Example of source of noisiness. The
bottom left panel shows the chronological periodic change of the
expression level of two genes, X and Y. The right bottom panel is a
two-dimensional display of the positions of (X, Y). When a particular
cell type is studied and many cells of this type of cycle are evaluated
for X and Y, individually (single-cell expression analysis), their coplot
of (X, Y) will appear circular. This is not noise, but rather an important
feature of this type of cell. However, if these value sets of X and Y are
observed without chronological order, this variation can be considered
as noise without meaningful explanation

fraction of cells is deviated from the two reference cell
groups, i.e., exhibit heterogeneity in the sense of relative
quality. Actually, cellular expression profiles are noisy or
heterogeneous because expression profiles change dynami-
cally along with their chronological, metabolic, and other
kinds of conditions. This heterogeneity is the principal
motivation of single-cell studies [8] (Fig. 3).
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Fig. 4 Intensity of interest in heterogeneity. The two sequences stand
for an SNV at the second bases, G/C. When genomic DNA of an
individual who is heterozygous at this SNV is sequenced for genetic
variants with NGS, a fraction of short reads with C at the SNV site
vary around 0.5, as indicated by the black line. When the depth is
lower, the distribution is fatter. When the number of reads with C is 13
out of 30, it is reasonable to refer to this individual as heterogeneous at
this SNV. However, when the number of reads with C is 3 out of 30, it
is safe not to believe that this individual is heterozygous. In this case,
the researchers are interested in the fraction around 0.5 and 3 out of 30
is considered as a noise. When a cancer researcher who is interested in
the fraction of cancer cells that is heterozygous at a site, the cancer
cells are sequenced and the fraction is determined to be 10%. The
researcher does not ignore this finding because a small fraction of
cancer cells has the C allele, and the expected distribution of this
fraction may take the distribution indicated by the blue line

Intensity of interests in the heterogeneity varies
among studies

Let us continue to use the single-cell expression profiles
from two regions. When there is a gross difference between
two cell groups in two regions, e.g., cancer and normal
regions, the small fraction of cells that do not belong to
either of the two cell groups may be out of the interest of the
researchers. The researchers may ignore the outlier-looking
cells. In contrast, the same experiment can be designed by
researchers who are interested in the expression profile
dynamics of these cells. The researchers would carefully
check the absolute quality of the small fraction of cells.
Subsequently, the approaches to the raw data of the two
research groups should be different [9]. Figure 4 describes
the example how variation of interests of studies affects on
the interpretation of experimental outputs.

Main analyses
Once the pre-processing step has been completed, the pro-
cessed data should be handed to the main analysis step.

Since every omics study layer is mutually different in terms
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of data structure and objectives, the analysis methods are
different. In this review, these omic-layer specific issues are
beyond the scope of the present study and the points that are
shared by all of the layers are discussed with respect to the
following two aspects: [1] the method by which to handle
individual items and [2] classification from statistics and
learning attitudes.

Evaluation of Individual items: one by one vs.
collapse of the whole

Evaluation of individual items one by one

Individual evaluation In omics studies, long sequential
molecules, many genes, genetic variants, molecules, bio-
markers, cells, and individuals are treated. One way to
manage these items is to investigate each element one by
one and to obtain many pieces of outputs. This approach
includes GWAS in which many single nucleotide variants
(SNVs) are studied one by one and transcriptomic RNAseq
analysis in which all coding genes are quantified. When
these individual items are statistically tested for indepen-
dence of a particular variable, many p values are generated.
This set of p values should be interpreted as a whole, and
this issue is called multiple testing correction, as discussed
in the next sub-section. Multiple testing correction segre-
gates the items into two subsets: one subset is positive, and
the other subset is negative. However, such segregation of
items is insufficient, and the combinatorial effects of mul-
tiple items can be the target of studies. Since the number of
items in omics studies is very large as compared with the
number of variables in conventional multivariate analyses, a
statistical approach to combinatorial effects in omics studies
is much more challenging than conventional combinatorial
problems and is an active sub-field of research [10].

Multiple testing correction When a list of p values is
generated with the item-wise testing approach, the p values
cannot be interpreted in the same manner, where only one
statistical test is performed and only one p value is obtained.
This is because 10,000 SNVs, i.e., 1% of a million SNVs in
GWAS, will exhibit p values that are smaller than 0.01,
even when all SNVs are independent of the phenotype of
GWAS [11]. The rarity of the smallest p value among the
million p values should be interpreted not in the uniform
distribution from O to 1 but rather in the distribution of
smallest values among the million random values that fol-
low the uniform distribution from O to 1 [12]. Based on this
rarity calculation, the minimum p value should not be
considered rare when the rarity is 109, but 10°¥ can
be considered to be sufficiently rare. This method of
rarity correction is referred to as family-wise error rate
(FWER) correction [13], which is suitable for GWAS,
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because the vast majority of SNVs should not be associated
with a particular phenotype.

In contrast, there are studies in which a considerable
number of items could be truly associated with a phenotype,
for example, a study to compare the expression level of
20,000 genes between two distinct cells, e.g., cancer cells
and normal cells in an organ. In this case, the minimum
p value from 20,000 tests is interpreted in the same manner
with FWER, because before evaluating the minimum
p value, we do not have any idea as to whether any item
is truly associated. Once the minimum p value is judged to
be truly associated, we have a good reason to believe that
two cell groups are different in terms of gene expression
profiles. At this point, we believe that a gene with a
minimum p value is truly positive, and the total number of
null hypotheses is not 20,000, but rather 19,999. Therefore,
the interpretation of rarity of the second smallest p value
should not be the same are the smallest p value, and the
larger threshold value should be set as the second smallest
p value to call this value positive. This thinking process
makes us apply a less strict threshold to judge the rarity of
p values depending on their ranks. This approach is realized
by the method called false-discovery rate (FDR) correction
[13]. Figure 5 illustrates the difference of cut-offs between
FWER and FDR correction.

Collapse of the whole data set or dimension reduction

Dimension reduction Another approach to the evaluation
of many items is to evaluate whole items in order to detect
patterns therein. This approach includes clustering samples
with expression profiles and principal component analysis
(PCA) to identify informative components that consist of a
weighted sum of individual items [14]. This approach can
also be considered as a dimension reduction approach.
Dimension reduction is useful when the observed data set
consists of many variables or is distributed in high-
dimensional space, but the variables are not scattered
randomly in the high-dimensional space, but rather are
localized in a subspace. Actually, omics studies are per-
formed based on the belief that biological phenomena are
complex and should be described with fewer important
principles. Since the subspace is narrower than the whole
space, the data set can be described in lower-dimensional
space. The approach to collapse the whole data set with a
high dimension is the approach to find fewer components to
describe the whole data set [15].

Linear vs. non-linear methods When a simple transfor-
mation of the whole data set finds a lower-dimensional
subspace into which the majority of the whole is mapped,
linear dimensional reduction methods, such as PCA and
multi-dimensional scaling, are appropriate. When complex
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Fig. 5 Multiple testing correction. a Family-wise error rate (FWER).
When multiple items (flowers) are observed, their values (heights)
vary. The tallest flower in each group can be significantly tall, but its
height should not be used for judgment. The height should be judged
among the tallest flowers from many groups. This method of sig-
nificance judgment is applied to the interpretation of the rarity of
p values and is referred to as FWER correction. b In (a) there are only
four flowers in a group. (b) has many more flowers. The FWER
applies the same cut-off value (red line) to all flowers, and the first and
second tallest flowers are judged to be significantly deviated. The
false-discovery rate method applies different cut-off values (blue line)
depending on the rank of the flowers and the top four flowers are
judged to be significantly deviated

transformation is required to find such a subspace, nonlinear
dimension reduction methods are necessary. Multiple non-
linear embedding methods have been developed and pro-
posed; for examples, tSNE seemed to get popular in single-
cell transcriptome and UMAP was proposed as another one
that stresses different features of original high-dimensional
distribution [16]. Linear methods are simple and straight-
forward with few variations and also simply interpreted. In
contrast, nonlinear methods are flexible and vary greatly,
and output interpretation requires knowledge of their
mechanisms. (See the discussion on linear and nonlinear
methods for data visualization).

The selection of linear and nonlinear dimension reduction
methods is problematic in real data analyses because the
whole data structure cannot be “seen” in high-dimensional
space. When the whole data set is in two- or three-
dimensional space, we may visualize the data and determine
whether a method would be most appropriate. However,
when the whole data set is in high-dimensional space, the

SPRINGER NATURE
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structure cannot be seen, and there is no clue by which to
select an appropriate method.

Decomposition/non-decomposition into orthogonal/inde-
pendent components Dimension reduction provides fewer
components by which to describe the whole data set. When
the identified components are mutually independent or have
no overlap in terms of the aspects to describe the whole, the
components are mathematically elegant and easy to inter-
pret. When the axes are mutually independent from an
information standpoint, the axes make right angles to each
other, i.e., are orthogonal. Therefore, many mathematically
sound dimension reduction methods are designed to find
orthogonal components.

However, such mathematically elegant components can
be difficult to understand in natural language (see Section
6). Another approach to dimension reduction is to select
components that are not necessarily independent each other
but are easy to understand, such as a list of biological
functional subsets of genes. As far as such components
describe the whole data set with reasonable adequacy, it can
be said that the whole data set is reduced to a space with
fewer components [17].

Dimension reduction as an intermediate processing Di-
mension reduction methods are powerful. However, even
after the dimension reduction, the output can be of relatively
high dimension or can appear complicated. This happens
frequently in omics studies because the dimension of the
original data sets is significantly high.

In this case, the output of dimension reduction has to be
analyzed further, and the dimension reduction step is
considered as intermediate processing.

Classification of methods from statistics and
learning attitudes

There are four ways to say something meaningful using an
omics data set. The contents of this section are true for any
kind of data analyses and are not specific to omics data
analyses. The first approach is a statistical test that rejects
the null hypothesis and supports the alternative hypothesis.
The second approach is to estimate a meaningful relation or
to generate a predictive model. The third approach is to
identify a pattern in a data-driven fashion. Finally, the
fourth approach is to use a data set as information to update
a prior belief to a posterior belief in a Bayesian framework.

Statistical test
Scientific studies try to find novel things that we find dif-
ficult to believe without supporting evidence. In this case,

the probability of observing evidence through statistical
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tests is too low if we do not believe the novel finding, but
believe the hypothesis that denies the finding, i.e., the null
hypothesis. The rarity of the evidence when we believe the
null hypothesis is quantified as the p value [12]. When
testing the association between the genotypes of a genetic
variant and dichotomous phenotypes, the null hypothesis is
that genotypes and phenotypes are mutually independent
and the p value of its independence test measures the rarity
of the table observation if the null hypothesis is true.

Statistical estimation and machine learning of a predictive
model

An independent test of the above-mentioned genotype-
phenotype table can be used to estimate the genotypic risk
ratio (GRR), which should be 1 if there is no association
between genotypes and phenotypes, but GRR deviates from
1 if the null hypothesis should be rejected [18]. The GRR is
the relative risk to develop a particular phenotype of one
genotype against other baseline genotype. Although we
want to know the true value of the GRR, it appears to be
impossible to determine the GRR with a limited amount of
information, and its value must be estimated. Sometimes
one representative value of the GRR is estimated, which is
referred to as the point estimate, and sometimes there is a
range within which the true value is believed to exist with
residual uncertainty, which is referred to as the interval
estimate [19]. In this case, we estimate GRR, but when two
variables, X and Y, are both continuous, the deviation from
independence between X and Y is measured as the linear
regression slope coefficient in the simplest model. Again,
this coefficient should be estimated, and its representative
point value and its interval might be estimated. Both the
GRR and the slope coefficient are quantified effects or
effect sizes. When we estimate the effect size of something,
we believe that there exists a sizable effect, rather than no
effect (null hypothesis). The estimated effect is sufficiently
small, and the estimated effect size can be compatible with
the null hypothesis. Although these GRRs and the linear
regression coefficient are simple examples of estimation
based on a data set, they are based on an assumed model
and enable us to predict the value or probability of new
samples that lack the observation of part of the variables in
the model. In this sense, they are simple cases of supervised
machine learning [20, 21].

Descriptive statistics and unsupervised learning to identify
patterns

Supervised learning in the previous section is a machine
learning task to generate a particular model to describe
the relation of input and output with training samples, and
the generated model should work to predict output for new
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input. As stated here, this requires training samples that
have both input and output that should be the answer of the
prediction model. In contrast, in some contexts, multiple
variables of multiple samples are observed, and all observed
data records have some noise and no “answer” is available.
In this situation, the main interest in the data set is to extract
particular patterns in the data set itself, or to identify
deviation from randomness among the variables and sam-
ples. This approach is called unsupervised learning [20, 21].

Bayesian approach

In a Bayesian approach framework, an assumption or
hypothesis is set beforehand, and the hypothesis is updated
with the observed data to produce the belief afterward,
which becomes the message of the analysis [21]. Since the
Bayesian approach is to use data, the data are used in var-
ious contexts. For example, a statistical model is set, and the
parameter value is estimated by updating the prior value in a
Bayesian manner. As mentioned in 5.1.1.2. FWER correc-
tion is applied when the null hypothesis is believed to be
true for all tests, and FDR correction is applied when a
fraction of the items is believed to be associated. In the
context of Bayesian interpretation, FDR correction is based
on the prior belief of the presence of true positives as
compared with the prior belief of flat null hypothesis, which
leads to FWER correction. When risk variants are being
looked for in GWAS and when assuming that SNVs in
exons of a particular subset of genes are more likely to be
truly associated with the target phenotype than SNVs in
intergenic regions, you should set different thresholds for p
values of independence tests from SNV in the two regions.
This approach also uses the assumption and, therefore, is
Bayesian. This kind of Bayesian thinking may appear in the
discussion sections of papers, rather than the methods or
results sections, partly because this type of assumption is
difficult to sufficiently quantify precisely to be included in a
prior update. The prior knowledge can be included in
a more systematical manner by designing the mechanism in
a pipeline [22].

Translation of the outputs into perceptible
forms

The raw outputs of statistical and machine learning methods
are essentially in the form of numbers, formulae, and
symbols. The vast majority of people consider the expres-
sions with numbers, formulae, and symbols to be inap-
propriate as the methods of interpretation. Intellectual
interpretation of inputs is rooted on the physical systems of
perception. As humans, we have five senses, two of which
(the hearing and visual senses) are mainly used for

intellectual communication. Information for the hearing
sense takes the form of words and languages and that for the
visual sense takes the form of two-dimensional graphics.
Therefore, we transform the output numbers, formulae, and
symbols into the forms of words/language or two-
dimensional graphics.

Annotation and ontology

Two technical systems have been developed to connect the
omics information to natural languages in the field of
bioinformatics: annotation [23] and ontology [24]. Anno-
tation translates the location in the genome to the gene name
and chemical compounds, and their domains are annotated
with specific terms. Multiple genes, for example, share a
biological function, which is called with a functional term,
and the genes of the function can be grouped as a subset of
genes with the functional term. In addition, the system of
ontology has the information to connect the gene names and
the functional term. The ontology system provides the
relations among various technical terms, and, using these
terms, we can write a meaningful natural language state-
ment. The terms in annotation and ontology systems are
defined and registered in databases. Therefore, we can
understand the statements with terms, even if we find
unfamiliar terms in the statements, by obtaining information
of the terms in the databases.

Annotation and ontology systems are very powerful for
interpreting the output of analyses. We should not forget the
fact that these systems are not perfect and can mislead us.
For example, if an SNV is identified as a risk locus of a
particular disease and the variant is annotated to be located
in a gene structure, the SNV is usually translated as the gene
name, “gene-X”, and we state that “an SNV in gene-X is
associated with the risk of the disease”. This statement,
while true, can be misleading. The SNV is functionally
related a neighboring gene, “gene-Y”. Then, the statement
misleads the readers. The association between the SNV and
the disease may be due to linkage disequilibrium (LD), and
the functional truly related to another SNV in the LD block
is associated with the disease, and the true SNV may be
annotated as an SNV in “gene-Z”. Again, the statement can
mislead the readers. Therefore, interpreters should be aware
that translation into natural language with annotation and
ontology systems are powerful, but have a limitation. The
translated statements should be believed as they are in the
limitation, and there can be different statements based on
identical analysis outputs.

Visualization

Data visualization is a computational research field and
covers all topics to visualize messages and meanings.

SPRINGER NATURE
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Fig. 6 Linear nonlinear transformations. a Linear transformation. The
data are originally in three-dimensional space. The object of interest is
a flat disk with bumps. After linear transformation, the disk is placed in
two-dimensional space as shown in (c), and the bumps on the disk are
perpendicular to the plane of the disk. When the two-dimensional
space for the disk is selected for the principal components, the third

Data visualization of data analysis results is a part
of this field [25]. In this review, two-dimensional visua-
lization of higher-dimensional omics data is discussed
[26].

Linear methods

The methods are divided into two types: linear and non-
linear. The representative method in the linear type is PCA
and its visualization in the form of a coplot with two
principal components. PCA rotates all of the data points in a
higher dimension (Fig. 6a) and finds the two most important
axes and extracts and displays coordinate values for the two
axes (Fig. 6¢). In other words, all information out of the
two-dimensional plane is discarded. In some cases, more
than two principal components are selected for visualiza-
tion, the selected axes are paired, and coplots of the pairs
are displayed. This approach reduces the amount of dis-
carded information but forces the readers to reconstruct the
multi-dimensional point clouds from the multiple two-
dimensional displays. Since this type of method discards the
information in the nonselected axes, why discarding this
information is appropriate must be explained. As such,
eigenvalues of each component are used. The sum of
eigenvalues of the selected components is reasonably large
as compared with the total sum of eigenvalues, and the
selected components are considered to explain the whole
data set adequately. Ignoring other components as random
noise is reasonable. Another consideration for this type of
method is that only the original points are rotated in the
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axis is discarded as the noise axis, and the bumps on the disk are
ignored as noise. b Nonlinear transformation. The data comprise a
wavy disk with bumps on it. A nonlinear method transforms the wavy
disk into a flat disk as (c¢), and places the flat disk in two-dimensional
space. Again, the bumps on the wavy disk can be discarded as noise

higher-dimensional space, and the mutual distances are
maintained [16].

Non-linear methods

In contrast, nonlinear methods do not maintain mutual
distances (Fig. 6b, c). This means that two points that are
mutually closely located in the original higher dimension
should be embedded relatively close in two-dimensional
space and that two points that are mutually distant in the
original space should be embedded relatively distant in two
dimensions. Relative closeness is not only maintained, but
the distances among the embedded points are also fake.
With this allowance of deformation, nonlinear methods
have the advantage whereby these methods do not have to
discard any directional information, but can use the whole
information in the original higher dimension. Since the
visual appearance of nonlinear methods is deformed, the
viewers have to be able to grasp the information in
the deformed view, that is the same where the viewers of
deformed art paintings need critical eyes to enjoy such
artworks. There are multiple painters of deformed art with
their own styles, and multiple nonlinear methods with their
own deformation styles can be applied. The viewers of
nonlinear embedding should understand the difference in
the styles of these methods [12]. The difference of styles
can be described as: for example, tSNE realizes the
embedding of points by measuring the Euclidean distance
among the points in the high-dimensional space and by
stretching the visualizing low dimensional space sheet to
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generate rooms for the points that are located in the very
spacious high-dimensional original space. UMAP identifies
neighbors in the high-dimensional space to generate a graph
and subsequently finds a good placement of the graph in the
low dimensional space [27].

Graph or network visualization

The above discussion of linear and nonlinear embedding is
the visualization of points. A graph consists of points and the
edges between the points. Basically, points connected by an
edge represent mutually close points. When the relation of
points is expressed by a graph and the graph is visualized,
both points and edges are displayed in two-dimensional
space. Visualized graphs having edges that are shorter and
have fewer crossings are easier to view. Many graph
visualization methods exist and have their own algorithm or
style for visualization. They are somewhat similar to non-
linear two-dimensional embedding, and the difference
between graphs and nonlinear two-dimensional embedding
is that graphs have additional objects and edges and that
graphs may add information on points and edges, for
example, the sizes of points and the widths of edges [28].

How to view paintings of data analysis outputs

If 10 persons view a deformed painting artwork and record
comments on the artwork, the comments will be quite dif-
ferent. It should not happen to the case of visualization of
data analysis outputs. The person who shows an output
painting is responsible for making the viewers receive a
reasonably similar message. As such, the person in charge
should guide the viewers as to where to start watching and
what should be sensed with descriptive sentences. The
guidance should be based on the style of the deformation
method.

Many methods and many tools

There are many data analyses tools available [29]. In
addition, multiple combinations of these methods in the
form of data processing pipelines have been reported. All of
the methods and pipelines return different outputs. These
outputs represent aspects of the whole data set, and it is
essentially impossible to extract all of the information
contained therein. Therefore, all methods and pipelines
return their own outputs, which represent their viewpoints,
but lack the viewpoints of other methods. In other words, all
of the methods and pipelines have advantages and dis-
advantages. Based on the above-mentioned considerations,
the purpose and design of your study should be

reconsidered. This will guide your selection and assist
interpretation of the results of your analysis.
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