Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Genome-wide meta-analysis revealed several genetic loci associated with serum uric acid levels in Korean population: an analysis of Korea Biobank data

Abstract

The serum uric acid (SUA) level is an important determinant of gout, hypertension, metabolic syndrome, and cardiovascular disease. Although previous genome-wide studies have identified multiple genetic variants associated with SUA, most genetic analyses have focused on individuals with European ancestry; thus, understanding of the genetic architecture of SUA is currently limited for Asian populations. We conducted a genome-wide meta-analysis based on Korea Biobank data consistent with three cohorts; namely, the Korean Genome and Epidemiology Study (KoGES) Ansan and Ansung, KoGES Health Examinee, and KoGES Cardiovascular Disease Association studies. In total, 60,585 participants aged ≥40 years were included in the analysis of the three cohorts. We used logistic regression analyses to perform genome-wide association study (GWAS) adjustments for confounding variables. Subsequently, a meta-analysis was conducted by combining the analyses of the three GWASs. We identified 8,105 variants at 22 genetic loci with a P value < 5 × 108. Among these, six novel genetic loci associated with SUA in the Korean population were identified (rs4715517 in HCRTR2, rs145099458 in 3.2 kb 3′ of MLXIPL, rs1137642 in B4GALT1, rs659107 in LOC105378410, rs7919329 in LOC107984274, and rs2240751 in MFSD12). Our meta-analysis provides insights into the genetic architecture of SUA in the Korean population. Further studies are warranted to replicate the study results and elucidate the specific role of these variants in SUA homeostasis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Rock KL, Kataoka H, Lai J-J. Uric acid as a danger signal in gout and its comorbidities. Nat Rev Rheumatol. 2013;9:13.

    Article  CAS  PubMed  Google Scholar 

  2. Jossa F, Farinaro E, Panico S, Krogh V, Celentano E, Galasso R, et al. Serum uric acid and hypertension: the Olivetti heart study. J Hum Hypertens. 1994;8:677–81.

    CAS  PubMed  Google Scholar 

  3. Kawamoto R, Tomita H, Oka Y, Ohtsuka N. Relationship between serum uric acid concentration, metabolic syndrome and carotid atherosclerosis. Intern Med. 2006;45:605–14.

    Article  PubMed  Google Scholar 

  4. Kanbay M, Segal M, Afsar B, Kang D-H, Rodriguez-Iturbe B, Johnson RJ. The role of uric acid in the pathogenesis of human cardiovascular disease. Heart 2013;99:759–66.

    Article  CAS  PubMed  Google Scholar 

  5. Madero M, Sarnak MJ, Wang X, Greene T, Beck GJ, Kusek JW, et al. Uric acid and long-term outcomes in CKD. Am J Kidney Dis. 2009;53:796–803.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Mandal AK, Mount DB. The molecular physiology of uric acid homeostasis. Annu Rev Physiol. 2015;77:323–45.

    Article  CAS  PubMed  Google Scholar 

  7. Kim Y, Kang J, Kim G-T. Prevalence of hyperuricemia and its associated factors in the general Korean population: an analysis of a population-based nationally representative sample. Clin Rheumatol. 2018;37:2529–38.

    Article  PubMed  Google Scholar 

  8. Yu K-H, See L-C, Huang Y-C, Yang C-H, Sun J-H. Seminars in arthritis and rheumatism, Vol. 37, 243–50 (Elsevier, 2008).

  9. Sica DA, Carter B, Cushman W, Hamm L. Thiazide and loop diuretics. J Clin Hypertens. 2011;13:639–43.

    Article  CAS  Google Scholar 

  10. Köttgen A, Albrecht E, Teumer A, Vitart V, Krumsiek J, Hundertmark C, et al. Genome-wide association analyses identify 18 new loci associated with serum urate concentrations. Nat Genet. 2013;45:145–54.

    Article  PubMed  Google Scholar 

  11. Nakatochi M, Kanai M, Nakayama A, Hishida A, Kawamura Y, Ichihara S, et al. Genome-wide meta-analysis identifies multiple novel loci associated with serum uric acid levels in Japanese individuals. Commun Biol. 2019;2:1–10.

    Article  CAS  Google Scholar 

  12. Tin A, Marten J, Kuhns VLH, Li Y, Wuttke M, Kirsten H, et al. Target genes, variants, tissues and transcriptional pathways influencing human serum urate levels. Nat Genet. 2019;51:1459–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Okada Y, Sim X, Go MJ, Wu J-Y, Gu D, Takeuchi F, et al. Meta-analysis identifies multiple loci associated with kidney function–related traits in east Asian populations. Nat Genet. 2012;44:904–09.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Boocock J, Leask M, Okada Y, Consortium AGEN Matsuo H, Kawamura Y. et al. Genomic dissection of 43 serum urate-associated loci provides multiple insights into molecular mechanisms of urate control. Hum Mol Genet. 2020;29:923–43.

    Article  CAS  PubMed  Google Scholar 

  15. Kanai M, Akiyama M, Takahashi A, Matoba N, Momozawa Y, Ikeda M, et al. Genetic analysis of quantitative traits in the Japanese population links cell types to complex human diseases. Nat Genet. 2018;50:390–400.

    Article  CAS  Google Scholar 

  16. Dehghan A, Köttgen A, Yang Q, Hwang S-J, Kao WL, Rivadeneira F, et al. Association of three genetic loci with uric acid concentration and risk of gout: a genome-wide association study. Lancet. 2008;372:1953–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Nath SD, Voruganti VS, Arar NH, Thameem F, Lopez-Alvarenga JC, Bauer R, et al. Genome scan for determinants of serum uric acid variability. J Am Soc Nephrol. 2007;18:3156–63.

    Article  CAS  PubMed  Google Scholar 

  18. Li Z, Zhou Z, Hou X, Lu D, Yuan X, Lu J, et al. Replication of gout/urate concentrations GWAS susceptibility loci associated with gout in a Han Chinese population. Sci Rep. 2017;7:1–6.

    Google Scholar 

  19. Yang B, Mo Z, Wu C, Yang H, Yang X, He Y, et al. A genome-wide association study identifies common variants influencing serum uric acid concentrations in a Chinese population. BMC Med Genom. 2014;7:1–10.

    Article  Google Scholar 

  20. Kim Y, Han B-G, Group K. Cohort profile: the Korean genome and epidemiology study (KoGES) consortium. Int J Epidemiol. 2017;46:e20–e20.

    Article  PubMed  Google Scholar 

  21. Moon S, Kim YJ, Han S, Hwang MY, Shin DM, Park MY, et al. The Korea biobank array: design and identification of coding variants associated with blood biochemical traits. Sci Rep. 2019;9:1–11.

    Article  Google Scholar 

  22. Matsushita K, Mahmoodi BK, Woodward M, Emberson JR, Jafar TH, Jee SH, et al. Comparison of risk prediction using the CKD-EPI equation and the MDRD study equation for estimated glomerular filtration rate. JAMA. 2012;307:1941–51.

    Article  CAS  PubMed  Google Scholar 

  23. Lane JM, Liang J, Vlasac I, Anderson SG, Bechtold DA, Bowden J, et al. Genome-wide association analyses of sleep disturbance traits identify new loci and highlight shared genetics with neuropsychiatric and metabolic traits. Nat Genet. 2017;49:274.

    Article  CAS  PubMed  Google Scholar 

  24. Dashti HS, Jones SE, Wood AR, Lane JM, Van Hees VT, Wang H, et al. Genome-wide association study identifies genetic loci for self-reported habitual sleep duration supported by accelerometer-derived estimates. Nat Commun. 2019;10:1–12.

    Article  CAS  Google Scholar 

  25. Adhikari K, Mendoza-Revilla J, Sohail A, Fuentes-Guajardo M, Lampert J, Chacón-Duque JC, et al. A GWAS in Latin Americans highlights the convergent evolution of lighter skin pigmentation in Eurasia. Nat Commun. 2019;10:1–16.

    Article  Google Scholar 

  26. Shin J-G, Leem S, Kim B, Kim Y, Lee S-G, Song HJ, et al. GWAS analysis of 17,019 Korean women identifies the variants associated with facial pigmented spots. J Investig Dermatol. 2021;141:555–62.

    Article  CAS  PubMed  Google Scholar 

  27. Reginato AM, Mount DB, Yang I, Choi HK. The genetics of hyperuricaemia and gout. Nat Rev Rheumatol. 2012;8:610.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Kamatani Y, Matsuda K, Okada Y, Kubo M, Hosono N, Daigo Y, et al. Genome-wide association study of hematological and biochemical traits in a Japanese population. Nat Genet. 2010;42:210.

    Article  CAS  PubMed  Google Scholar 

  29. Kantarci S, Al-Gazali L, Hill RS, Donnai D, Black GC, Bieth E, et al. Mutations in LRP2, which encodes the multiligand receptor megalin, cause Donnai-Barrow and facio-oculo-acoustico-renal syndromes. Nat Genet. 2007;39:957–59.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Storm T, Tranebjærg L, Frykholm C, Birn H, Verroust PJ, Nevéus T, et al. Renal phenotypic investigations of megalin-deficient patients: novel insights into tubular proteinuria and albumin filtration. Nephrol Dialysis Transplant. 2013;28:585–91.

    Article  CAS  Google Scholar 

  31. Leheste J-R, Rolinski B, Vorum H, Hilpert J, Nykjaer A, Jacobsen C, et al. Megalin knockout mice as an animal model of low molecular weight proteinuria. Am J Pathol. 1999;155:1361–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Rothé B, Leal-Esteban L, Bernet F, Urfer S, Doerr N, Weimbs T, et al. Bicc1 polymerization regulates the localization and silencing of bound mRNA. Mol Cell Biol. 2015;35:3339–53.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Meyer zu Schwabedissen HE, Verstuyft C, Kroemer HK, Becquemont L, Kim RB. Human multidrug and toxin extrusion 1 (MATE1/SLC47A1) transporter: functional characterization, interaction with OCT2 (SLC22A2), and single nucleotide polymorphisms. Am J Physiol-Ren Physiol. 2010;298:F997–F1005.

    Article  CAS  Google Scholar 

  34. Morris AP, Le TH, Wu H, Akbarov A, van der Most PJ, Hemani G, et al. Trans-ethnic kidney function association study reveals putative causal genes and effects on kidney-specific disease aetiologies. Nat Commun. 2019;10:1–14.

    Article  Google Scholar 

  35. Wuttke M, Li Y, Li M, Sieber KB, Feitosa MF, Gorski M, et al. A catalog of genetic loci associated with kidney function from analyses of a million individuals. Nat Genet. 2019;51:957–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Kichaev G, Bhatia G, Loh PR, Gazal S, Burch K, Freund MK, et al. Leveraging polygenic functional enrichment to improve GWAS power. Am J Hum Genet. 2019;104:65–75.

    Article  CAS  PubMed  Google Scholar 

  37. Chen M-H, Raffield LM, Mousas A, Sakaue S, Huffman JE, Moscati A, et al. Trans-ethnic and ancestry-specific blood-cell genetics in 746,667 individuals from 5 global populations. Cell. 2020;182:1198–213. e14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Pulit SL, Stoneman C, Morris AP, Wood AR, Glastonbury CA, Tyrrell J, et al. Meta-analysis of genome-wide association studies for body fat distribution in 694 649 individuals of European ancestry. Hum Mol Genet. 2019;28:166–74.

    Article  CAS  PubMed  Google Scholar 

  39. Zhu Z, Guo Y, Shi H, Liu C-L, Panganiban RA, Chung W, et al. Shared genetic and experimental links between obesity-related traits and asthma subtypes in UK Biobank. J Allergy Clin Immunol. 2020;145:537–49.

    Article  CAS  PubMed  Google Scholar 

  40. Liang M, Woodard LE, Liang A, Luo J, Wilson MH, Mitch WE, et al. Protective role of insulin-like growth factor-1 receptor in endothelial cells against unilateral ureteral obstruction–induced renal fibrosis. Am J Pathol. 2015;185:1234–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Ishizaka N, Ishizaka Y, Toda A, Tani M, Koike K, Yamakado M, et al. Changes in waist circumference and body mass index in relation to changes in serum uric acid in Japanese individuals. J Rheumatol. 2010;37:410–16.

    Article  CAS  PubMed  Google Scholar 

  42. Leask M, Dowdle A, Salvesen H, Topless R, Fadason T, Wei W, et al. Functional urate-associated genetic variants influence expression of lincRNAs LINC01229 and MAFTRR. Front Genet. 2019;9:733.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Cho SK, Kim B, Myung W, Chang Y, Ryu S, Kim H-N, et al. Polygenic analysis of the effect of common and low-frequency genetic variants on serum uric acid levels in Korean individuals. Sci Rep. 2020;10:1–10.

    Google Scholar 

Download references

Acknowledgements

This study was conducted with bioresources from the National Biobank of Korea, the Center for Disease and Prevention, Republic of Korea (KBN-2020-003).

Funding

This research was funded by a National Research Foundation of Korea (NRF) grant funded by the Korean government (MEST) (No. 2019R1G1A1099627).

Author information

Authors and Affiliations

Authors

Contributions

J Park: Writing—Original draft, Methodology, Software, Formal analysis, Data curation; Y Kim: Original draft, Methodology, Software, Formal analysis, Data curation, Visualization; J Kang: Conceptualization, Funding acquisition, Writing—review & editing, Supervision, Project administration. All authors: Investigation and Validation. All authors discussed the results and approved the final version of the manuscript.

Corresponding author

Correspondence to Jihun Kang.

Ethics declarations

Competing interests

All authors declare that they have no conflicts of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Park, J.s., Kim, Y. & Kang, J. Genome-wide meta-analysis revealed several genetic loci associated with serum uric acid levels in Korean population: an analysis of Korea Biobank data. J Hum Genet 67, 231–237 (2022). https://doi.org/10.1038/s10038-021-00991-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s10038-021-00991-1

Search

Quick links