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Comparing multiple single-cell expression datasets such as cytometry and scRNA-seq data between case and control donors
provides information to elucidate the mechanisms of disease. We propose a completely data-driven computational biological
method for this task. This overcomes the challenges of conventional cellular subset-based comparisons and facilitates further
analyses such as machine learning and gene set analysis of single-cell expression datasets.
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INTRODUCTION

Single-cell expression data, such as from cytometry and single-cell
RNA-seq (scRNA-seq), provide information on cell population
profiles. The greatest benefit of single-cell expression data is that it
can reveal the heterogeneity of cell populations. Since scRNA-seq
datasets contain many cells and many genes, computational
methods to conduct dimensionality reduction in a data-driven
manner such as PCA, tSNE, or UMAP are indispensable for their
data analysis [1]. In such cellular heterogeneity analyses, the cells
are embedded into a low-dimensional coordinate space (left panel
in Fig. 1).

On the other hand, comparing cell population profiles between
case and control donors provides information on the mechanism
of complex diseases. Comparison of single-cell expression datasets
from multiple donors requires data mining of datasets with
donors, cells, and genes. This type of analysis is thus more
complex than donor comparisons for bulk expression datasets
with only donors and genes. When the purpose is comparing
multiple donor profiles, the donors should be embedded into a
low-dimensional coordinate space to be compared to each other
(right panel in Fig. 1).

Analyses that compare multiple single-cell expression profiles
have been performed mainly on cytometry data. The most
common method is to construct a donor-by-cellular-subset matrix
where the cellular subset fraction is identified and quantified
using manual gating or computational methods. Once the
datasets are converted to a donor-by-feature matrix, various
computational biology methods can be applied. Alternatively,
completely data-driven approaches that do not use any biological
assumptions have been proposed for constructing a donor-by-
feature matrix. Previously proposed approaches regarded single-
cell expression data as just statistical samples from a probability
distribution [2-4]. The merit of these types of methods is that they
require no prior knowledge or assumptions, such as biological
annotation of cellular subsets, and provide consistently data-
driven workflow from donor, cell, and gene data to a donor-by-

feature matrix. The differences between cellular subset-based and
completely data-driven approaches are described in Fig. 2(a).

Recently, comparisons of multiple scRNA-seq datasets have also
been discussed [5, 6]. Given that scRNA-seq contains much more
information that is more complex than cytometry data, a completely
data-driven approach would be very effective. However, existing
completely data-driven methods are designed for cytometry data
with few markers and cannot be applied to high-dimensional
scRNA-seq, while computational biology methods for scRNA-seq
data have mainly focused on cellular clustering or the identification
of unknown subsets for one profile rather than for multiple profile
comparisons. If a completely data-driven approach becomes
possible for scRNA-seq, the various computational biology methods
for multiple bulk RNA-seq datasets can be easily extended to scRNA-
seq, such as machine learning or differential gene set analysis.

In this study, we propose a completely data-driven computational
biological method for this task, which overcomes the challenges of
conventional cellular subset-based comparisons. We also show two
examples of applying this method: machine learning prediction of
clinical cytometry data and differential distributed gene analysis for
multiple scRNA-seq data.

RESULTS AND DISCUSSION

Completely data-driven comparisons of multiple single-cell
expression profiles

We have developed a completely data-driven method, named
kernelDEEF, to convert multiple high-dimensional single-cell
expression profiles into a donor-by-feature matrix format in a
completely data-driven manner (Fig. 2(b), detail in “Methods”
section 1). First, it picks n cells from each donor and calculates the
inner-product matrix between donors using a kernel method. Next,
a matrix decomposition algorithm is applied to this inner-product
matrix to give the coordinates of the donors based on the inner-
product relationship. As with principal component analysis, these
coordinates are calculated with the eigenvalues representing their
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Fig. 1 Conceptual difference between a cellular heterogeneity

analysis and multi-donor comparison

contributions. We name the coordinates as 6;, 0, --- in the order of
their contribution. Then, the top 6 coordinates such as 6, or 6, are
the data-driven features assigned to each donor. The advantage of
kernelDEEF is that it can convert high-dimensional single-cell
expression datasets (not only cytometry but also scRNA-seq) into
a matrix format in a completely data-driven manner without any
biological assumptions.

Figure 2(c) shows an example of a multiple donors comparison
with kernelDEEF (left panel) and cellular subsets (right panel) from
a public cytometry dataset, ITN, which is a built-in dataset of the R
package flowStats (see details in “Methods” sections 2-4) [7, 8].
The dataset consists of cytometry data of peripheral blood
mononuclear cells (PBMCs) measured at five markers from 15
patients with patient group labels as described in the flowStats
package. The left panel is 8, and 8, of kernelDEEF (n = 1000), and
the right panel is the CD4+ T cell and CD8+ T cell fractions. In a
cellular subset-based comparison, a multi-step gating process is
applied, and only a portion of the information in the cellular
population profile is used. kernelDEEF provides a consistent
workflow for feature extraction, and the differences between
patient groups are identified on 6 coordinate plots.

We investigated the stability of our completely data-driven
approach. We performed another two replications by cell
resampling (n = 1000) and drew a coplot of 8, and 8, coordinate
values, which suggested that the result is quite stable for the
resampling (Additional File 1). Using this resampling analysis, it
can be estimated whether the results of kernelDEEF are affected
by sampling bias. Additional File 2 is the result in a case when the
inner-product was calculated not by the kernel function but by a
grid-wise probability estimation. It shows a similar pattern as the 6
coordinate plot (see details in “Methods” section 4).

Figure 2(d) shows the 6 coordinate plots of scRNA-seq data of
PBMCs from patients with ulcerative colitis (UC), a representative
inflammatory bowel disease, and control donors [9]. After
preprocessing, 876 genes were included in the analysis (see
details of the dataset and preprocessing in “Methods” section 4).
The number of cells chosen (n) was set to 672, because this was
the minimum number of cells that could be included in the
profiles. The differences between UC and control donors are
clearly visualized on the top two 6 coordinates. The control donors
were observed in a region where both 6; and 6, values are large.
Although the sample size was quite small, two groups of UC
donors were observed: four donors with small 6,, and three
donors with large 6,. If a larger sample size becomes available in a
scRNA-seq study, it may be possible to classify disease subtypes
based on their cell population expression profiles.

Another possible application of this method is the detection of
batch effects in single-cell expression datasets. If it is possible that
there are batch effects in the dataset, we can visualize the effects by
changing the disease/control label to batch. In addition, the effects
can be tested and corrected in the same way as for ordinary
multivariate data. In fact, this can be done for the batch effect in
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large-scale cytometry data using a conventional completely data-
driven approach [10]. While this approach is only applicable to low-
dimensional data, kernelDEEF is also capable of fully data-driven
batch effect removal for high-dimensional single-cell expression data.
Our method was able to convert multiple single-cell expression
datasets into a donor-by-6 coordinate matrix in a completely data-
driven manner to compare donors. After this procedure, we can
apply various unsupervised learning methods in data science field
to this matrix. In addition, when the donors have disease/control
labels or other measurements, supervised machine learning or
association analyses can be performed. In the following sections,
we propose two applications of this 6 coordinate matrix: machine
learning prediction of clinical cytometry data and differential
distributed gene analysis for multiple scRNA-seq data.

Supervised machine learning for multiple clinical cytometry
datasets

We developed a kernelDEEF-based supervised machine learning
workflow to predict the donor label from cytometry data (Fig. 3(a)).
Cytometry is also used in clinical practice, and the development of
machine learning technology to diagnose diseases from cytometry
data is an important topic. In this workflow, we applied a
supervised machine learning algorithm, XGBoost, to a donor-by-9
coordinate matrix. We employed resampling and an ensemble to
improve the performance of the prediction, where the training and
prediction were performed on different multiple statistical samples
by cellular resampling, and the final predictive label was
determined by a majority vote of these predictions.

We applied this workflow to three datasets (HVTN, AML, and
HEU vs. UE) that were used in a previous competition for label
prediction of cytometry data [11]. This previous paper reported
the machine learning results of many computational cytometry
methods for cellular subset identification. Dataset HVTN is a T cell
cytometry dataset consisting of 96 samples stimulated with either
GAG antigen or ETV antigen. HEU vs. UE and the AML dataset are
different data structures where cytometry data under multiple
conditions are measured for each donor. HEU vs. UE has 44
donors, either HEU (exposed to HIV in utero but uninfected) or UE
(unexposed). For each donor, seven conditions (stimulated by six
different drugs (CPG, LPS, PAM, PG, PIC, and R848) and
unstimulated) of T cell cytometry data were measured. The AML
dataset has 380 donors, either acute myeloid leukemia (AML) or
normal. For each donor, eight conditions (tubel-tube8) of T cell
cytometry data were measured. In HEU vs. UE and AML, machine
learning was performed on the integrated matrix created by
concatenating 0 coordinate matrices of all conditions in the
columns. In all cases, we split the data into training and test data
under the same conditions as in the original paper and examined
the prediction accuracy of our workflow. Details of the workflow
are described in “Methods” section 6.

Figure 3(b) shows the result of the HVTN dataset. The ensemble
of 25 resamplings showed higher accuracy than all 25 resamplings
(accuracy = 0.85). This result suggests that our resampling and
ensemble procedure is effective for improving accuracy. Fig. 3(c)
shows the accuracy of all three datasets and the accuracy of the
original study results. HVTN and AML do not show higher accuracy
but stable performance. HEU vs. UE shows poor performance as in
the original study, though it was concluded in the original paper
that this label classification was a difficult task. Violin plots of the
accuracies of HEU vs. UE and AML are shown in Additional File 3
and Additional File 4, respectively.

These results suggest that the kernelDEEF-based machine
learning workflow has stable performance in a completely data-
driven manner. The advantage of this method is that it allows a
data scientist to perform machine learning prediction on arbitrary
cytometry datasets without any biological knowledge. However,
the accuracy of our method was not higher than that of the
conventional approach. The reason is likely that a larger sample
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Fig. 2 kernelDEEF method and its implementation. a Graphical explanation of conceptual differences between cellular subset-based and
completely data-driven comparisons of multiple single-cell expression profiles. The completely data-driven method does not require
biological subset annotation or multi-step processing like the cellular subset-based comparison, which allows for a direct comparison of the
profiles among donors. b Graphical outline of the kernelDEEF algorithm for case/control analysis. ¢ The result of feature extraction of

kernelDEEF and conventional cellular subset-based methods for the |
obtained in a completely data-driven manner. The right panel show

TN dataset. The left panel shows the kernelDEEF top two 6 coordinates
s the number of CD4+ T cell and CD8+ T cell fractions in the profiles

obtained by a conventional automatic gating approach. In kernelDEEF results, dissimilarities in PBMC profiles among patient groups described
in the flowStats package are visualized. d The top two 8 coordinate plots of the UC scRNA-seq dataset. The differences between UC and

control donors are visualized on the plot

size is needed to achieve higher performance, since kernelDEEF
uses nonparametric methods.

Differential distributed gene analysis for multiple scRNA-seq
datasets

One of the merits of single-cell RNA-seq is that it can identify
differential distributed genes (DDG) between two groups [12].

Journal of Human Genetics (2022) 67:215-221

DDG analysis identifies genes with differences in the distribution
of their expression levels in single cells between groups (Fig. 4(a)).
In the case of the bulk transcriptome, only the average expression
levels in the cell population can be observed. Differential
expressed gene (DEG) analysis using bulk transcriptome data
compares these observations between groups and identifies the
relevant genes. Therefore, DDG analysis using scRNA-seq has the
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Fig. 3 The results of supervised machine learning for multiple clinical cytometry datasets. a Graphical outline of machine learning prediction
task of the cytometry data. b Result of machine learning of the HVTN dataset. The violin plot of the accuracy for 25 resamplings with that of
the ensemble prediction with all resamplings is shown (red line). ¢ Table of prediction accuracy. The first column shows the prediction
accuracy of our approach on the test data for the three datasets. The second column shows the maximum and minimum accuracy of the

competition as described in the original paper

potential to detect more diverse differences in gene expression
patterns between groups even if the average expression level is
same.

Although DDG analysis is a powerful approach that takes
advantage of the characteristics of single-cell data, previous
studies have used only one scRNA-seq profile per group, making it
difficult to distinguish between individual differences and group
differences. Using a 6 coordinate matrix of kernelDEEF, it is
possible to identify the DDG from multiple scRNA-seq datasets
(Fig. 4(b)). DDG analysis for multiple donors per group would be a
natural extension of DEG analysis in bulk datasets.

We developed a kernelDEEF-based DDG analysis designed for
multiple profiles and applied it to the UC dataset (detailed in
Methods section 7). First, the top two 0 coordinates of donors
were calculated by applying kernelDEEF to each gene expres-
sion distribution. Next, we obtained each gene’s Wilks' lambda,
which is a statistic of the multivariate analysis of variance and
represents the label separation on the coordinate space. Genes
with a small lambda are differentially distributed genes between
disease and control. As an example, Fig. 4(c) shows plots of
genes with the smallest and largest lambda in the UC dataset.
Interestingly, the QQ plot of lambda values suggests that a
majority of the genes were differentially distributed between
labels (Fig. 4(d)), where the expected null distribution of the
lambda was calculated by the permutation of the label once for
each gene.

We conducted a validation through the resampling procedure
and a comparison with the conventional method. First, three
resamplings suggested that A is stable for resampling, with the
Spearman correlation coefficient of A among different resamplings
being > 0.8 (the coplot is shown in Additional File 5). We also
applied the conventional DDG method, scDD, to this dataset (see
details in Methods section 8), and returned a similar pattern of the
QQ plot of the P-value distributions (Additional File 6), which also
indicated that a majority of the genes were differentially
distributed. A correlation was also observed between our A values
and scDD P values (Additional File 7).

Next, we applied Gene Set Enrichment Analysis (GSEA) for
lambda values to investigate differential and relatively stable
pathways of PBMC populations between UC and control. Fig. 4(e)
shows the top ten KEGG pathways for relatively stable (blue) and
differential (yellow) genes. The ribosome pathway was the most
stable pathway. Interestingly, the top differential pathways were
associated with neurodegenerative disorders such as morphine
addiction, Parkinson’s disease, or Huntington's disease rather than
immunological pathways. A relationship between neurodegen-
erative diseases and inflammatory bowel disease has been
previously noted [13], and it has been suggested that gut bacteria
may be related to neurological diseases [14]. These analyses add
to our understanding of the pathways involved in differences in
cell population profiles.
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CONCLUSION

In this study, we proposed a completely data-driven computa-
tional method comparing multiple high-dimensional single-cell
expression datasets with donors, cells, and genes. In this method,
datasets are converted to a donor-by-feature matrix, which
overcomes the challenges of conventional cellular subset-based
conversions. By using our framework, most of the bulk data
analysis methods can be extended to single-cell data with case/
control labels in a natural way such as machine learning label
prediction or gene set analysis. The results of this study suggest
that preparing multiple donors for case/control studies may lead
to new discoveries, even with single-cell expression study designs.

METHOD

kernelDEEF method

In this method, single-cell expression data can be thought of as a
statistical sample from a high-dimensional probability distribution. The
first step is to calculate the inner-product matrix between the donors.
For the inner-product of the distributions, we use an index based on
kernel mean embedding [15]. We picked n cells from each profile with
no duplication allowed and calculated the inner-product of the donors.
The index calculated as follows was used as the inner-product of the two
probability distributions ,; and p; from which the i-th and j-th profiles
were sampled.

1 n n
<pi7pj>:FZZK(xikﬂxﬂ) M
k I

where x;, x; is the gene/marker expression vector of the k-th cell from
the i-th profile and the gene/marker expression vector of the I-th cell
from the j-th profile. K(x, X;) is the kernel function, and a radial basis
function kernel was adopted as follows:

K (X, %i1) = exp(fvl\x/-k - le||2) )]

y is the hyper-parameter, and we automatically set this value as % [16].
Next, we gave each donor a coordinate based on this inner-product
matrix. We adopted the DEEF method, which gives coordinates based on
the inner-product of the probability distributions [4]. This method
applies eigenvalue decomposition of the N by N matrix, whose (i, j)-th
element is 1 log <p;,p;>. 6; is defined as the product of the i-th
eigenvector and square root of the absolute i-th eigenvalue, and can be
treated as a data-driven distribution feature. Therefore, [04, 05 -+ Op] is
a matrix of a donor-by-6 coordinate values where the subscripts
indicate the order of the contributions expressed in the eigenvalues
from the largest positive (0,) to the largest negative value. As a result,
the information in the dataset is converted from a donor to a feature
matrix.

Cytometry dataset ITN

We used a publicly available cytometry dataset (ITN) as an example of
cytometry implementation. The ITN dataset is a built-in cytometry dataset
of the R package flowStats [7, 8]. The dataset contains PBMCs with five
markers (CD8, CD69, CD4, CD3, and HLADr) from 15 patients in different
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Fig. 4 The results of DDG analysis for multiple scRNA-seq datasets. a Graphical illustration of standard DDG analysis. It compares the two
distributions of expression levels of single cells and identifies the genes differentially distributed between groups such as case or control. Even
if the average expression level is same, the difference in expression distribution can be detected. b Our setting of DDG analysis in a situation
with multiple donors per label using kernelDEEF. ¢ Plot of the top two 6 coordinates for the genes with the smallest (left panel) and largest
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two red points are plotted very close to each other and appear to overlap in the left panel. d QQ plot to compare the distribution of lambda
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GSEA for Wilks' lambda. The figure is a bar chart of the default output of WebGestalt, showing the top 10 relatively stable pathways (blue) and
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patient groups as described in the flowStats package. Each profile in this
dataset contains 10,000 cells.

Automatic cellular subset quantification for the ITN dataset
We performed automatic cellular subset fraction quantification with the
code described in the vignette document of the flowStats package. Here,
CD4+ and CD8+ T cells were identified by sequential application of CD3/
SSC lymphocyte gating and CD4/CD8 gating.

A complete data-driven approach for the ITN dataset
All raw profiles in the ITN dataset were transformed by asinh(intensity/5)
for downstream analysis as a complete data-driven approach.

We applied kernelDEEF to this dataset (n = 1000). For a comparison with
kernelDEEF, we also performed a grid-wise inner-product calculation
procedure using the ITN dataset [4]. Here, the range was set to include the
range between a and 1 — a percentile for each marker (a=0.15). The
range of expression values for this marker was divided into a grid of 10.
Since the number of markers is five, the total number of grids is 10°. For
these grids, a density estimation was performed using the k nearest
neighbor method (k= 100). The obtained densities were normalized to
sum to 1, and the inner-products were calculated by vector calculation.
The coordinates were obtained by applying DEEF to the inner-product
matrix obtained in this way.

scRNA-seq dataset UC and its preprocessing

We obtained the scRNA-seq data of patients with UC and control donors
from NCBI GEO (GSE125527) [9]. We used the processed PBMC data of 15
donors (seven UC and eight healthy, GSM3576411-GSM357642). We
performed quality control using Seurat under the following criteria: cells
with nFeature_RNA < 200, nFeature_RNA > 7000, nCount_RNA > 70,000, or
percentmt>10 were removed [17, 18]. Next, log normalization was
applied to the dataset using the Seurat NormalizeData function where the
scale.factor parameter was 10,000. We used genes passing the pooled sum
of the expression value of all cells and all samples> 15,000 for the
downstream analysis. The reasons for this gene filtering are as follows: first,
a certain amount of expression is desirable for robust quantification of
distributional dissimilarities per gene, and second, to reduce computa-
tional cost. After the filtering of genes, we finally used 876 genes.

Machine learning classification of cytometry data

We used three datasets (HVTN, HEU vs. UE, and AML) from a previous study
[11]. HVTN, HEU vs. UE, and AML were downloaded from the Flow
Repository [19] (IDs: FR-FCM-ZZZV, FR-FCM-ZZZU, and FR-FCM-ZZYA,
respectively). The HVTN dataset includes post-HIV vaccination T cell
profiles after stimulation by two types of antigen, namely ENV and GAG.
This dataset contains 96 samples (48 GAG samples and 48 ENV samples) in
which the following protein markers were measured: CD4, TNFa, IL4 IFNg,
CD8, CD3, and IL2. The HEU vs. UE dataset contains 308 samples from 44
donors (20 HEU and 24 UE). For each donor, cytometry measurements
were taken under seven different conditions stimulated by six different
drugs (CPG, LPS, PAM, PG, PIC, and R848) and unstimulated, and the
following protein markers were measured: IFNa, CD123, MHCII, CD14,
CD11¢, IL6, IL12, and TNFa. The AML dataset contains 2872 samples from
359 donors (43 AML and 316 normal) in which the following protein
markers were measured: 1gG1-FITC, IgG1-PE, CD45-ECD, 1gG1-PC5, and
IgG1-PC7. For each donor, eight conditions (tube 1-tube 8) of T cell
cytometry data were measured. For all datasets, asinh(intensity/5) was
applied as a normalization preprocess.

We applied the kernelDEEF procedure and calculated donors by the 6
coordinates matrix, where the number of picked cells (n) was 1000. Only
the coordinate axes corresponding to positive eigenvalues were used in
subsequent analyses. These matrix data were used for the subsequent
machine learning procedure. In the HVIN data implementation, the
training data and test data were described in the original dataset, then we
used the same split (the proportion of training data was 50%). Because the
training and test labels were not described in AML and HEU vs. UE
datasets, the datasets were randomly split to have the same training rate
(50%) as in the original paper.

We used the XGBoost algorithm for sample classification with the
Python library xgboost, where n_estimators =5000 [20]. The hyper-
parameter max_depth (2, 3, 4, or 5) and the number of top 6 coordinates
to use were determined with the GridSerchCV function of scikit-learn,
where the fold-number of cross-validation was set to five. To reduce the
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calculation burden of the grid search for how many top 6 coordinates to
use, the number of 6 coordinates to be used was increased in order
starting from 1, and if the best score of the cross-validation was not
updated more than 11 times, the search was stopped. We conducted
different cell resamplings and ensembles. After repeating the above
prediction 25 times, the final predictive label was determined by a majority
vote of these predictions. For AML and HEU vs. UE, after determining the
optimal number of coordinates for each condition, XGBoost was applied to
the integrated matrix created by concatenating 6 coordinate matrices of all
conditions in the columns.

kernelDEEF-based differential distributed gene analysis
procedure

We used the top two 6 coordinates for the downstream analysis. For each
gene, we calculated the Wilks’ lambda using the Python statsmodels
library’s multivariate.manova.MANOVA function [21]. In addition, we
computed the lambda under the permutation of the label once for each
gene and created a null distribution for lambda. We applied GSEA for the
lambda values to investigate which gene set tended to be differently
distributed. GSEA was performed by WebGestalt (WEB-based GEne SeT
AnaLysis Toolkit) with default settings for KEGG pathways [22].

Comparison with scDD results

We sampled 672 cells from each donor and pooled them into UC and
control groups, respectively. As such, the UC group contained 4704 (672 x 7)
cells, and the control group contained 5376 (672 x 8) cells. scDD was applied
using the R package to the expression data of these two groups with default
settings[12].

CODE AVAILABILITY

We created a brief tutorial for kernelDEEF using Python with the Jupyter notebook at
https://github.com/DaigoOkada/kernel_deef_tutorial. The code used in this study is
available at https://github.com/DaigoOkada/kernel_deef_code.
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