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Amyotrophic lateral sclerosis (ALS) is an intractable disease that causes respiratory failure leading to mortality. The main locus of
ALS is motor neurons. The success of antisense oligonucleotide (ASO) therapy in spinal muscular atrophy (SMA), a motor neuron
disease, has triggered a paradigm shift in developing ALS therapies. The causative genes of ALS and disease-modifying genes,
including those of sporadic ALS, have been identified one after another. Thus, the freedom of target choice for gene therapy has
expanded by ASO strategy, leading to new avenues for therapeutic development. Tofersen for superoxide dismutase 1 (SOD1) was
a pioneer in developing ASO for ALS. Improving protocols and devising early interventions for the disease are vital. In this review,
we updated the knowledge of causative genes in ALS. We summarized the genetic mutations identified in familial ALS and their
clinical features, focusing on SOD1, fused in sarcoma (FUS), and transacting response DNA-binding protein. The frequency of the
C9ORF72 mutation is low in Japan, unlike in Europe and the United States, while SOD1 and FUS are more common, indicating that
the target mutations for gene therapy vary by ethnicity. A genome-wide association study has revealed disease-modifying genes,
which could be the novel target of gene therapy. The current status and prospects of gene therapy development were discussed,
including ethical issues. Furthermore, we discussed the potential of axonal pathology as new therapeutic targets of ALS from the
perspective of early intervention, including intra-axonal transcription factors, neuromuscular junction disconnection, dysregulated
local translation, abnormal protein degradation, mitochondrial pathology, impaired axonal transport, aberrant cytoskeleton, and
axon branching. We simultaneously discuss important pathological states of cell bodies: persistent stress granules, disrupted
nucleocytoplasmic transport, and cryptic splicing. The development of gene therapy based on the elucidation of disease-modifying
genes and early intervention in molecular pathology is expected to become an important therapeutic strategy in ALS.
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INTRODUCTION
Amyotrophic lateral sclerosis (ALS) is the most common motor
neuron disease (MND) among adults [1, 2]. No treatment, other
than symptomatic management for dysphagia and respiratory
failure, has been established. The pathomechanism of ALS has
been elucidated by functional analysis of genes identified in
familial ALS, which occurs in approximately 10% of patients with
ALS. As many disease susceptibility genes have been reported in
recent studies, genetic factors are now considered significantly
involved in sporadic ALS [3].
Spinal muscular atrophy (SMA) is a motor neuron disease

caused by a decrease in the survival motor neuron (SMN) protein
due to SMN1 deficiency. Although SMN2, which is almost identical
to SMN1, is present in vivo, mRNA from the gene is usually
skipped in exon 7 due to splicing, and little functional SMN is
synthesized. Nusinersen is a chemically-modified RNA that targets
intronic splicing silencer N1 in intron 7 of SMN2 and inhibits the
skipping of exon 7, thereby allowing the synthesis of functional
SMN proteins from SMN2 [4]. In a randomized, double-blind,
placebo-controlled trial (ENDEAR trial: NCT02193074) involving
patients with infantile-onset SMA (type 1), nusinersen-treated
patients showed a significant reduction in mortality and

improvement in motor function [5]. Moreover, nusinersen has
been shown to be effective in treating type 2 and type 3 SMA
(CHERISH trial: NCT02292537) [6].
The approval of antisense oligonucleotides (ASOs) for treating

SMA has had a significant impact and has brought hope to the
development of therapies for other MNDs. Tofersen for superoxide
dismutase 1 (SOD1) was a pioneer in developing ASO therapies for
ALS [7]; however, it failed to show significant improvement in the
primary endpoint in a phase 3 trial [8]. Therefore, improving
protocols and developing early interventions for the disease
are vital.
In this review, we have updated the knowledge of causative

genes in ALS. Moreover, we have summarized the genetic
mutations identified in familial ALS and their clinical features,
focusing on SOD1, fused in sarcoma (FUS), and transacting
response DNA-binding protein (TARDBP). A genome-wide associa-
tion study (GWAS) has revealed disease-modifying genes that
could be the target of gene therapy. The current status and
prospects of gene therapy development were discussed, including
ethical issues. Furthermore, we have discussed the potential of
axonal pathology as a new therapeutic target from the
perspective of early intervention.
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THE ELUCIDATION OF CAUSATIVE GENES HAS ADVANCED
OUR UNDERSTANDING OF THE PATHOGENESIS OF ALS, AND
GENETIC ANALYSIS HAS BECOME AN ESSENTIAL TOOL FOR
DEVELOPING PERSONALIZED TREATMENT
More than 30 ALS-causing and related genes have been
identified
The identification of the SOD1 gene as the causative gene in 1993
was a major step forward in the study field of ALS [9–11]. Moreover,
the TARDBP and FUS genes have been identified, and RNA
metabolism has become a focus of attention as a pathological factor
in ALS [12–15]. In 2001, ALS2/Alsin was identified as the causative
gene for a young-onset autosomal recessive form of ALS [16]. In 2010,
optineurin was identified as a cause of ALS with slow progression,
extended duration, lower limb onset with spasticity, and cognitive
impairment [17]. Both alsin and optineurin are autophagy-related
molecules, suggesting that disruption of the protein degradation
machinery is involved in the pathogenesis of ALS [18, 19].
In 2011, chromosome 9 open reading frame 72 (C9ORF72), the

most frequent causative gene in familial ALS in Europe and the
United States, was identified, which markedly changed the
research trend [20, 21]. A C9ORF72 mutation has been described
as frontotemporal dementia-ALS 1 (FTDALS1), which is found in
approximately 40% of patients with familial ALS and 3% of
patients with sporadic ALS in Europe and the United States [22].
Targeted resequencing and exome analysis of familial ALS using
next-generation sequencers have been reported one after another
and revealed novel causative genes [23–26]. As of December 2021,
the Online Mendelian Inheritance in Man (OMIM) has registered
26 types of ALS and 24 causative genes, except for ALS3 and ALS7
(Table 1). ALS13, ALS24, and ALS25 have been suggested to be
susceptibility genes (# in Table 1).

Racial/ethnic differences in genetic analysis
How often are these genetic mutations found in familial and
sporadic ALS in Japan? The Japanese Consortium of ALS Research
(JaCALS) has found known mutations in 48.7% of 39 Japanese
families with suspected familial ALS, mainly in the autosomal
dominant form, and known ALS-causing gene mutations in 3% of
469 cases of sporadic ALS [27]. We have been studying familial
ALS since 1991. We performed targeted resequencing analysis of
111 Japanese families with suspected autosomal dominant forms
of ALS [28]. We identified SOD1 mutations in 36 families, FUS
mutations in 12 families, TARDBP mutations in two families, and
optineurin p.E478G mutations in one family. We identified known
mutations in 50% of the families with familial ALS [28].
The results of the analysis of causative genes in European and

Japanese are shown in Fig. 1. Mutations in SOD1, TARDBP, FUS, and
C9ORF72 were color-coded according to a review of the literature
[27, 29], and data in Japan is modified from our previous study
[28]. Mutations not determined (ND) in these four genes were also
color-coded. Mutations were identified in 55.5% of Europeans with
familial ALS and 43.6% of Japanese individuals with familial ALS. In
sporadic ALS, mutations were also identified in 7.4% of European
cases and 2.9% of Japanese cases. The difference between
European and Japanese cases is mostly due to the difference in
the frequency of C9ORF72 mutation. Furthermore, SOD1 and FUS
are more common in Japanese, while TARDBP is more common in
European. Asia represents over 50% of the world’s population;
however, this continent is underrepresented in clinical trials and
studies [30]. We want to point out that the frequency of the
C9ORF72mutation is low in Japan, unlike in Europe and the United
States, while SOD1 and FUS are more common, indicating that the
target mutations for therapy vary by ethnicity.

Clinicogenetic and molecular characteristics of ALS genetic
variants
SOD1. SOD1 (Cu/Zn-SOD) is a protein consisting of 153 amino
acids, and more than 200 SOD1 mutations have been reported

worldwide [9, 10]. Many cases are clinically indistinguishable from
sporadic ALS, except for family history. The progression of disease
with mutations of SOD1 is well correlated with each mutation
[31, 32]. Most cases start in the lower motor neurons and lower
limbs [33]. A correlation was found between certain point
mutation and symptom severity, with p.A4V indicating severe
disease and p.H46R indicating slow progression [34–36]. In our
cohort, the mean age at onset was 48.4 years, and the mean
disease duration was 4.9 years in patients with SOD1 mutations.
The p.L126S mutation is characterized by rapid progression in
homozygous cases [37] and relatively long course in heterozygous
cases [38], with isolated inferior olivary hypertrophy in autopsy
case [38]. The relatively frequent p.N86S mutation is characterized
by phenotypic diversity and low penetrance even within families.
p.L8V, a rare mutation that causes sensory disturbances, has also
been reported [39]. Three mutations, p.H46R, p.L126S, and p.N86S,
account for ~40% of the Japanese cases, with a lesser frequency of
the severe form, p.A4V, which is estimated to account for 50% of
SOD1 mutations among Europeans and Americans [40]. The p.
D90A mutation is frequent in Europe [41], and is also transmitted
in the AR form, but has not been found in our Japanese subjects
[42]. These regional differences in SOD1 mutations should be
taken into account in the development of SOD1-targeted
therapies, such as the high prevalence of severe p.A4V in North
America, p.D90A in Europe, and slower p.H46R in Japan [43, 44].
*The current HGVS nomenclature uses one amino acid shift

compared to past nomenclature [45]. However, this review follows
the traditional numbering for SOD1 variants in order to be
consistent with previous articles.

FUS. In 2009, FUS was identified as the causative gene of ALS
[12, 13]. FUS is the fourth most common causative gene for familial
ALS in the US and Europe, following C9ORF72/SOD1/TARDBP. FUS
mutation frequency is especially high in sporadic, early onset (<35
years of age) ALS patients because of de novo mutations [46]. In
the original report, the average age at onset was 44.5 years and
average survival was 33 months in familial ALS with FUS gene
mutations, indicating early onset and rapid progress disease
course [13].
In Japan, FUS mutations are the second most frequent ALS-

causing gene mutations after SOD1 mutations in familial ALS
[28, 47]. We have identified 11 mutations in 15 families,
concentrated on Ex14, and 15 of FUS (Table 2) [48]. The FUS
mutations tended to occur at a relatively young age, in the 30 or
40 s, with a cervical or upper extremity onset and a fast
progressive disease course of ~2 years [48]. In contrast, families
with the p.Q519E and p.S513P mutations had an older age of
onset, a slightly slower progression rate, and a lower extremity
onset. In a large family with the p.R521L mutation in the FUS gene,
where we could obtain a detailed clinical profile of over five
generations, 23 of 46 patients had ALS, and the penetrance rate
was estimated to be as high as 100% [47]. At 35.3 years of age, the
patients had muscle weakness, dysarthria, dysphagia, muscle
spasticity, and atrophy [47]. The average age at death was 37.2
years, and the average time to need a ventilator was 23 months,
indicating a young age of onset and a rapidly progressive course.
In three autopsied cases with 1, 3, and 9 years of disease duration,
the distribution of FUS-positive cytoplasmic inclusions according
to disease stage was widespread [49]. In the case with a 9-year
disease duration, in addition to the usual findings of ALS,
histological examination revealed atrophy of the midbrain
capsules, extensive neuronal loss of the substantia nigra, nucleus
accumbens, subthalamic nucleus, and globus pallidus, especially
the medial segment [49]. Cases with postural tremor and autism
spectrum disorder were also reported [50].

TARDBP. In 2008, TARDBP (coding TDP-43) was identified as a
causative gene of ALS [14, 15]. Before this finding, Arai et al.
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reported a pioneering biochemical and immunohistochemical
analysis of TDP-43 inclusion bodies in autopsied brains of patients
with ALS and FTD in 2006 [51]. In Japanese patients with ALS,
TARDBP is the third most common familial ALS gene after SOD1
and FUS [28]. TDP-43 aggregation in the cytoplasm of spinal
anterior horn neurons is a characteristic pathological finding in
ALS and is observed in over 90% of patients with sporadic ALS and
familial ALS with the C9ORF72 mutation. Considering the
frequency of TARDBP mutations in familial ALS and the common
TDP-43 pathology between sporadic ALS and familial ALS,
focusing on TDP-43 in the pathogenesis of ALS is important.
There are few reports of large families [15], and the penetration
rate is considered low [52, 53].
Familial ALS with TARDBP mutations is more common in the

limb onset and has a wider range of onset age [54]. Among these
mutations, the p.G376D mutation had a particularly rapid
progression, from onset to death in less than 1.5 years [52]. p.
G298S mutation is also considered to be short-lived [55], whereas
the p.A315T mutation had a longer disease course of 8–10 years.
Focusing on rapidly progressing mutations is useful in patholo-
gical analysis using cellular and animal models, therefore clinical
genetic analysis is important for understanding the pathogenesis
of ALS.

C9ORF72. The frequency of the C9ORF72 mutation is high in
Europe and the United States, indicating a founder effect of north
European (Finnish) origin [56]. It forms a spectrum with FTD, as
encoded by FTDALS1 (Table 1). The ALS-causing mutations in
C9ORF72 are hexanucleotide repeat expansion in intron 1 [20, 21].
Bulbar onset has been more frequently observed in C9ORF72-
mutated ALS [57]. It is still unclear whether anticipation also exists
in C9orf72-associated diseases. Somatic and intergenerational
repeat instabilities have been observed [57]. The disease
penetrance of C9orf72-related ALS is thought to be nearly 100%
by the age of 80 [58].

While the frequency of the C9ORF72mutation is estimated to be
40% in Europe and the United States, it is less common in Japan,
around 1–2% in familial ALS and 0.2% in sporadic ALS [59, 60]. The
20 SNPs in the North European consensus risk haplotype suggest a
common ancestry. In the southern part of the Kii Peninsula, an
area of high ALS prevalence in Japan, 3 of 15 cases were found to
have C9ORF72 mutation [61]. In our own case, the patient had a
typical ALS phenotype with onset between 50 and 70 years of age,
frontotemporal dementia, and distal sensory deficits in the
lower limbs.
Pathological hypotheses have been proposed: A. loss-of-

function of C9ORF72; B. repeat-associated non-AUG (RAN)
translation, which is a G4C2 repeat synthesized without the need
for a transcription start site; and C. toxicity caused by a dipeptide
repeat protein, which is synthesized by the translation of the G4C2
repeat [62]. The C9ORF72 protein is present in motor neurons [63].
C9ORF72 contributes to the maintenance of the immune
environment, and its knockout is thought to cause abnormal
immune responses, including the release of cytokines, associated
with neurodegeneration [64]. Moreover, C9ORF72 knockout mice
exhibited strikingly different survival rates depending on their
environment and microbiome [65]. G4C2 repeats were transcribed
as RNA and accumulated in the nucleus of nerve cells to form RNA
foci by a liquid–liquid phase separation (LLPS) mechanism [66].
Furthermore, G4C2 repeat RNA and its translation product,
dipeptide repeat protein, have been reported to cause neurode-
generation by increasing DNA double-strand breaks, leading to a
deficiency of ataxia telangiectasia mutated (ATM), which repairs
DNA damage [67]. Particularly, PR poly-dipeptides are highly toxic
because they disrupt nucleocytoplasmic transport by polymeriz-
ing with the Nup54 protein in the nuclear pore [68]. A yeast study
has found abnormalities in nucleocytoplasmic transport mediated
by dipeptide repeat protein toxicity [69]. Furthermore, in a fly
model overexpressing a hexanucleotide repeat, the phenotype
caused by the C9ORF72 mutation was alleviated by increasing the
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2.8%
(FUS)

33.7%
(C9ORF72)

44.5% ND

29.8% 
(SOD1)
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0.2%
(TARDBP)

97.1% ND

Familial ALS

European

Japanese

Sporadic ALS

Fig. 1 Racial/ethnic difference of amyotrophic lateral sclerosis (ALS) causative genes [28, 29, 93]. The pie charts of ALS causative genes in
Europeans and Japan are shown, color-coded with SOD1, TARDBP, FUS, C9ORF72, and not determined (ND) in these four genes. Mutations were
identified in 55.5% of Europeans with familial ALS and 43.6% of Japanese individuals with familial ALS. In sporadic ALS, only 7.4% of mutations
were identified in Europe and 2.9% in Japan. The difference between European and Japanese is largely due to the difference in the frequency
of C9ORF72 mutation, SOD1, and FUS being more common in Japanese and TARDBP being more common in European
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expression of RAN GTPase-activating protein 1 (RanGAP1), a key
regulator of nuclear and cytoplasmic transport [70]. The deletion
of serine/arginine-rich splicing factor 1, which functions as an
adapter during the transport of transcribed RNA out of the
nucleus, has been reported to suppress neural degeneration by
modulating RAN translation and could be a target for novel
therapeutic agents [71]. Moreover, ASO, which inhibits repeat
RNA, may be used as a therapeutic agent for ALS the C9ORF72
mutation, and GP repeat dipeptide in cerebrospinal fluid may be
an alternative biomarker for determining drug efficacy [72].

Multisystem proteinopathy (MSP). A group of patients known as
inclusion body myopathy with Paget’s disease and FTD (IBMPFD)
has been described [73, 74]. MSP, which is associated with FTD,
inclusion body myopathy, and Paget’s disease of the bone in
addition to ALS, has been recognized as an analogous disease
concept [75, 76]. Recently, MSPs have been described in the OMIM
as MSP1 with valosin-containing protein (VCP) mutation, MSP2
with the heterogeneous nuclear ribonucleoprotein (hnRNP) A2/B1
mutation, MSP3 with the hnRNPA1 mutation, and MSP4 with the
sequestosome-1 (SQSTM1)/p62 mutation [77]. The disease concept
has been expanded to include matrin-3 mutations such as MSP5.
Theoretically, any of the nearly 50 RNA-binding proteins with
prion-like domains, such as FUS, could be a cause of MSPs [78].
hnRNPA1 mutations may cause only inclusion body myopathy in
some families [79, 80]. Furthermore, genetic mutations associated
with sensory impairment, parkinsonism, deafness, and various
other allelic disorders are associated with MSPs (Table 1). MSP is
an important disease concept in the context of motor neuron
vulnerability and cell-specific pathology in ALS.

What GWAS has revealed
GWASs were conducted using single-nucleotide variant arrays to
identify disease-associated variations in large cohorts of ALS cases
and healthy controls. GWASs can reveal common genetic variants
in thousands of unrelated individuals to identify associations with
diseases that potentially explain certain percentages of disease
heritability within a population [81]. The first GWAS in the ALS field
was conducted in 2007, which highlighted the FLJ10986 gene as a

candidate [82]. Following studies have revealed inositol 1,4,5-
trisphosphate receptor type 2 [83], dipeptidyl peptidase like 6 [84],
unc-13 homolog A (UNC13A) [85], Mps one binder kinase
activator-like 2B [85], kinesin-associated protein 3 [86], cyto-
chrome P450 family 27 subfamily A member 1 [87], zinc finger
protein 512B [88], calcium/calmodulin-dependent protein kinase
1G [89], and sterile alpha and TIR motif-containing protein 1 [90]
as representative ALS candidate genes. In 2015, the TANK-binding
kinase 1 (TBK1) gene was identified as the causative gene for
FTDALS4 in an analysis of 2,869 mainly sporadic ALS cases from
groups centered in North America [91]. TBK1 gene variants are
found in 1.26% of sporadic ALS in Japan including missense and
loss-of-function mutations [92].
A GWAS using 1173 sporadic ALS cases and 8925 controls in a

Japanese population combined with a meta-analysis of individuals
of European ancestry has revealed a significant association at the
Acyl-CoA synthetase long-chain family member 5 (ACSL5) locus
[93]. A replication study involving a Chinese population and
another set of the Japanese populations has confirmed the
association. ACSL5 is involved in fatty acid metabolism, and other
groups have found an association between ACSL5 single-
nucleotide polymorphisms (SNPs) and lower fat-free mass in
patients with ALS [94]. Serine palmitoyl transferase long-chain base
subunit 1 is involved in the sphingolipid synthesis pathway and
associated with juvenile ALS [95].
A recent cross-ancestry GWAS involving 29,612 patients with

ALS and 122,656 controls identified 15 risk loci [96]. When
combined with 6538 patients with whole-genome sequencing
and a large cortex-derived expression quantitative trait locus
dataset (MetaBrain), analyses have revealed locus-specific rare
variants, short tandem repeats, and regulatory effects [96]. The
combination of all ALS-associated signals reveals that perturba-
tions contribute to vesicle-mediated transport and autophagy and
provides evidence for cell-autonomous disease initiation in
glutamatergic neurons [96]. Mendelian randomization analyses,
which consider the environmental and lifestyle risk factors
obtained from the literature, have indicated that high cholesterol
levels play a causal role, again suggesting the importance of lipid
metabolism [97]. In another recent analysis, machine learning

Table 2. FUS mutations and their clinical features in our cohort [28, 48]

No. Exon Mutation Age at onset Duration (month) Site of onset Cognitive decline

1 14 p.G472VfsX57 c.1420_1421 ins GT 26 12 L/E -

2 14 p.G497AfsX527 c.1485 del A 18 11 Neck, U/E(P) MR

3 14 p.K510E c.1528 A > G 28 10 Neck -

4 14 p.S513P c.1537 T > C 62 84 L/E -

5 14 p.S513P c.1537 T > C 52 156 L/E -

6 14 p.R514S c.1542 G > C 42 43 Bulbar -

7 14 p.R514S c.1542 G > C 51 Bulbar, U/E(P) -

8 15 p.H517P c.1550 A > C 31 24 Bulbar -

9* 15 p.H517D c.1551 C > G 39 (n= 2) 20 Neck, U/E(P) -

10 15 p.Q519E c.1555 C > G 60 (n= 2) alive > 192 ‡ L/E -

11* 15 p.R521S c.1561 C > A 35.5 (n= 2) 49 Bulbar, U/E(P) -

12* 15 p.R521L c.1562 G > T 38.5 (n= 2) 17 Neck, U/E(P) FTD

13* 15 p.R521L c.1562 G > T 35.7 (n= 13) 17.7 Neck, U/E(P) -

14 15 p.R521L c.1562 G > T 44 Neck -

15 15 p.R521H c.1562 G > A 39 L/E -

Average 40.1 40.3

We have identified 11 mutations in all 15 families, concentrated in Ex14 and Ex15. Most are young-onset and rapidly progressing, with spherical symptoms and
cervical spinal cord region onset. p.Q519E and p.S513P families have older age, slightly slower progression, and lower extremity onset.
n number of patients, FTD frontotemporal dementia, L/E lower extremity, MR mental retardation, U/E(p) upper extremity with proximal dominancy, − absent
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RefMap method identified risk genes by integrating GWASs and
epigenetic data [98]. Convergent genetic and experimental data
revealed KN Motif And Ankyrin Repeat Domains 1 (KANK1) as a
new ALS gene and initiation of ALS pathogenesis in the distal
axon [98].
UNC13A is a gene repeatedly confirmed in several GWASs [99–

104]. The C allele of the rs12608932 SNP within the UNC13A gene
has been identified as a risk locus for both ALS and FTD [105].
Moreover, this SNP is associated with lower respiratory function at
diagnosis and shorter survival [105]. Interestingly, a recent study
has revealed that TDP-43 represses a cryptic exon-splicing event in
UNC13A and reduces the expression of UNC13A [106, 107].
UNC13A contributes to vesicle priming and controls neurotrans-
mitter release and short-term presynaptic plasticity [108]. UNC13A
can be a stratification biomarker and a target of gene therapy.
Although it should be noted that odds ratios are usually not high,
many genes related to ALS have been identified using GWAS, and
progress has been made in understanding the molecular
pathogenesis of the disease (Table 3).

Oligogenic pathogenesis hypothesis
Up to this point, we have assumed a single gene mutation for a
single patient. However, although SOD1 mutations are usually
inherited in an autosomal dominant form with high penetrance,
there are asymptomatic carriers of some types of mutations [28].
These observation has led to the idea that multiple causative
genes cause the disease stage (oligogenic pathogenesis hypoth-
esis), in which gene variants other than SOD1 are necessary for the
onset of the disease [25]. More comprehensive panels of genetic
testing will increase the possibility of detecting more than one
rare variant in patients with ALS.
The identification of the C9ORF72 mutation in 2011 furthered

this idea of oligogenic pathogenesis. For example, hexanucleotide
repeat elongation of C9ORF72 with variants in other ALS causative
genes are associated with a younger age of onset, suggesting that
both mutations affect the onset of the disease [109]. Moreover, it
can be viewed as a disease susceptibility gene, in the sense that
both genetic variants affect the pathogenesis of the disease [28].
Whole-genome sequence of 4,315 cases revealed ALS-associated
structural variants including inversion in the VCP gene and
insertion in the ERBB4 gene [110]. Over 70% of respiratory onset
ALS have ERBB4 insertion compared with 25% of the control [110].
Answer ALS project revealed 601 expanded regions in the 830
whole-genome sequence data using Expansion Hunter [111].
Large scale whole-genome open resources are now available.
There are other examples where multiple causative genes are

associated with faster onset and progression of the disease [112–
114]. Mutations in ataxin-2 cause a polyglutamine chain elonga-
tion of 34 repeats or more, which is a phenotype of spinocer-
ebellar ataxia type 2. Ataxin-2 localizes to stress granules, and
moderate repeat elongation promotes the activation of caspase 3,
which produces TDP-43 C-terminus fragments, leading to ALS
[115, 116]. Furthermore, there are ethnic differences in the
intermediate-length CAG repeats of ataxin-2, with the “large
normal allele” being less common in Japanese and more common
in non-Japanese populations [117]. Ataxin-2 poly-CAG expansion is
considered the target of ASO [118].

De novo mutations in sporadic ALS
The reported incidence of some ALS-associated variants in familial
and sporadic ALS is different among causative genes. Moreover,
3–16% of sporadic ALS cases have monogenetic etiology (Fig. 1)
[28, 29, 93, 119]. Others have reported that 21% of patients with
ALS carried a confirmed pathogenic or likely pathogenic mutation,
of whom 93% had no family history of ALS [120]. There could be
several other cases of sporadic ALS with SOD1 mutations;
however, either (a) DNA analysis of the parents showed one of
them to be an asymptomatic mutation carrier; (b) the parents

were not the biological parents, or (c) DNA was unavailable from
one or both parents. A systematic review and meta-analysis has
revealed that the estimated number of patients with SOD1 or
C9ORF72 mutations are almost the same in familial ALS and
sporadic ALS [121], suggesting that familial ALS classification
based on reported family history does not capture the full picture
of ALS of genetic origin [121].
Family history can be ambiguous or absent because of the

following reasons: inadequate family history information in
medical charts, misdiagnosis of ALS in older generations,
reluctance to report hereditary disease, loss of contact between
family members, low penetrance, small family size, early death
due to other causes, development of ALS in offspring before the
parent who transmitted the defective gene exhibits symptoms
themselves, genetic pleiotropy, and lack of information on
biological parents (i.e., adoption and illegitimacy) [122]. Moreover,
11.9% of patients carry a clinically relevant genetic mutation, and
almost half of the reported mutations in the cohort has a
prognostic value [123]. De novo mutations in FUS were reported in
p.R495X and p.P525L cases [124, 125]; these mutations are also
found in familial ALS cases. Moreover, de novo mutations in
ataxin-2 [126], Erb-B2 receptor tyrosine kinase 4 [127], and Rap
guanine nucleotide exchange factor 2 (RAPGEF2) have been
reported in rare sporadic ALS cases [128]. Possible processes
during embryogenesis of a de novo mutation in ALS could be the
zygote, epiblast, and ectoderm. If the mutation happens in the
ectoderm, we could not detect the mutation in the blood cells,
confusing the interpretations.
The finding of de novo mutations in ALS provokes ethical

implications. Patients with sporadic ALS who were genetically
diagnosed vary in age (e.g., under 40 years old), in whether they
have children, and by country (roughly one-third of the patients in
Europe and the United States receiving genetic diagnosis) [129].
From the aspect of genetic counseling, it’s important to consider
the facts that no fundamental treatment or prevention of the
onset of the disease has been established, de novo mutations may
be passed on to children or grandchildren, and that these facts
might cause a large psychological burden. Providing sufficient
explanation of the expected benefits and disadvantages before
specimen collection and providing sufficient ethical consideration
not only to the founder but also to their relatives are necessary.
Moreover, collaborating with clinical geneticists and certified
genetic counselors in explaining the results is important.

WHAT IS THE STATE OF THE ART IN DEVELOPING THERAPIES
TARGETING GENETIC MUTATIONS?
Advantages of ASO
The strategy of nusinersen was to compensate for the lack of SMN
in SMA. Gene therapy includes introducing functional copies of
dysfunctional genes, trophic factors, and disease-modifying genes
or silencing the expression of harmful genes. Compared with
other drug modalities (e.g., small-molecule or antibody drugs),
nucleic acid medicine including ASO is a general term for drugs
based on nucleic acids or artificial nucleic acids. Small-molecule
drugs have the disadvantage that their drug targets are limited to
receptors and enzymes. Antibody drugs are highly evaluated for
their specificity and efficacy; however, their drug targets remain
limited to molecules expressed on the cell membrane or secreted
outside the cell, and mass production is difficult. Nucleic acid
drugs have the advantages of being able to target intracellular
target molecules, such as mRNA and non-coding RNA, which are
difficult to target using conventional drugs, with high specificity
and easy to manufacture.
The two main types of siRNAs have been invented: double-

stranded RNAs, such as paticiran [130] approved for transthyretin
amyloidosis, and single-stranded nucleic acids, such as ASOs.
siRNAs currently under development for ALS are ASOs (Table 4).
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To target the central nervous system, ASOs are delivered either
naked or by viral vectors, such as an adeno-associated virus (AAV)
[131].

Current status of the therapeutic development of ASOs
Clinical trials of ASO are underway, focusing on SOD1 and
C9ORF72, involving several patients. Gene therapy for SOD1
mutations has been attempted previously [132, 133]. Animal
studies have been conducted to suppress the expression of
mutant SOD1 by shRNA transduction using AAV vectors or by
genome editing, both of which resulted in phenotypic improve-
ment [132, 133]. Tofersen is an ASO drug being evaluated for the
potential treatment of ALS with SOD1 mutations [7]. VALOR was a
phase III, randomized, double-blind, placebo-controlled study that
has evaluated the efficacy, safety, tolerability, and pharmacody-
namic effects of tofersen on ALS with a confirmed SOD1 mutation
(NCT02623699). Biogen and Ionis have reported that tofersen
failed a first phase III trial to prove its effectiveness as the primary
endpoint [8]. Early intervention with tofersen might be effective.
Asymptomatic patients with known SOD1 mutations are eligible
for the phase III ATLAS study, which examines the pre-
symptomatic effect of tofersen, started in May 2021 (NCT0456982).
ASO treatment targeting C9ORF72, the most frequent target in

Europe and the United States, has been investigated [134].
245 AS101 is a phase I trial of BIIB078, which targets toxic RNA
from hexanucleotide repeats while preserving normal C9ORF72
proteins, administered intrathecally to adults with C9ORF72-
mutated ALS, sponsored by Biogen (NCT03626012). FOCUS-C9 is
a phase Ib/IIa trial of the intrathecal administration of ASO (WVE-
004-001) that promotes RNase H-mediated degradation of
C9ORF72’s pathogenic mRNA variants associated with ALS or
FTD and spares the normal C9ORF72 V2 variant in neurons
(NCT04931862). Recently, the modification of a subset of a
phosphodiester internucleotide linker is reported to improve
ASO tolerability without impairing potency in repeated dosing for
patients with C9ORF72 mutations [135], though additional clinical
trials will be required to prove its efficacy.
The development of therapies for ASO that targets genes other

than SOD1 and C9ORF72 is also progressing. ION363-CS1 is a
phase I–III study that evaluates the efficacy and safety of
intrathecally administering ION363/Jacifusen in ALS with FUS
mutations. First-in-human treatment with ION363 silences FUS
expression, decreases FUS pathology, and reverses insolubility of

RNA-binding proteins in FUS-p.P525L mutated patients [136]. It
was started in an n-of-1 trial but increased into an international
12-patient study at NEALS active sites (NCT04768972).
Since TDP-43 has been shown to be an important component

of ubiquitin-positive and tau-negative inclusion bodies in most
ALS cases, including sporadic ALS, the elucidation of the
mechanism of abnormal TDP-43 aggregation has become a major
research topic. TDP-43 is ubiquitously expressed and plays an
important role in RNA metabolism and other cellular functions.
Therefore, indirect methods for suppressing TDP-43 toxicity have
been explored. For example, the knockdown of TDP-43 fails to
maintain the number of motor neurons, and stathmin-2 (STMN2)
becomes a mediator [137]. Selected ASOs have high tolerability in
rodents but were not tested in monkeys; moderate potency in
human motor neurons has been reported. An n-of-1 trial of STMN2
ASO was initiated. Initial doses were well tolerated. Although this
is an ASO under research, it is the first human tolerability data on
STMN2 (Symposium of ALSMND 2021 Dec).
The inhibition of ataxin-2 reduces the abnormal accumulation

of TDP-43, prolongs survival, and improves motor function in mice
overexpressing mutant TARDBP [118]. Moreover, ataxin-2 as an
alternative target has attracted much attention [118]. 275AS101 is
a phase I trial of BIIB105 targeting poly-CAG expansion in the
ataxin-2 gene to reduce the ataxin-2 protein and mitigate TDP-43
toxicity [118] (NCT04494256).
ASO with constrained ethyl-group chemistry are partially

absorbed from the gut [138]. Oral delivery can avoid lumbar-
puncture-related adverse events like headaches. Conjugating
cholesterol molecules to the ASO might also enhance penetration
into the brain and spinal cord after systemic administration [139].
Oral ASO might be the feasible option.

Therapeutic development using AAV vectors
AAV-based therapies are under active development for various
neuromuscular diseases [140]. AAV can be engineered for
selective cell targeting and optimized transduction. Without the
original viral genome, AAVs are nonpathogenic and unable to
replicate like the wild-type virus. AAV9 penetrates the blood–brain
barrier (BBB) and targets motor neurons to overcome an obstacle
of gene therapy and reveals transduction with tropism with motor
neurons [141]. In the case of SMA, onasemnogene abeparvovec
(AVXS-101) could deliver across the BBB and into the spinal cord
without integrating into the genome of the patient [142] and was

Table 4. Clinical trials of gene therapy for ALS

Modality Target Trial name Drug Mechanism Phase Route References

Antisense oligonucleotides

SOD1 VALOR tofersen
(BIIB067)

non-allele specific gapmer (RNase H) phase III intrathecal NCT02623699

SOD1
(asymptomatic)

ATLAS tofersen
(BIIB067)

non-allele specific gapmer (RNase H) phase III intrathecal NCT0456982

C9ORF72 245AS101 IONIS-C9
(BIIB078)

expanded repeat specific gapmer (RNase H) phase I intrathecal NCT03626012

C9ORF72 FOCUS-C9 WVE-004 streopure expanded repeat specific gapmer
(RNase H)

phase I/II intrathecal NCT04931862

C9ORF72 TBD ASO5-2 modification of a subset of the phosphodiester
internucleoside linkages

NA intrathecal Tran H (2021)

Ataxin-2 275AS101 ION541
(BIIB105)

non-allele specific gapmer (RNase H) targeting CAG
expansion

phase I/II intrathecal NCT04494256

FUS ION363-
CS1

Jacifusen
(ION363)

non-allele specific spike-switch ASO (RNase H) phase III intrathecal NCT04768972,
Korobeynikov V (2022)

Stathmin-2 TBD QRL-201 TBD phase I intrathecal TBD

AAV-mediated delivery

SOD1 TBD APB-102 recombinant AAVrh10 vector that expresses an anti-
SOD1 artificial microRNA

Phase I intrathecal TBD

Two modalities, ASO and AAV-mediated therapy, have been used in clinical trials. Although SOD1 and C9ORF72, which have the largest number of ALS cases,
have been targeted first, ataxin-2 and FUS are being developed through n-of-1 trials. Moreover, targeting stathmin-2, a disease-modifying factor, and UNC13A,
a disease-modifying gene (not listed in the table as no information has been published) is planned
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approved worldwide. APB-102 is a recombinant AAVrh10 vector
that expresses an anti-SOD1 artificial microRNA (Symposium of
ALSMND 2021 Dec) (Table 4).

Other modalities include antibody drugs and small/medium
molecule drugs
Drug discovery in modalities other than ASO is also becoming
more active. Antibody drugs are being developed to target various
causative gene products. AP-101 is a human monoclonal antibody
targeting misfolded SOD1 generated by AL-S Pharma [143] and is
now moving toward a human clinical trial. Misfolding-specific
intrabody with dual proteolytic signals can eliminate TDP-43
inclusion [144]. Small molecules attached to ribonuclease reduced
hexanucleotide repeat expansion in C9ORF72 mouse models
[145]. Middle-sized peptides between small molecules and
antibodies can be used for targeting “undruggable” intracellular
protein–protein interactions [146, 147].
Studies have established the cellular phenotype of motor

neurons using induced pluripotent stem cells (iPSCs) derived from
patients with familial ALS [148, 149]. Screening of small molecules
that improve the survival of motor neurons has also been reported,
showing the efficacy of ropinirole and bosutinib, under the concept
of drug repositioning [150–152]. A phase II trial of the potassium
channel activator retigabine has indicated that short-interval
intracortical inhibition as the primary outcome was significantly
improved [153]. This work has shown how neurophysiological
outcome measures could be used as disease markers.
Let us describe one more trial about developing drug for ALS.

The establishment of the mutant SOD1 transgenic mouse model
has greatly advanced research on the pathogenesis of ALS, but the
approach to the brainstem and spinal cord, which are the main
loci of the disease, has been limited by the small size of the
mouse. To overcome the issue of sizing, we created a rat model of
mutant SOD1 transgenes (ALS rats) [154]. The hepatocyte growth
factor (HGF) is a novel growth factor originally cloned in Japan
[155]. Overexpression of HGF in the nervous system attenuates
disease progression and prolongs life span in a transgenic mouse
model of ALS [156]. As for the idea of supplementing insufficient
factors, intrathecal administration of human recombinant HGF
(hrHGF) protein improved motor neuron pathology in a rat model
with SOD1 mutation [154]. Phase II clinical trials are currently
underway (UMIN000022050) [157].
The importance of rapid diagnosis and proper evaluation has

been recognized in developing any therapeutic approach.
Furthermore, the development of appropriate biomarkers and
mechanisms to evaluate multiple therapeutic candidates is
becoming increasingly important.

Innovations in biomarkers, clinical trial design, and definition
of endpoints
Biomarkers are urgently needed for accurate stratification and
diagnosis of patients with ALS for facilitating clinical trials.
Moreover, neurofilament light (NFL) and phosphorylated neuro-
filament heavy chain (pNFH) are biomarkers for ALS [158, 159].
Plasma NFL levels are associated with a higher ALS risk in patients
with pre-diagnostic ALS [160]. Plasma pNFH subunit levels are
used as a secondary outcome of the trial of sodium phenylbu-
tyrate and taurursodiol [161] or tofersen [7]. miR-181 was reported
to have a prognostic value similar to that of NFL [162].
Using spinal cord samples from patients with sporadic ALS and

ALS mouse models, vascular cell genes preceded the microglial
response even at the pre-symptomatic stage [163]. Secreted
phosphoprotein 1 (SPP1)- and COL6A1-positive perivascular
fibroblasts accumulated in enlarged perivascular spaces in the
spinal cord of patients with sporadic ALS. Increased levels of
serum SPP1 could be a biomarker of shorter survival [163]. The
combination of NFL and SPP1 or other markers, such as UNC13A
genotype, might help stratify patients more effectively.

Combined endpoints have been used in several clinical trials to
decrease the confounding effect of mortality on the analysis of
functional outcomes, though survival and function are assessed as
independent endpoints in ALS. The Combined Assessment of
Function and Survival (CAFS) ranks patients’ clinical outcomes
based on survival time and changes in the ALS Functional Rating
Scale-Revised (ALSFRS-R) score [164]. Each patient’s outcome is
compared with every other patient’s outcome, a score is assigned,
and the summed scores are ranked. A higher mean CAFS score
indicates a better group outcome. The CAFS endpoint was used as
the primary endpoint of a dexpramipexole phase III study [165]
and recent studies [166, 167].
Current clinical trial endpoints may not reflect what patients

consider the most important and might estimate the benefit of
novel treatments in the wrong way. A new composite endpoint for
randomized controlled clinical trials of ALS named the Patient-
Ranked Order of Function (PROOF), based on patient preference
for functional domains is proposed [168].
In a recent systematic review, among 125 trials, investigating 76

drugs and recruiting more than 15,000 individuals with ALS, ~90%
of trials have used traditional fixed designs [169]. To avoid
resource limitations and barriers to trial participation in a rapidly
progressive, disabling, and heterogeneous disease, a flexible and
scalable multi-arm, the multi-stage trial platform is required.

The ethical concept of genetic testing must be discussed in
view of drug development
We discussed de novo mutations in Section 1–6. In some reports,
21% of patients with ALS, of whom 93% had no family history,
carried confirmed pathogenic, or likely pathogenic mutations
[120]. Peripheral-blood exome, genome, and Sanger sequencing
to identify pathologic mutations in SOD1 in 4000 patients with ALS
from Germany, South Korea, and Sweden has revealed four
sporadic ALS cases with de novo mutations in SOD1, which might
be the therapeutic target of ASO [170]. To avoid missing the
opportunity for treatment and earlier confirmed diagnosis, all
patients with ALS should be offered genetic counseling and
genetic screening. However, the challenges of variant interpreta-
tion associated with systematic genetic testing still exist; genetic
testing must be accompanied by appropriate genetic counseling
with human resources, variant interpretation, limited clinical trial
spots, increased request for predictive testing, and psychosocial
impact of identifying a genetic variant in patients without family
history [129]. The International Consortium for Genetic Testing in
ALS Committee was formed in March 2021, aiming to develop
global best practice recommendations [129].

UNDERSTANDING THE MOLECULAR PATHOLOGY FOR EARLY
THERAPEUTIC INTERVENTION: FOCUS ON AXONAL
PATHOLOGY (FIG. 2)
What are the pathological processes appropriate for early
intervention? Axons are damaged early on
As early/pre-symptomatic diagnosis becomes possible, as

described in a previous chapter, intervening in the pathology
becomes feasible at earlier stage. Looking back at the failure of the
primary efficacy endpoint of a phase III trial of tofersen,
interventions in the early stage are also indicated as critical [8].
In ALS animal models, morphological abnormalities of axons and
neuromuscular junctions were observed from the early stages of
the disease [171, 172]. Spastic paraplegia (SPG) type 11, profilin 1,
never in mitosis gene A-related kinase 1 (NEK1), tubulin 4a, NFH,
and chromosome 21 open reading frame 2 (C21ORF2 or CFAP410)
have been identified as ALS-causing and susceptibility genes
involved in axonal pathology and cytoskeletal abnormalities by
ancestry analysis and GWASs [25, 100, 173]. C21ORF2 is mutated in
ciliopathies [174] and is stabilized by NEK1-mediated hyperpho-
sphorylation and the inability to bind F-box protein 3 [175].
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Convergent genetic and experimental data revealed KANK1 as a
new ALS gene and initiation of ALS pathogenesis in the distal
axon [98].
Motor neurons are structurally characterized by long axons

extending to the tips of the limbs. Focusing on the pathogenesis
of both axon compartment and cell bodies may lead to the
identification of new therapeutic targets. Mice with FUS mutation
and hexanucleotide repeat expansion in C9ORF72 also showed
axonal abnormalities, indicating a common pathology in ALS
[171]. Abnormalities in axonal morphology and function, as well as

the interaction with the extracellular environment to maintain the
structure of long axons, are important pathologies that should be
clarified as early and specific in motor neurons. In this chapter, we
focused mainly on axonal pathology and considered its potential
as a novel therapeutic target for ALS.

Axon sequencing reveals intra-axonal transcription factors
To understand what happens locally in axons, investigating the
pathology of axon fraction itself is important. In case of cell culture
setting, although several types of microfluidic devices are

Fig. 2 Overview of ALS pathology with a focus on axons. As axons are damaged from the initial stage of ALS, the dying-backward hypothesis,
in which motor neurons are damaged from the distal part, has been proposed. RNA-seq of axon fraction shows the presence of intra-axonal
transcription factors (e.g., AP-1), although the pathological significance remains unknown. NMJs are the key link between motor neurons and
skeletal muscle, and NMJ disconnection is commonly observed in several types of ALS. The local translation is a molecular mechanism
necessary for axonal homeostasis. In contrast, when the proteasome and autophagy are dysregulated, abnormal protein aggregation is
triggered. Mitophagy is a form of autophagy, and mitochondrial pathology is a common feature of various neurodegenerative diseases.
Furthermore, impaired axonal transport impairs the transport of RNA/Protein complex, lysosomes, and mitochondria. Many ALS-causing
genes contribute to cytoskeleton function. Morphologically abnormal axon branching has been observed. The pathophysiology of the cell
body, which is closely related to the axonal pathology, is also important. Cryptic exon induced nonsense-mediated decay (NMD) or aberrant
proteins, persistent stress granules (SGs) formation, and nucleocytoplasmic transport defect have attracted attention as new therapeutic
targets
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available on the market, some are specific to cell fraction analysis
[176, 177], harvesting a sufficient sample for analysis from the
axon compartment remained challenging [178]. A novel micro-
fluidic device with improved dimensions of the well and materials
enabled us to perform RNA sequencing using axon fraction (axon-
seq) with fewer technical biases with the collection of several
macroscopically observable axon bundles. Combining this inno-
vative microfluidic device [179] with patient iPSC-derived motor
neuron organoids further revealed the entire profile of the human
motor neuron axons (Fig. 3) [180, 181]. This technique identified
increased intra-axonal transcription factor, Fos-B (AP-1 family
member) mRNA as a binding partner of FUS and as a causative
event for aberrant axon morphology both in vitro and in vivo
[181]. The upregulation of Fos-B mRNA is associated with
increased spines [182, 183] and growth cones [184]. Activator
protein-1 (AP-1) is increased in a mutant SOD1-G93A transgenic
mouse model [185] and Fos-B protein accumulate abnormally in
the motor neurons of sporadic ALS autopsy samples [181]; thus,
dual leucine zipper kinase, the upstream signal protein for c-Jun
(another AP-1 family member), and AP-1 family might become a
common therapeutic target in ALS [185].
The data obtained may provide important resources for the

subcellular fractional analysis of stem cell-derived motor neuron
axons. The reproducibility of RNA profiles from the novel
microfluidic device [176, 177] justified this approach. Notably,
using TARDBP-mutated iPSCs, we found another intra-axonal
transcription factor, paired-like homeobox protein 2B (phox2B),
which showed a lower expression in mutant axons revealed by
axon-seq and in situ hybridization [186]. Phox2B knockdown
reduced neurite length in human and zebrafish motor neurons
[186]. Phox2B-positive ocular motor neurons are resistant to
degeneration in ALS compared with spinal motor neurons [187].
Targeted metabolomics identified elevated levels of the arachi-
donic acid pathway and reduction of arachidonic acid reverse ALS
phenotypes in human and Drosophila spinal motor neurons and
SOD1 mouse models [188].
Other groups have revealed the transcriptome of mature

myelinated motor axons of the peripheral nervous system using
the axon microdissection method devised by Koenig, enabling the
isolation of axoplasm RNA to perform RNA-seq analysis [189]. The
transcriptome analysis indicated the depletion of glial markers,
enriched in neuronal markers and mRNAs related to the
cytoskeleton, translation, and oxidative phosphorylation [189].
The whole story of what happens locally in the axon is unclear.

Analyzing the molecular pathomechanism of axon fraction,
including intra-axonal transcription factor, could provide a clue
to elucidate the fragility of motor neurons in ALS.

Neuromuscular junctions (NMJs) are the key link between
motor neurons and the effector skeletal muscle
ALS can be a distal axonopathy disease because many molecular
changes of motor neuron degeneration start at NMJs [190]. The
NMJ is a highly specialized synapse, which controls the signal
between motor neurons and skeletal muscles. Clustering of
acetylcholine receptors (AChR) at the NMJ are regulated by
signaling molecules such as agrin, low-density lipoprotein
receptor-related protein 4 (Lrp4), and muscle-specific receptor
tyrosine kinase (MuSK) [191]. In a mutant SOD1-G37R transgenic
mouse model, NMJ remodeling precedes the loss of the motor
unit [192]. The activation of the muscle-specific kinase MuSK by
the cytoplasmic protein Dok-7 is essential for NMJ formation, and
Dok-7 recovery reduces muscle atrophy in a SOD1-G93A
transgenic mouse model [193]. The upregulation of mitofusin 2
improves the NMJ morphology of mutant SOD1-G93A transgenic
mice [194].
TDP-43 accumulation is observed in both intramuscular nerves

of sporadic ALS and ALS patient iPSC-derived motor neuron axons
[195]. Hyperphosphorylated TDP-43 promotes G3BP1-positive
ribonucleoprotein condensate assembly and inhibits local protein
synthesis in the axon and NMJ. Dissociation of G3BP1 condensates
restores local translation and reduces toxicity by TDP-43
accumulation [195].
FUS mediates the transcriptional regulation of acetylcholine

receptors at NMJs and is dysregulated in ALS [196]. Moreover, FUS is
involved in NMJ maintenance and axonal transport [197, 198]. The
expression of mutant FUS or FUS knockdown impairs motor activity
and reduces acetylcholine transmission at NMJs in zebrafish [199].
Dipeptide repeat proteins related to C9ORF72 spread between
motor neurons and skeletal muscles in vitro and in vivo [200].
Evidence suggests that the pathogenic mechanism of prion protein/
exosome transfer is activated in the extracellular space and across
the NMJ synapses during the degeneration of the motor cortex with
centrifugal spreading [201–203].
Several NMJ microfluidic devices have been developed using

human iPSC-derived motor neurons and myotubes [204]. An NMJ
chip enables real-time, live imaging of axonal outgrowth, NMJ
formation, and muscle maturation, as well as synchronization of
motor neuron activity and muscle contraction under optogenetic
control for analysis of physiological events [205]. Another
important approach is the single-cell transcriptomics of nerve
organoids in vitro [206]; pseudo-time analysis or single-cell
trajectory analysis can help establish the relationship between
the cause and effect of the transcriptome of the organoids
[207, 208]. Sophisticated co-culture NMJ organoids can be
beneficial for these studies.
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Fig. 3 Motor neuron axons were extracted with a microfluidic device. a The experimental scheme of MN culture using the microfluidic device.
HB9 reporter lentivirus infected motor precursor cells were plated onto the device. b Representative ICC images of MNs on the microfluidic
device. The axons elongated in the microfluidics to the next well. c The enlarged images of nerve organoids stained with βIII-tubulin
(cytoplasm) and Hoechst (nuclei). Bar: 1 mm. d Representative images of axon dividing. Axons were divided from the SDs by cutting the axon
bundle at 450 μm away from the sphere to avoid contaminating the cell body and pushing out due to hydraulic pressure. Modified from ref.
[181]
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Maintenance of axonal function by local translation
Whether mRNAs found in axon fractions are translated into axons
or transported to the nucleus/cell body is an important question.
Accumulating evidence has revealed that long motor neuron
axons use asymmetrical mRNA localization and rely most strongly
on mRNA transport and local translation to maintain homeostasis
[209]. The anterior branch of human obturator motor neurons
biopsied from patients with ALS demonstrated upregulation of a
cluster of genes that play an important role in biological processes
involving RNA processing and protein metabolism [210].
The upregulation of ribosome synthesis in axons occurs early in

the pathogenesis of both mutant SOD1-G93A transgenic mouse
models and human ALS autopsy samples, indicating aberrant
axonal RNA metabolism [211]. Ribosomal protein mRNAs are
locally translated and incorporated into native ribosomes in axons
to maintain functional axonal ribosomes, which are reduced in
sporadic ALS with TDP-43 pathology [212].
In SMA, reduced SMN decreases the axonal localization of

several mRNAs [213] and inhibits the activity of the mammalian
target of rapamycin in axons [214]. mTOR translationally alters the
cytoskeletal regulator palladin to modulate axon morphogenesis
[215]. Moreover, SMN regulates axonal localization and local
translation of growth-associated protein 43 mRNA in growth cones
through HuD and insulin-like growth factor 2 [216]. The aberrant
distribution of SMN in cytosolic FUS accumulations reduces SMN
in axons [217, 218]. The accumulation of mutant human FUS
induces an integrated stress response and reduces protein
synthesis in nearby axons [219]. Moreover, FUS mutation affects
nonnuclear pools of splicing factor proline and glutamine-rich
[220], which has been found to orchestrate spatial gene
expression and is essential for axonal viability [221, 222].
Another example is casein kinase 2 alpha (CK2a). CK2a

phosphorylates and triggers G3BP1 stress granule-like structure
disassembly in injured axons [223]. CK2a activity is temporally and
spatially regulated by the local translation of mRNA in axons after
injury [223]. Axoplasmic calcium concentration is a determinant of
the translational activation of different axonal mRNA and
regenerative axonal growth [224].
Thus, local translation plays an important role in axonal

homeostasis and nerve regeneration, which are dysfunctional
in ALS.

Protein degradation: regulation of abnormal protein
aggregation by proteasome and autophagy
The homeostatic processes engaged in eliminating defective
organelles and aggregated proteins include autophagy and
ubiquitin-proteasome systems. The accumulation of SOD1 and
TDP-43 has been observed in autopsy specimens. Disruption of
protein homeostasis has long been considered a pathogenic
mechanism in ALS.
In the experimental models, constitutive autophagy in neurons

maintains cellular homeostasis by balancing protein synthesis and
degradation, particularly within the distal axonal processes
[225, 226]. Disruption of the endosomal-lysosomal system by loss
of Alsin deteriorates the phenotype of SOD1-H46R transgenic mice
by accelerating the accumulation of misfolded proteins and
immature vesicles in the spinal cord [19]. FUS mutation causes
axonal retention of the FUS protein before its aggregation
triggered by poly(ADP-ribose) polymerase-dependent DNA
dependent repair signaling [227].
Optineurin is involved in autophagy and protein degradation

pathways [17]. Optineurin binds to ubiquitin and regulates
necrosis factor-kappa B activation and apoptosis [228].
Receptor-interacting kinase 1 (RIPK1)-dependent signaling is
suppressed by optineurin by regulating its turnover [18].
Optineurin loss leads to progressive demyelination and axonal
degeneration by activating necroptotic machinery in the central
nervous system [18].

Moreover, optineurin is involved in several selective autophagy
processes regulated by TBK1 [229]. TBK1 mutations are associated
with impaired binding of autophagy adapter proteins. TBK1
phosphorylates and activates the Smith–Magenis syndrome
chromosome region, candidate 8 (SMCR8), a member of the
C9ORF72 complex, activating the autophagy pathway via RabGT-
Pase [230]. FUS protein accumulation in autopsy cases with
optineurin mutations [231] and decreased expression of TBK1
[232] suggest crosstalk between the disruption of protein home-
ostasis and abnormal RNA metabolism.
In GWAS, a meta-analysis of multiracial sporadic ALS data

identified the GPX3-TNIP1 region, which encodes antioxidant
glutathione peroxidase 3, and tumor necrosis factor-induced
protein 3 interacting protein 1, a protein that interacts with
optineurin [233]. Furthermore, mutations in the LC domain region
of T cell-restricted intracellular antigen 1 suppress stress granule
degradation and abnormal accumulation of TDP-43, which may be
a cause of ALS [234]. Cyclin-F is a cell cycle regulator and ubiquitin
E3 ligase [235] and interacts with SQSTM1/p62 in the autophagy
pathway [236]. In zebrafish, a variant in UBQLN4 compromises
motor axon morphogenesis, impairing proteasomal function
[237, 238].
The identification of these genes indicates that the disruption of

protein homeostasis is an important common mechanism in ALS,
especially in the compartment of motor neuron axons.

Mitochondrial pathology
The mitochondria generate adenosine triphosphate through
oxidative phosphorylation and provide the axonal energy demand
[239]. After synthesis at the cell body, the mitochondria accumulate
at the nodes of Ranvier to meet metabolic needs [240]. Several
neurodegenerative diseases are affected by disrupted mitochon-
drial activity, transport proteins, and microtubule association [241].
Mutations in RAPGEF2 impair microtubule stability and mitochon-
drial distribution in axons [242]. Dysfunction in Rho GTPase 1 (Miro
1), the outer mitochondrial membrane protein, leads to anterograde
axonal transport defects [243]. The imbalance between mitochon-
drial fission and fusion leads to abnormal morphology of the
mitochondria in spastic paraparesis [244]. Syntaphilin, a
mitochondria-anchoring protein, mediates the clearance of dys-
functional mitochondria from motor neuron axons [245]. Loss-of-
function mutations in SIGMAR1 decrease mitochondria-associated
membrane (MAM), impairing retrograde transport and axonal
degeneration [246, 247].
Phosphatase and tensin homologs deleted from chromosome

10-induced kinase 1 (PINK1) and parkin are key regulators of
mitophagy, a selective autophagic pathway to eliminate dysfunc-
tional mitochondria [248]. The disruption of PINK1 signaling is
found in SOD1 mutant mice and samples from patients with
sporadic ALS [249]. Parkin expression is regulated by TDP-43 and
reduced in motor neurons of TDP-43 pathology with ALS
[250, 251]. Axonal transport of mitochondria is disrupted in FUS-
mutant patients with aggregation of Parkin and PINK1 [252].
RNA-seq revealed reduced gene expression of mitochondrially

encoded electron transport chain transcripts, and neuropatholo-
gical analysis of C9ORF72-mutated ALS postmortem tissue
confirmed selective dysregulation of mitochondrially encoded
transcripts in ventral horn spinal motor neurons [253]. Genetic
manipulation of mitochondrial biogenesis in C9ORF72 motor
neurons corrected the bioenergetic deficit and rescued the axonal
length and transport phenotypes [253].
The degradation of autophagic vacuoles that engulf damaged

mitochondria is impaired in distal axons in a SOD1-G93A
transgenic mouse model [254]. A potential drug that reduced
neuronal cell death in a SOD1-G93A mouse model is a neuronal
SIGMA1-receptor agonist (SA4503), which reduces oxidative stress
and regulates calcium flux in the mitochondria [255]. Pridopidine,
a SIGMA1 agonist, is being investigated in the HEALEY ALS
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Platform Trial (NCT04615923). Clinical trials of the combination of
dextromethorphan and quinidine, which affect the demethylation
of the P450 cytochrome enzyme, have revealed improvement in
the pseudobulbar effect in patients with ALS [256]. Mitochondrial
activation drugs, such as MA-5 [257], have potential as a strategy
for various mitochondrial dysfunction pathologies.
Mitochondrial metabolism is the emerging and noteworthy

therapeutic target in ALS.

Axonal transport
Intracellular transport of cargo is especially important in neurons
because of the polarization between axon and cell bodies [258].
RNA/protein complexes and organelles, such as the mitochondria,
are synthesized in the soma and transported along the axon. The
distribution of this cargo at the right time and place in the axon
depends on the proper transportation of the cargo. The transport
defect was revealed in ALS, and the proximal axons of large motor
neurons harbor abnormal accumulation of mitochondria, phos-
phorylated neurofilaments, and lysosomes [259–262]. Further-
more, the structure of spheroids in motor nerve axons in ALS
autopsy samples contains different types of vesicles, neurofila-
ments, lysosomes, mitochondria, and microtubules [258, 263],
suggesting axonal transport reduction.
Aberrant cargo transport within axons occurs early in ALS

disease progression in mutant SOD1-G93A transgenic mouse
models of ALS [264–266]. Inhibiting p38 MAPK rescues retrograde
cargo transport defects within axons of mutant SOD1-G93A
transgenic mouse models [267]. Moreover, ALS-related mutations
in TDP-43 alter the transport function [268]. Similarly, defects in
cargo transport within axons were demonstrated in FUS-mutant
iPSC-derived motor neurons, which were rescued by inhibiting
histone deacetylase 6 [269].
Dynactin 1, which binds to microtubules, is a motor protein

responsible for the retrograde transport of various proteins and
vesicles [270]. ALS and slowly progressing, autosomal dominant,
distal hereditary motor neuropathy in vocal paresis are due to
loss-of-function mutations in dynactin 1 [271–273]. Kinesin is
another motor protein involved in the anterograde axonal
transport [274]. Its family member 5A (KIF5A) is mutated in the
N-terminal motor domain in SPG10 and CMT type 2, whereas the
C-terminal domain is mutated in ALS [275]. Patients with loss-of-
function KIF5A mutations have longer survival times than those
with typical ALS [276, 277]. Furthermore, loss-of-function muta-
tions in KIF1A are present in the motor or neck domains [278, 279].
These motor proteins are dysregulated in sporadic ALS pathology
[280]. Loss-of-function mutation in KIF5A is found in 0.12% of
sporadic ALS in Japan [281].
Annexin A11, a phosphoinositide-binding protein associated

with RNA granules, functions as a molecular tether between
lysosomes and RNA granules. Such tethering is impaired by ALS-
associated annexin A11 mutations [282, 283]. Late endosome-
bearing mRNAs encoding mitochondrial functional molecules stop
at the mitochondria, and these mRNAs are translated on Rab7a
endosomes locally in the axon [284]. Axonal transport and other
pathological processes, such as autophagy and mitophagy, closely
interact. Defects in the cargo transport within axons are common
in various neurodegenerative diseases [285].

Aberrant cytoskeleton and axon branching
Several variants of the gene encoding α-tubulin destabilize the
microtubule network and reduce the repolymerization capability of
the cytoskeleton [173]. Mutations in profilin 1, which converts
monomeric actin to filamentous actin, lead to familial ALS.
Ubiquitinated aggregates, including TDP-43, are present in cells
that express mutant profilin 1 [286]. Reduced binding with actin and
axon growth are observed in mutant profilin 1-expressing cells.
Profilin 1 transgenic mice have been observed to recapitulate the
phenotype of MNDs [287]. C9ORF72 modulates the activity of small

GTPases, increases the activity of LIM kinases 1 and 2, and regulates
axonal actin dynamics [288]. Various actin isoforms are expressed in
primary mouse motor neurons, and their transcripts are translo-
cated into motor neuron axons [289]. NFL transcripts are reduced in
ALS [290]. Moreover, neurofilaments are found in a spheroid
structure (large axonal swelling) [291]. NFL and pNFH are also
known as biomarkers for ALS [158, 159]. Thus, cytoskeleton
abnormal morphologies contribute to the pathogenesis of ALS.
Non-labeled live imaging of stimulated Raman scattering micro-
scopy [292] can visualize peripheral degeneration in live ALS mouse
models and human postmortem tissue [171]. The novel technology
might be a supportive tool for diagnosing cytoskeletal abnormal-
ities much earlier and assessing the effectiveness of the therapies.
TDP-43 is a crucial splicing repressor, and its loss results in novel

cryptic exons being erroneously included in mature mRNA. One of
the splicing targets of TDP-43, STMN2, a regulator of microtubule
stability, is involved in the pathomechanism of TARDBP mutations
[137, 293]. STMN2 is decreased following TARDBP knockdown due
to altered splicing when TDP-43 is mislocalized and in motor
neurons from patients and the spinal cord of postmortem
samples. Posttranslational STMN2 stabilization rescues neurite
outgrowth and axon regeneration deficits by depleting TDP-43
[137]. QurAlis QRL-201 is a therapeutic ASO that restores STMN2
mis-splicing due to TDP-43 pathology.
Axonal branching is a key mechanism of synaptic plasticity

[294]. Aberrant axonal branching is implicated in the pathome-
chanisms of ALS. For example, motor neurons cultured from
mutant SOD1-G93A transgenic mouse models exhibit enhanced
axonal branching [295]. The overexpression of mutant human
TARDBP in zebrafish embryos induces a phenotype that includes
shorter motor neuron axons, premature and increased axonal
branching, and ends in abnormal swimming [296]. Progranulin
rescues mutant TARDBP-induced aberrant axonal branching and
short axonal outgrowth [297]. Branching in FUS-mutant motor
neuron axons is increased compared with that in isogenic controls
in vitro [181]. This phenotype was confirmed using other ALS
causative mutations, including SOD1 and TARDBP [181]. Morpho-
logical changes in motor neuron axon branching have been found
to precede motor neuron death in mutant SOD1-G93A transgenic
mouse models [171], and abnormal neural branching has been
detected in zebrafish that overexpress mutant FUS [199]. More-
over, other groups have reported increased axon branching in
FUS, SOD1, and TARDBP mutant iPSC models [298]. SMN knock-
down in zebrafish embryos significantly increases motor neuron
branching [299]. Furthermore, mutant CCNF zebrafish developed a
motor neuron axonopathy, which consists of shortened primary
motor neuron axons and an increased frequency of aberrant
axonal branching [235, 300].
The meaning of axonal branching might be different in each

developmental stage [301]. In the embryonic stage, axon pathfind-
ing and synaptic formation are important. However, in the
developed stage, aberrant axon branching might have a disadvan-
tage in terms of the normal function of electronic neurotransmis-
sion. The significance of aberrant axonal branching in the context of
the neurodegenerative model in vivo must be elucidated.

The pathology of the cell body is also important: persistent
stress granule formation and nucleocytoplasmic transport
Although we have focused on axonal pathology, considering the
pathology occurring in motor neuron cell bodies is also important
to understand the overall picture of ALS. FUS and TDP-43, which
normally reside in the nucleus, have RNA-binding domains that
regulate RNA metabolism and transport [302]. Mutant TDP-43 and
FUS change their localization from the nucleus to the cytoplasm
[303], suggesting that they gain or lose function in the nucleus
[304] and are important in normal physiological aging [304]. Stress
granules are droplets that form under various stresses, such as
heat shock and hypoxia, and are composed of mRNA and RNA-
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binding proteins [305]. They protect cellular homeostasis by
temporarily inactivating mRNA translation under stress and
allowing it to resume after the stress is removed. TDP-43, FUS,
hnRNPA1, and hnRNPA2 are nuclear RNA-binding proteins with
prion-like domains and undergo LLPS to form functional liquids,
including stress granules, which can be converted into abnormal
hydrogels that contain pathological fibrils often seen in neurode-
generative diseases [306–309]. Mutations in prion-like domains
increase the rate of fibril formation and initiate disease [310].
Karyopherin-β2 (also known as transportin-1) binds the proline-
tyrosine nuclear localizing signal and then blocks and reverses FUS
fibril formation [310–313]. Moreover, importin-α and karyopherin-
β1 block and reverse TDP-43 fibril formation [310]. The identifica-
tion of molecules involved in the assembly/disassembly of LLPS is
being actively pursued because the identification of molecules
that regulate the dissociation of LLPS droplets in cells may help
avoid aggregation toxicity [314–316].
Alterations in nucleoporins and the function of nuclear pore

complexes have also been considered a therapeutic target in ALS
[317–319]. RanGAP1 regulates the directionality of the transport
[320]. If RAN gradients are impaired, cytoplasmic accumulation of
nuclear proteins, as well as defected export of mature RNAs from
the nucleus, sequesters nucleocytoplasmic transport [319]. Endo-
somal sorting complexes required for transport machinery,
including charged multivesicular body protein 7 (CHMP7), is
involved in proteasomal degradation of disassembled nucleopor-
ins [321]. Inhibiting the nuclear export of CHMP7 triggers
nucleoporin reduction, and TDP-43 dysfunction and knockdown
of CHMP7 alleviate Ran GTPase mis-localization [322]. Moreover,
mutated FUS interacts with nucleoporins and declines nucleocy-
toplasmic transport in Drosophila and iPSCs [323]. Toxic proline:
arginine dipeptides from C9ORF72 bind to karyopherin-β2 and
impede nucleocytoplasmic transport by interacting with nuclear
import receptors [324].
Dying-forward and dying-backward hypotheses are both

important [325, 326]. The association between axonal dysfunction
and these cell body/nuclei events, including nucleocytoplasmic
transport and stress granule/aggregation formation, should be
elucidated in the context of axonal pathology.

CONCLUSION
With the development of edaravone as the second ALS drug after
riluzole, the treatment of ALS has made steady progress based on
the knowledge gained from the elucidation of the pathogenesis of
familial ALS. Comprehensive analyses of causative genes, disease
susceptibility genes, and disease-modifying genes will continue to
be important for the complete understanding of the disease.
Targeting axons, the early pathological site of ALS, is also
desirable. In the future, there is a strong need for developing
more effective therapies to prevent neurodegeneration and
symptomatic treatments to alleviate the disease. Like nusinersen
for SMA, expectations for ASO remain high.
With the paradigm shift in therapeutic development, we must

debate ethical issues, such as genetic diagnosis, in sporadic ALS.
Because of the impact on the patient and the family, genetic
diagnosis also places a heavy psychological burden on the
attending physician. Even if a treatment is developed in the future,
prenatal diagnosis will make it even more difficult to make ethical
choices. Even if the guidelines can provide examples, each
particular case will be subject to difficult decisions. It will also be
necessary to take into accounts the mental exhaustion of not only
the patient and family but also the medical profession.
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