CORRESPONDENCE Open Access ## Genes that modulate the frequency of mutation at meiosis Ronald H. F. Hunter¹ and Niels Einer-Jensen² If trained as a mammalian reproductive physiologist, one is not best placed to make an original contribution to the discipline of genetics. However, consideration of nuclear events in germ cells may serve as a bridge between the two fields of study. Because most mutations are deleterious, one might anticipate that any tendency towards such expensive mistakes need to be eliminated. This remark prompts a key question that appears to have been overlooked in the established literature, viz., is the frequency of mutation in the germ cell line preserved at a minimum threshold so that a basis for natural selection is invariably present? If so, is there a gene or sequence of genes to facilitate a minimum rate of mutation? It seems improbable that such a key aberration would be left wholly to chance. To be effective, a corollary would require a means of inhibiting the occurrence of too high a mutation frequency in the germ cell line: in other words, some form of genetic homeostasis, such as a feedback system that monitors and optimizes the incidence of mutation at meiosis. Random and DNA-guided mutations may co-exist. As of this writing, the identity of such putative genes is a matter of speculation. However, it could become the focus of research and offer an exciting bridge between reproductive physiology and molecular genetic. ## Conflict of interest The authors declare that they have no conflict of interest. ## Publisher's note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations. Received: 21 December 2017 Accepted: 29 January 2018. Published online: 20 April 2018 Correspondence: N. Einer-Jensen (nielseinerjensen@gmail.com) 1Sidney Sussex College, University of Cambridge, Cambridge, UK 2Market January 1 (2015) ²Molecular Medicine, University of Southern Denmark, Odense, Denmark © The Author(s) 2018 Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License, which permits any non-commercial use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. If you remix, transform, or build upon this article or a part thereof, you must distribute your contributions under the same license as the original. The images or other third party material in this article are included in the article's Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-sa/4.0/.