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Abstract

Understanding cancer evolution provides a clue to tackle therapeutic difficulties in colorectal cancer. In this review,
together with related works, we will introduce a series of our studies, in which we constructed an evolutionary model of
colorectal cancer by combining genomic analysis and mathematical modeling. In our model, multiple subclones were
generated by driver mutation acquisition and subsequent clonal expansion in early-stage tumors. Among the subclones,
the one obtaining driver copy number alterations is endowed with malignant potentials to constitute a late-stage tumor in
which extensive intratumor heterogeneity is generated by the accumulation of neutral mutations. We will also discuss how
to translate our understanding of cancer evolution to a solution to the problem related to therapeutic resistance:
mathematical modeling suggests that relapse caused by acquired resistance could be suppressed by utilizing clonal
competition between sensitive and resistant clones. Considering the current rate of technological development, modeling
cancer evolution by combining genomic analysis and mathematical modeling will be an increasingly important approach

for understanding and overcoming cancer.

Introduction

Colorectal cancer is one of the most prevalent and deadly
tumor types in both men and women worldwide. Patients
are often diagnosed at an advanced stage, when tumor cell
dissemination has taken place, and provided with a limited
increase in overall survival by chemo- and targeted thera-
pies due to therapeutic resistance. Although not limited to
colorectal cancer, a clue to overcome the therapeutic dif-
ficulty resides in understanding the evolution of cancer
cells. During tumorigenesis, normal cells are transformed
into malignant cancer cells through the accumulation of
mutations and natural selection. Evolution allows cancer
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cells to adapt to new environments and to acquire malig-
nant phenotypes, such as metastatic potential and resistance
to treatment. The idea that cancer is an evolutionary system
was first proposed by Nowell in 1976 [1]. Subsequent
discoveries of oncogenes and tumor suppressor genes
(collectively referred to as driver genes) were integrated
into this view, leading to Fearon and Vogelstein’s multistep
carcinogenesis hypothesis [2]: in colorectal tumorigenesis,
while accumulating multiple driver genes including APC,
KRAS, TP53, and SMAD4, a normal epithelial cell linearly
transforms through a benign lesion into a malignant tumor.
Since then, tumorigenesis has been viewed as a linear
evolutionary process of malignant transformation through
repeated acquisition of driver mutations and Darwinian
selection.

However, since the advent of next-generation sequen-
cing, this view has changed dramatically [3]. In particular,
multiregion sequencing, in which we analyze multiple
samples obtained from physically separate regions within
the tumor of a single patient, has revealed that solid tumors
harbor extensive intratumor heterogeneity (ITH) formed by
branching evolutionary processes. Through multiregion
sequencing, we identified two categories of somatic single-
nucleotide mutations: “founder” and “progressor” muta-
tions. Founder mutations are defined to be present in all
of the regions while progressor mutations are defined to
be present in some of the regions (note that they are
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also referred to by different terms in different studies, e.g.,
public/private or trunk/branch mutations). Founder muta-
tions are assumed to accumulate during the early phases of
cancer evolution. The common ancestor clone that has
acquired all the founder mutations then branches into sub-
clones, which accumulate progressor mutations and con-
tribute to the formation of ITH. Through these multiregion
mutational profiles, we can infer an evolutionary history of
the cancer by constructing a phylogenetic tree.

For example, whole-exome multiregion sequencing using
multiple samples from primary and metastatic lesions in 10
patients with renal cancer revealed extensive ITH and clonal
branching evolution [4, 5]. Their study also revealed not only
founder non-silent mutations in some known driver genes
such as VHL, but also progressor non-silent mutations in other
known driver genes such as SETD2 and BAPI. It is intriguing
that, in some cases, different mutations of the same driver
gene or pathway were acquired independently. This phe-
nomenon called parallel evolution also indicates that a part of
the ITH was generated by Darwinian selection.

Neutral evolution in advanced colorectal cancer

Inspired by this pioneering study, we investigated ITH in nine
cases of surgically resected late-stage colorectal tumors
through whole-exome multiregion sequencing to identify
founder and progressor mutations in each case [6]. The results
obtained from one of the nine cases are shown in Fig. 1.
Progressor mutations showed a mutational pattern that
was geographically correlated with the sampling locations.
Moreover, we found that, in each region, founder mutations
existed as clonal mutations, while progressor mutations
existed as subclonal mutations. This finding suggests that,
even in each region, extensive ITH existed, which was not
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captured by the resolution of multiregion sequencing. In
addition, most of the mutations in known driver genes such as
APC and KRAS were found to be founder mutations. How-
ever, progressor mutations containing few driver mutations
and parallel evolution were not confirmed, which is in con-
trast to the findings obtained in renal cancer. These observa-
tions suggest that apart from Darwinian selection, there are
other evolutionary principles generating ITH.

In pursuit of these principles, we employed mathematical
modeling of the evolutionary process generating ITH using
an agent-based model [7]. The agent-based model assumes
a set of system constituents, called independent agents, and
specifies rules for the independent behavior of the agents
themselves, as well as for the interaction between agents
and the agent environment. The agent-based model is a
flexible representation of the model, and given the initial
conditions and parameters of the system, the behavior of the
system can be easily analyzed by computational simulation.
In the case of modeling the evolution of cancer, if each cell
is assumed to be an agent, ITH can be easily represented by
the differences in the internal states of each agent. For
example, in a pioneering model, agents were assumed to be
cells that contained a few genes and proliferated while
accumulating mutations. As a result, computer simulation
succeeded in reproducing ITH observed in single-gene-
focused experiments [8]. Since then, multiple mathematical
modeling studies employing agent-based models have been
developed to shed light on the principles underlying the
generation of ITH. For example, stem cell hierarchy may
contribute to ITH, and the interaction between cells as well
as the turnover of cells in three-dimensional space may
affect the formation of ITH [9].

Because the existing models could not completely
reproduce the extensive ITH revealed by our multiregion
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Fig. 1 Multiregion sequencing of colorectal cancer. a A schema of a
multiregion sampling in a primary colorectal cancer and matched meta-
static liver lesion. In this case, we obtained 20 samples from the primary
lesion and one sample from the metastatic lesion. b A multiregion
mutation profile. The depth of red represents mutant allele frequency
while the colors of sample labels were prepared so that the similarities of

SPRINGER NATURE

founder
mutation
progressor

mutation

FBXW7

APC

@ APC

PCDHA3

TCF7L2

KRAS

05 1.0 10 mutations |

colors represent those of mutation patterns. ¢ A phylogenetic tree con-
structed from the multiregion mutation profile. The time when mutations
in known driver genes of colorectal cancer are acquired is indicated along
the tree. This image was obtained by modifying a figure which originally
appeared in our previous work [6]
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Fig. 2 Branching evolutionary process (BEP) model. a Each cell has n
genes (10 genes in this toy model) while each cell divides and dies in a
unit time with a probability p and ¢, respectively. When the cell
divides, each gene is mutated with probability r. If any of d driver
genes (four genes in this toy model) are mutated, the division prob-
ability p increases 10-fold per mutation. b Evolutionary snapshots
obtained by simulating 2-D tumor growth based on the BEP model

sequencing of colorectal cancer, we developed a new agent-
based model, the branching evolutionary process (BEP)
model, to simulate heterogeneous cancer evolution [6].
Similar to the other models, the BEP model assumes cells to
be agents (Fig. 2a). Each cell harbors n genes, including d
driver genes, while each cell divides and dies in a unit time
with a probability p and ¢, respectively. When the cell
divides, each gene is mutated with probability r, and if
any driver genes are mutated, the division probability p
increases by 10/-fold per mutation. In the BEP model, f can
be regarded as the strength of driver genes. Given that a cell
without mutations divides according to this rule, after the
normal cell acquires the first driver mutation, which accel-
erates cell division, the proportion of the clone originating
from the cell increases in a whole cell population. By
repeating these steps, each cell gradually accumulates driver
mutations as well as accompanying passenger mutations,
which do not affect the cell division rate, and finally, a
tumor is formed with numerous mutations accumulated.
Depending on the parameter values during the course of
cancer evolution, each cancer cell can accumulate different
combinations of mutations to generate different types of
ITH. In Fig. 2b, c, an example of snapshots of two-
dimensional tumor growth is shown, which was simulated
using the BEP model with appropriate parameter values. In
this example, driver mutations gradually accumulated in the
cells, and a clone with four mutations was selected through
Darwinian selection, which finally became dominant in
the tumor.

To find the principle generating ITH, we performed a large
number of BEP simulations using a supercomputer with
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with an appropriate parameter setting. The region with the same color
represents a clone with the same set of mutated genes. ¢ Single-cell
mutation profiles at three time points in the simulated tumor growth.
Top colored bands represent clones, while the blue bands on the left
represent driver genes. This figure was obtained by modifying a figure
which originally appeared in our previous work [53]

various parameter settings to find conditions leading to the
extensive ITH observed in our genomic analyses [6]. As a
result, when cancer evolution was simulated with the
assumption of a high mutation rate, followed by computer
simulation of multiregion sequencing, we could reproduce
mutation profiles similar to those obtained by our multiregion
sequencing of colorectal cancers (Fig. 3a, b). That is, irre-
spective of the presence of founder mutations, progressor
mutations contributed to the formation of a heterogeneous
mutation profile, which was geographically correlated with
sampling locations. Moreover, we could also reconstruct local
heterogeneity, as illustrated by the finding that progressor
mutations existed as subclonal mutations in each region.
Intriguingly, while driver mutations were acquired as founder
mutations, progressor mutations contained few driver muta-
tions, and most of them comprised neutral mutations that did
not affect the cell division rate. This suggests that, after the
appearance of the common ancestor clone with accumulated
driver mutations, extensive ITH was generated by neutral
evolution. Moreover, single-cell mutation profiles of the
simulated tumor suggest that the tumor comprises a large
number of minute clones with numerous neutral mutations
accumulated (Fig. 3c).

Similar to our study, other studies employed multiregion
genomic analysis and mathematical modeling to propose a
neutral evolution model to explain the origin of ITH in
colorectal tumors [10] and liver cancer [11]. In contrast, an
increasing number of multiregion genomic studies have
demonstrated different evolutionary properties of ITH
among cancer types: non-neutral, neutral, and in-between.
[12]. It should also be noted that although we mentioned
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Fig. 3 A computer-simulated tumor with extensive intratumor het-
erogeneity (ITH) generated by neutral evolution. a A tumor depicted
by branching evolutionary process (BEP) simulation with an
assumption of a high mutation rate. b A simulated multiregion
mutation profile of the simulated tumor. Cell populations in the regions
labeled with A-H (a) were extracted and their averaged mutation
profiles were obtained. Note that the simulated profile is similar to the

>

Fig. 4 Typical representatives of phylogenetic trees of colorectal
cancers. a Trees of late-stage tumors, which show “palm tree-like”
shapes. b Trees of early-stage tumors, which shows “forked tree-like”
shapes. Yellow triangles denote driver mutations while black lines

earlier that the signature of Darwinian selection (i.e., the
presence of subclonal driver mutation) is prominent in renal
cancer, a large-scale multiregion cancer genome project,
TRACERx Renal, identified the renal cancer subtype
without the signature of Darwinian selection [13]. The
clinical significance of different ITH properties remains
unclear but has been proposed to be associated with clinical
disease course [10]. A few studies employing mathematical
modeling have also been performed to understand the
mechanisms generating ITHs with different evolutionary
properties [14, 15].

Evolutionary shift during colorectal tumorigenesis

As described so far, by combining genomic analysis and
mathematical modeling, we demonstrated that neutral
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real one obtained from the colorectal cancer (Fig. 1b), and that driver
mutations consisted only of founder mutations. ¢ A simulated single-
cell mutation profile of the simulated tumor, suggesting the existence
of numerous clones that cannot be detected by multiregion sequencing.
This image was obtained by modifying a figure which originally
appeared in our previous work [6]

near the roots of the trees represent scales for 10 mutations. This image
was obtained by modifying a figure which originally appeared in our
previous work [16]

evolution shapes the ITH of advanced colorectal cancer.
The next question then arises: When is the ITH generated?
To answer this question, we performed multiregion
sequencing of nine early-stage colorectal tumors, which
were resected through endomicroscopic surgery [16]. As a
result, we found that extensive ITH was already generated
in the early stages of colorectal tumorigenesis. However,
compared with late-stage tumors, early-stage tumors
demonstrated the enrichment of driver genes in progressor
mutations, suggesting the contribution of Darwinian selec-
tion. The difference in evolutionary modes is evident in the
shapes of phylogenetic trees in which the lengths of the
trunk and branches represent the number of founder and
progressor mutations, respectively (Fig. 4). The late-stage
tumors tended to have “palm tree-like” shapes that were
composed of long trunks and short branches. In contrast, the
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early-stage tumors tended to have “forked tree-like” shapes
that were composed of short trunks and long branches. It
has been reported that the contribution of Darwinian
selection to ITH can also be measured by the distribution of
mutant allele frequencies (MAFs) in single-region sequen-
cing data [17]; if a set of subclonal mutations comprised
driver and accompanying passenger mutations, Darwinian
selection should have made their MAFs high, compared
with those from a set without driver mutations. By applying
this idea to multiregion analysis, we examined MAFs in
each sample of multiregion data to find that MAFs of pro-
gressor mutations, especially mutations shared by multiple
samples, tended to shift to a higher level in early-stage
tumors than in late-stage tumors. Collectively, these results
demonstrate that Darwinian selection contributes to the
formation of ITH in the early stages of colorectal tumor-
igenesis. It should be noted that, consistently to our data,
another study has independently reported that early-stage
colorectal tumors harbor subclonal driver mutations [18].

Although ITH exists in both early-stage and late-stage
colorectal tumors, the evolutionary principle generating ITH
shifts from Darwinian selection to neutral evolution.
Next, we had to understand the mechanism underlying the
temporal shift. To solve this problem, we focused on copy
number alterations (CNAs). By comparing copy number
profiles inferred from exome sequencing data, we found that
CNAs drastically increased during the progression from the
early stage to the late stage of colorectal tumorigenesis [16].
Notably, although some of the early-stage tumors that we
analyzed contained not only adenoma but also carcinoma
samples, we observed a significant increase in CNAs in the
carcinoma samples alone. In addition to single-nucleotide
mutations that we discussed so far, recent studies have
demonstrated that, in multiple types of cancers, more drastic
chromosome- and/or genome-wide evolutionary events that
produce CNAs and chromosomal rearrangements may have
occurred in a short time at the early stage of cancer evo-
lution [19, 20]. Such large-scale events could confer a
marked fitness increase on one or a few cells, which expand
to constitute the tumor mass uniformly. This type of evo-
lution is referred to as “punctuated evolution” after the term
“punctuated equilibrium,” which was proposed for species
evolution by Gould and Eldredge to challenge the long-
standing paradigm of gradual Darwinian evolution [21]
although the underlying molecular mechanisms that cause
rapid bursts of change are very different. Based on our
observation of the drastic increase in CNAs, we hypothe-
sized that punctuated evolution triggers the temporal shift of
the evolutionary principle generating ITH.

To examine this hypothesis, we employed mathematical
modeling [14]. We modified the BEP model to reproduce
punctuated evolution. In the original BEP model, we
assumed that a cell can grow infinitely without a decrease in

their growth speed. However, it is more natural to assume
that there exists a limit of population size because of
resource limitations and that the growth speed gradually
slows down as the population size approaches the limit. The
limit in the population size is called the carrying capacity
and is employed in the well-known logistic equation [22].
By mimicking the logistic equation, we introduced the
carrying capacity into the modified model and additionally
employ an “explosive” driver mutation, which negates the
effect of the carrying capacity; that is, it is assumed that the
explosive driver mutation rapidly evolves the cell such that
it can conquer the growth limit and attain infinite pro-
liferation ability. We show the results of a simulation based
on the modified model in Fig. 5. It was observed that
multiple subclones with different driver genes coexist; that
is, ITH shaped by Darwinian selection is prominent during
the early phase of the simulation. Note that a growth curve
plot indicates that, as the population size approaches the
carrying capacity, the growth speed slows down; however,
the tumor regrows after the appearance of a clone that has
acquired an explosive driver mutation. Darwinian selection
makes the clone with the explosive driver mutation domi-
nant in the population, which causes subclonal driver
mutations in the clone to shift to clonal mutations. Then,
neutral mutations alone accumulate as subclonal mutations;
that is, ITH is finally generated by neutral evolution. Col-
lectively, our mathematical modeling also supports the
notion that punctuated evolution triggers an evolutionary
shift in colorectal tumorigenesis.

In summary, our genomic analysis and mathematical
modeling led us to develop a new model of colorectal
cancer evolution (Fig. 6). In our model, multiple subclones
are generated by driver mutation acquisition and subsequent
clonal expansion in an early-stage tumor; however, early
tumor growth is inevitably hampered by obstacles such as
spatial and nutritional limitations and immune attack.
However, of the multiple subclones generated by Darwinian
selection, a parental clone that can overcome the obstacles
emerges. In addition to a sufficient set of driver mutations,
such a clone acquires driver CNAs that endow a tumor with
malignant phenotypes, such as invasion, angiogenesis, and
immune escape, and then it dominantly regrows by over-
coming the obstacles. Reinforcing this view, we recently
disclosed that the arm-level CNA in cancer tissues elicits
immune tolerance in the cancer microenvironment, such as
impaired cytolytic activity and diminished expression of
cytotoxic cell-related genes [23]. After punctuated evolu-
tion, numerous subclones were generated by the accumu-
lation of neutral mutations.

Our model is consistent with the well-established multi-
step carcinogenesis model of CRC [2], in which mutations
in major driver genes such as APC, KRAS, and TP53 are
sequentially accumulated in adenoma and then additional

SPRINGER NATURE
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Fig. 5 Simulation of the evolutionary shift based on the modified BEP
model. a growth curve of a simulated tumor. Note that, as the popu-
lation size p approaches 10°, which is the carrying capacity value in
this example, the growth speed slows down. b Evolutionary snapshots
of single-cell mutation profiles along the simulated tumor growth. The
time points when the snapshots were obtained are indicated by empty
circles on the growth curves. Rows and columns of the clustered
single-cell mutations profile matrices denote mutations and cells,

CNAs are acquired during the progression from adenoma to
carcinoma. The neutral evolution phase following punc-
tuated evolution is also consistent with the recently pro-
posed Big Bang model [10], where a tumor predominantly
grows as a single expansion without selective sweep. It
should also be noted that our model of the evolutionary shift
from Darwinian selection to neutral evolution might be a
simplified view; different evolutionary processes actually
work not separately but simultaneously and continuously as
a series of phases of cancer evolution, which is discussed in
our previous paper [14].

Either way, our evolution model is far from complete, and
many aspects remain to be done. Our model is a rough sketch
of the evolution of microsatellite stable tumors, which is
the major subtype of colorectal cancer. Since the minor sub-
type, microsatellite instable tumors, generally shows higher
mutation rates and lower CNA rates than microsatellite stable
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respectively. Top green bands represent a clone acquiring an explosive
driver mutation, while the blue bands on the left represent driver
mutations. Note that the driver mutation exists as subclonal mutations
at the beginning but shifts to clonal mutations, as the clone acquiring
the explosive driver mutation expands. This image was obtained by
modifying a figure which originally appeared in our previous
work [14]

tumors, our evolution model is not applicable [24]. Subtypes
exist even in microsatellite stable tumors. For example, we
identified depressed-type carcinoma, which is characterized
by a depressed surface in colorectal mucosa, as early-stage
lesions for a possible novel subtype of a microsatellite stable
tumor. The depressed cancers were positively correlated with
lymphovascular invasion, tumor budding, and massive sub-
mucosal invasion. Our genomic analysis also demonstrated
that depressed carcinomas harbor arm-level copy number
amplification in 13q and 20p more frequently than protruding
carcinomas [25]. The construction of a subtype-specific evo-
lution model should be addressed in future studies.
Although clinically important, the evolutionary path to
metastasis was not addressed in our model. Recently, several
studies employing multiregion sequencing have successfully
uncovered metastatic routes in colorectal cancer [26-28]. So
far, no driver events that specifically occurred in metastatic
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Fig. 6 Our model of colorectal cancer evolution. During early tumor-
igenesis, multiple subclones harboring different single-nucleotide muta-
tions appear and constitute ITH by Darwinian selection. The tumor is
then confronted with growth limitation before progressing to the late
phase of tumorigenesis. Out of the multiple subclones generated by
Darwinian selection, the parental clone that can conquer the growth
limitation emerges. In addition to a sufficient set of driver mutations,
such a clone acquires driver CNAs. The parental clone is selected to
progress locally advanced cancer or metastatic cancer. During the late
phase, extensive ITH is generated by neutral evolution. This image was
obtained by modifying a figure which originally appeared in our previous
work [16]

samples have been identified, suggesting that metastatic
potential is already acquired in founder clones, consistent with
our neutral evolution model. Mathematical modeling of the
multiregion data indicated that metastatic clones tended to
branch out from the primary tumor in the early phase of
evolution, which is in contrast with the case presented in
Fig. 1 [29]. Another study employing mathematical modeling
proposed that fewer primary tumor lineages seed distant
metastases than lymph node metastases, that is, different
levels of selection work against the two sites [30]. The evo-
lution and ITH of tumor-immune interactions should also be
studied in greater depth.

Recently, studies that integrated multiregion immunoge-
nomic data such as human leukocyte antigens, neoantigens, T
cell receptor repertoire, and expression of immune-related
genes have been reported for several cancer types [31-34].
Although much work on colorectal cancer remains to be done,
such an approach might provide insight into the mechanism
underlying resistance against immune checkpoint inhibitors,
which is only approved and partially effective for micro-
satellite instable tumors [32].

Evolution-based strategy for coping with
therapeutic resistance

Finally, we discuss on how to utilize our understanding
of cancer evolution to address the problems related to
therapeutic resistance. Currently, a large number of mole-
cular target drugs are available or under development.

a contentious administration b adaptive therapy

v

C intermittent therapy

—— sensitive clone

# of —— resistant clone

cells __ poth clones
timings of drug
administration

time

Fig. 7 Evolution-based therapeutic strategy. a Under contentious
administration, the tumor temporarily shrinks but the relapse is inevi-
table due to the expansion of a resistant clone. b, ¢ It is theoretically
possible that adaptive therapy (b) or intermittent therapy (c) suppress the
relapse utilizing clonal competition

Targeting driver genes in colorectal cancer appears to be a
rational approach when considering our evolution model
where driver genes exist as founder mutations. However,
drug resistance frequently appears during therapy for most
drugs, leading to therapeutic failure. Our model indicates
that late-stage colorectal tumors harbor extensive ITH
generated by neutral evolution, which could be a funda-
mental cause of therapeutic failure. Whether a mutation is
neutral or not depends on the surrounding environment, and
an environmental change induced by a specific therapy can
convert a neutral mutation that has no selective advantage
before the therapy to a driver mutation leading to ther-
apeutic refractoriness (resistant mutation). This means that
any type of therapy can potentially generate a resistant clone
with a resistant mutation, which leads to tumor relapse even
if the therapy is temporarily effective.

Studies employing mathematical modeling have shown
that tumor regrowth can be delayed or prevented by
adjusting the therapeutic regimen [35, 36]. In normal clin-
ical practice, an anticancer drug is continuously adminis-
tered to a patient with cancer at the maximum tolerated
dose, if possible. Given that a tumor comprises major and
minor clones that are sensitive and resistant to chemother-
apy, respectively, the tumor temporarily shr inks since the
major drug-sensitive clone is eradicated. However, as the
major drug-sensitive clone disappears, the minor resistant
clone can grow freely because of the release from growth
competition, that is, the competitive relationship between
the two clones is dissolved (Fig. 7a). In contrast, if we can
keep the two clones in a competitive state while controlling
the total tumor volume within an acceptable threshold, the

SPRINGER NATURE
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survival of the patient can be prolonged as compared with
the routine continuous administration.

For example, in “adaptive therapy,” the initial dose of an
anticancer drug is high, and then the dosage is decreased as
the tumor shrinks to eventually maintain the sensitive clone
at a level sufficient to suppress the growth of the resistant
clone (Fig. 7b) [37]. In fact, in an experimental system using
xenografts, it has been shown to prolong the survival rate of
mice compared with the standard dosing schedule [38]. In
antiandrogen therapy for prostate cancer, continuous
administration causes adverse events, leading to poor quality
of life. To address this problem, “intermittent therapy”
(Fig. 7c) has been proposed [39] in which administration is
repeated cyclically while monitoring the level of serum
prostate-specific antigen (PSA), a noninvasive biomarker
quantifying prostate tumor growth. Current data do not show
that intermittent therapy is inferior to continuous therapy,
with statistical certainty. Moreover, the rationality of inter-
mittent therapy is provided by the mathematical modeling of
tumor growth dynamics measured by PSA [40, 41]; that is,
intermittent therapy can suppress relapse by utilizing clonal
competition, similarly to adaptive therapy.

Although the availability of noninvasive biomarkers such
as PSA is essential for mathematical modeling of actual
clinical data, recent advances in liquid biopsy technology
have made it possible to take a similar approach for other
cancer types. In particular, liquid biopsy based on circu-
lating tumor DNA (ctDNA) appears to be a promising tool
for this purpose [42]. ctDNA is a tumor-derived portion of
cell-free DNA (cfDNA), which is all non-encapsulated
DNA circulating in the bloodstream. By applying digital
PCR or deep sequencing to cfDNA extracted from patients’
plasma, we can non-invasively detect mutations in ctDNA.
The allele frequencies of the mutations in ctDNA are sup-
posed to reflect the real-time clonal proportions in the whole
tumor, including primary and metastatic lesions, which can
provide an opportunity for tracking clonal dynamics during
a therapeutic course.

A few pioneering studies have recently combined
ctDNA-based liquid biopsy with mathematical modeling to
understand the therapeutic resistance in colorectal cancer.
For example, the time-series data acquired by digital PCR
of cfDNA showed the emergence of a resistant KRAS
mutation during anti-EGFR therapy in patients with meta-
static colorectal cancer. Moreover, mathematical analysis of
the time-series data suggested that the KRAS mutation
already existed in the tumor before the initiation of che-
motherapy, which is consistent with the view derived from
our neutral evolution model [43]. Targeted cfDNA
sequencing demonstrated that acquired resistance to anti-
EGFR therapy results from multiple resistant clones, and
mathematical modeling combined with frequent serial
sampling of cfDNA allows prediction of the expected time
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to treatment failure in individual patients [44]. It has also
been reported that after discontinuation of anti-EGFR
therapy, resistant clones decay due to a lack of growth
advantage relative to sensitive clones, which supports anti-
EGFR rechallenge [45]. Collectively, we expect that
mathematical modeling of tumor growth data profiled by
liquid biopsy will not only help us understand colorectal
tumor evolution during anticancer drug therapy but also
work out therapeutic strategies for coping with therapeutic
resistance.

Conclusion

In this review, we introduced our works in which we modeled
colorectal cancer evolution by genomic analysis and mathe-
matical modeling. The explosion of cancer genomic data still
continues on; moreover, technological innovation represented
by single-cell sequencing technologies is also accelerating
[46]. Although most of the current single-cell sequencing
technologies focus on transcriptome analysis, it has been
reported that ITH of CNAs can be computationally inferred
form single-cell RNA sequencing data [47]. Recently, a
protocol for performing both transcriptomic profiling and
targeted mutation detection simultaneously at the single-cell
level has also developed [48]. These approaches appear to
be useful to study not only genomic evolution itself but
also phenotypic changes accompanying it. The resolution
of spatial sequencing is approaching to the single-cell level
[49]; the spatial sequencing approach will expectedly be a
powerful tool for understanding ITH of solid tumors at the
ultimate level.

Mathematical modeling incorporating large amount and
complexity of data will be empowered by approximate
Bayesian computation (ABC) [50]. ABC is a computational
method that estimated the parameter distributions of a
simulation model. Although ABC is originally introduced
in population genetics, it has also recently gained popularity
in other fields of biological science. In fact, our work [6]
and another work cited above [29] employed ABC for fit-
ting simulation models to real data. Although the perfor-
mance of ABC depends on the choice of summary statistic,
which is used for evaluating similarities between real and
simulation data, it has recently been reported that the
summary statistic can automatedly be selected by deep
learning [51, 52]. It is expected that, together with such
methodological improvements, the expansion of computa-
tional resources will broaden the applicability of ABC. In
summary, considering these recent technological advance-
ments, modeling cancer evolution by combining genomic
analysis and mathematical modeling will be an increasingly
important approach for understanding and overcoming not
only colorectal cancer but also other types of cancer.
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