Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Sleep disturbances: one of the culprits of obesity-related cardiovascular risk?

Abstract

Growing evidence suggested that Sleep Disorders (SD) could increase the risk of developing obesity and could contribute to worsen obesity-related cardiovascular risk. Further, obesity per se has been reported to blunt sleep homeostasis. This happens through several mechanisms. First of all, the excessive adipose tissue at neck and chest levels could represent a mechanical obstacle to breathe. Moreover, the visceral adipose tissue is known to release cytokines contributing to low-grade chronic inflammation that could impair the circadian rhythm. Also, nutrition plays an important role in sleep homeostasis. High fat and/or high carbohydrate diets are known to have a negative impact on both sleep quality and duration. In addition, obesity predisposes to a condition called “obstructive sleep apnea” that has a detrimental effect on sleep. SD could increase the risk and/or could contribute to worsen cardiovascular risk usually associated with obesity. The chronic low grade inflammation associated with obesity has been reported to increase the risk of developing hypertension, type 2 diabetes and dyslipidemia. In turn, improving quality of sleep has been reported to improve the management of these cardiovascular risk factors. Thus, the aim of this manuscript is to provide evidence on the association of obesity and SD and on how they could contribute to the risk of developing cardiovascular risk factors such as hypertension, dyslipidemia and type 2 diabetes in obesity.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Mechanisms of the association between sleep disorders (SD) and obesity.

Similar content being viewed by others

References

  1. Hotamisligil GS. Inflammation and metabolic disorders. Nature. 2006;444:860–7.

    CAS  PubMed  Google Scholar 

  2. Muscogiuri G, Barrea L, Annunziata G, Di Somma C, Laudisio D, Colao A, et al. Obesity and sleep disturbance: the chicken or the egg? Crit Rev Food Sci Nutr. 2019;59:2158–65.

    PubMed  Google Scholar 

  3. Grote L, Hedner J, Peter JH. Sleep-related breathing disorder is an independent risk factor for uncontrolled hypertension. J Hypertens. 2000;18:679–85.

    CAS  PubMed  Google Scholar 

  4. Di Murro A, Petramala L, Cotesta D, Zinnamosca L, Crescenzi E, Marinelli C, et al. Renin-angiotensin-aldosterone system in patients with sleep apnoea: prevalence of primary aldosteronism. J Renin-Angiotensin-Aldosterone Syst JRAAS. 2010;11:165–72.

    CAS  PubMed  Google Scholar 

  5. Shan Z, Ma H, Xie M, Yan P, Guo Y, Bao W, et al. Sleep duration and risk of type 2 diabetes: a meta-analysis of prospective studies. Diabetes Care. 2015;38:529–37.

    PubMed  Google Scholar 

  6. Song SO, He K, Narla RR, Kang HG, Ryu HU, Boyko EJ. Metabolic consequences of obstructive sleep apnea especially pertaining to diabetes mellitus and insulin sensitivity. Diabetes Metab J. 2019;43:144–55.

    PubMed  PubMed Central  Google Scholar 

  7. Obesity and overweight 2018. https://www.who.int/news-room/fact-sheets/detail/obesity-and-overweight.

  8. Ohayon MM. Epidemiological overview of sleep disorders in the general population. Sleep Med Res. 2011;2:1–9.

    Google Scholar 

  9. Senaratna CV, Perret JL, Lodge CJ, Lowe AJ, Campbell BE, Matheson MC, et al. Prevalence of obstructive sleep apnea in the general population: a systematic review. Sleep Med Rev. 2017;34:70–81.

    PubMed  Google Scholar 

  10. Peppard PE, Young T, Barnet JH, Palta M, Hagen EW, Hla KM. Increased prevalence of sleep-disordered breathing in adults. Am J Epidemiol. 2013;177:1006–14.

    PubMed  PubMed Central  Google Scholar 

  11. Fritscher LG, Mottin CC, Canani S, Chatkin JM. Obesity and obstructive sleep apnea-hypopnea syndrome: the impact of bariatric surgery. Obes Surg. 2007;17:95–9.

    PubMed  Google Scholar 

  12. Giunta J, Salifu MO, McFarlane SI. Sleep disorders and cardio-renal disease: implications for minority populations. Epidemiol Sunnyvale Calif. 2016;6. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4963623/.

  13. Rechtschaffen A, Bergmann BM. Sleep deprivation in the rat by the disk-over-water method. Behav Brain Res. 1995;69:55–63.

    CAS  PubMed  Google Scholar 

  14. Miller AL, Lumeng JC, LeBourgeois MK. Sleep patterns and obesity in childhood. Curr Opin Endocrinol Diabetes Obes. 2015;22:41–7.

    PubMed  PubMed Central  Google Scholar 

  15. Spiegel K, Tasali E, Penev P, Van Cauter E. Brief communication: Sleep curtailment in healthy young men is associated with decreased leptin levels, elevated ghrelin levels, and increased hunger and appetite. Ann Intern Med. 2004;141:846–50.

    PubMed  Google Scholar 

  16. Chaput J-P, Després J-P, Bouchard C, Tremblay A. Short sleep duration is associated with reduced leptin levels and increased adiposity: Results from the Quebec family study. Obes Silver Spring Md. 2007;15:253–61.

    CAS  Google Scholar 

  17. Spiegel K, Leproult R, L’hermite-Balériaux M, Copinschi G, Penev PD, Van Cauter E. Leptin levels are dependent on sleep duration: relationships with sympathovagal balance, carbohydrate regulation, cortisol, and thyrotropin. J Clin Endocrinol Metab. 2004;89:5762–71.

    CAS  PubMed  Google Scholar 

  18. Sivak M. Sleeping more as a way to lose weight. Obes Rev Off J Int Assoc Study Obes. 2006;7:295–6.

    CAS  Google Scholar 

  19. Patel SR, Malhotra A, White DP, Gottlieb DJ, Hu FB. Association between reduced sleep and weight gain in women. Am J Epidemiol. 2006;164:947–54.

    PubMed  Google Scholar 

  20. von Kries R, Toschke AM, Wurmser H, Sauerwald T, Koletzko B. Reduced risk for overweight and obesity in 5- and 6-y-old children by duration of sleep–a cross-sectional study. Int J Obes Relat Metab Disord J Int Assoc Study Obes. 2002;26:710–6.

    Google Scholar 

  21. Reilly JJ, Armstrong J, Dorosty AR, Emmett PM, Ness A, Rogers I, et al. Early life risk factors for obesity in childhood: cohort study. BMJ. 2005;330:1357.

    PubMed  PubMed Central  Google Scholar 

  22. Dinges DF, Pack F, Williams K, Gillen KA, Powell JW, Ott GE, et al. Cumulative sleepiness, mood disturbance, and psychomotor vigilance performance decrements during a week of sleep restricted to 4-5h per night. Sleep. 1997;20:267–77.

    CAS  PubMed  Google Scholar 

  23. Patel SR, Malhotra A, Gottlieb DJ, White DP, Hu FB. Correlates of long sleep duration. Sleep. 2006;29:881–9.

    PubMed  Google Scholar 

  24. Manini TM, Everhart JE, Patel KV, Schoeller DA, Colbert LH, Visser M, et al. Daily activity energy expenditure and mortality among older adults. JAMA. 2006;296:171–9.

    CAS  PubMed  Google Scholar 

  25. Kasivisvanathan V, Shalhoub J, Lim CS, Shepherd AC, Thapar A, Davies AH. Hypoxia-inducible factor-1 in arterial disease: a putative therapeutic target. Curr Vasc Pharmacol. 2011;9:333–49.

    CAS  PubMed  Google Scholar 

  26. Wolk R, Shamsuzzaman ASM, Somers VK. Obesity, sleep apnea, and hypertension. Hypertens Dallas Tex 1979. 2003;42:1067–74.

    CAS  Google Scholar 

  27. Ip MSM, Lam B, Ng MMT, Lam WK, Tsang KWT, Lam KSL. Obstructive sleep apnea is independently associated with insulin resistance. Am J Respir Crit Care Med. 2002;165:670–6.

    PubMed  Google Scholar 

  28. Punjabi NM, Sorkin JD, Katzel LI, Goldberg AP, Schwartz AR, Smith PL. Sleep-disordered breathing and insulin resistance in middle-aged and overweight men. Am J Respir Crit Care Med. 2002;165:677–82.

    PubMed  Google Scholar 

  29. Lam DCL, Lam KSL, Ip MSM. Obstructive sleep apnoea, insulin resistance and adipocytokines. Clin Endocrinol (Oxf). 2015;82:165–77.

    CAS  Google Scholar 

  30. Camargo CA, Weiss ST, Zhang S, Willett WC, Speizer FE. Prospective study of body mass index, weight change, and risk of adult-onset asthma in women. Arch Intern Med. 1999;159:2582–8.

    PubMed  Google Scholar 

  31. Young T, Peppard PE, Gottlieb DJ. Epidemiology of obstructive sleep apnea: a population health perspective. Am J Respir Crit Care Med. 2002;165:1217–39.

    PubMed  Google Scholar 

  32. St-Onge M-P, Grandner MA, Brown D, Conroy MB, Jean-Louis G, Coons M, et al. Sleep duration and quality: impact on lifestyle behaviors and cardiometabolic health: a scientific statement from the American Heart Association. Circulation. 1 novembre. 2016;134:e367–86.

    Google Scholar 

  33. Foster GD, Borradaile KE, Sanders MH, Millman R, Zammit G, Newman AB, et al. A randomized study on the effect of weight loss on obstructive sleep apnea among obese patients with type 2 diabetes: the Sleep AHEAD study. Arch Intern Med. 2009;169:1619–26.

    PubMed  PubMed Central  Google Scholar 

  34. Fredheim JM, Rollheim J, Sandbu R, Hofsø D, Omland T, Røislien J, et al. Obstructive sleep apnea after weight loss: a clinical trial comparing gastric bypass and intensive lifestyle intervention. J Clin Sleep Med. 2013;9:427–32.

    PubMed  PubMed Central  Google Scholar 

  35. Johansson K, Neovius M, Lagerros YT, Harlid R, Rössner S, Granath F, et al. Effect of a very low energy diet on moderate and severe obstructive sleep apnoea in obese men: a randomised controlled trial. The BMJ. 2009;339. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2788899.

  36. Kemppainen T, Ruoppi P, Seppä J, Sahlman J, Peltonen M, Tukiainen H, et al. Effect of weight reduction on rhinometric measurements in overweight patients with obstructive sleep apnea. Am J Rhinol. 2008;22:410–5.

    PubMed  Google Scholar 

  37. Sharma SK, Agrawal S, Damodaran D, Sreenivas V, Kadhiravan T, Lakshmy R, et al. CPAP for the metabolic syndrome in patients with obstructive sleep apnea. N Engl J Med. 2011;365:2277–86.

    CAS  PubMed  Google Scholar 

  38. Summers CL, Stradling JR, Baddeley RM. Treatment of sleep apnoea by vertical gastroplasty. Br J Surg. 1990;77:1271–2.

    CAS  PubMed  Google Scholar 

  39. Schwartz AR, Patil SP, Laffan AM, Polotsky V, Schneider H, Smith PL. Obesity and obstructive sleep apnea: pathogenic mechanisms and therapeutic approaches. Proc Am Thorac Soc. 2008;5:185–92.

    PubMed  PubMed Central  Google Scholar 

  40. Williams B, Mancia G, Spiering W, Agabiti Rosei E, Azizi M, Burnier M, et al. 2018 ESC/ESH guidelines for the management of arterial hypertension. Eur Heart J. 2018;39:3021–104.

    PubMed  Google Scholar 

  41. Drager LF, Genta PR, Pedrosa RP, Nerbass FB, Gonzaga CC, Krieger EM, et al. Characteristics and predictors of obstructive sleep apnea in patients with systemic hypertension. Am J Cardiol. 2010;105:1135–9.

    PubMed  Google Scholar 

  42. Drager LF, Pereira AC, Barreto-Filho JA, Figueiredo AC, Krieger JE, Krieger EM, et al. Phenotypic characteristics associated with hypertension in patients with obstructive sleep apnea. J Hum Hypertens. 2006;20:523–8.

    CAS  PubMed  Google Scholar 

  43. Furlan SF, Braz CV, Lorenzi-Filho G, Drager LF. Management of hypertension in obstructive sleep apnea. Curr Cardiol Rep. 2015;17:108.

    PubMed  Google Scholar 

  44. Pepin J-L, Borel A-L, Tamisier R, Baguet J-P, Levy P, Dauvilliers Y. Hypertension and sleep: overview of a tight relationship. Sleep Med Rev. 2014;18:509–19.

    PubMed  Google Scholar 

  45. Gangwisch JE. A review of evidence for the link between sleep duration and hypertension. Am J Hypertens. 2014;27:1235–42.

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Jarrin DC, Ivers H, Lamy M, Chen IY, Harvey AG, Morin CM. Cardiovascular autonomic dysfunction in insomnia patients with objective short sleep duration. J Sleep Res. 2018;27:e12663.

    PubMed  PubMed Central  Google Scholar 

  47. Mancia G, Grassi G. The autonomic nervous system and hypertension. Circ Res. 2014;114:1804–14.

    CAS  PubMed  Google Scholar 

  48. Scheer FAJL, Hilton MF, Mantzoros CS, Shea SA. Adverse metabolic and cardiovascular consequences of circadian misalignment. Proc Natl Acad Sci USA. 2009;106:4453–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Kawano Y. Diurnal blood pressure variation and related behavioral factors. Hypertens Res Off J Jpn Soc Hypertens. 2011;34:281–5.

    Google Scholar 

  50. Vijayan VK. Morbidities associated with obstructive sleep apnea. Expert Rev Respir Med. 2012;6:557–66.

    CAS  PubMed  Google Scholar 

  51. Kuniyoshi FHS, Pusalavidyasagar S, Singh P, Somers VK. Cardiovascular consequences of obstructive sleep apnoea. Indian J Med Res. 2010;131:196–205.

    PubMed  Google Scholar 

  52. Amin R, Somers VK, McConnell K, Willging P, Myer C, Sherman M, et al. Activity-adjusted 24-hour ambulatory blood pressure and cardiac remodeling in children with sleep disordered breathing. Hypertens Dallas Tex 1979. 2008;51:84–91.

    CAS  Google Scholar 

  53. Sukegawa M, Noda A, Sugiura T, Nakata S, Yoshizaki S, Soga T, et al. Assessment of continuous positive airway pressure treatment in obstructive sleep apnea syndrome using 24-hour urinary catecholamines. Clin Cardiol. 2005;28:519–22.

    PubMed  Google Scholar 

  54. Marrone O, Salvaggio A, Bue AL, Bonanno A, Riccobono L, Insalaco G, et al. Blood pressure changes after automatic and fixed CPAP in obstructive sleep apnea: relationship with nocturnal sympathetic activity. Clin Exp Hypertens N Y N 1993. 2011;33:373–80.

    CAS  Google Scholar 

  55. Durán-Cantolla J, Aizpuru F, Montserrat JM, Ballester E, Terán-Santos J, Aguirregomoscorta JI, et al. Continuous positive airway pressure as treatment for systemic hypertension in people with obstructive sleep apnoea: randomised controlled trial. BMJ. 2010;341:c5991.

    PubMed  Google Scholar 

  56. Baguet J-P, Barone-Rochette G, Tamisier R, Levy P, Pépin J-L. Mechanisms of cardiac dysfunction in obstructive sleep apnea. Nat Rev Cardiol. 2012;9:679–88.

    CAS  PubMed  Google Scholar 

  57. Gaddam K, Pimenta E, Thomas SJ, Cofield SS, Oparil S, Harding SM, et al. Spironolactone reduces severity of obstructive sleep apnoea in patients with resistant hypertension: a preliminary report. J Hum Hypertens. 2010;24:532–7.

    CAS  PubMed  Google Scholar 

  58. Kasai T, Bradley TD, Friedman O, Logan AG. Effect of intensified diuretic therapy on overnight rostral fluid shift and obstructive sleep apnoea in patients with uncontrolled hypertension. J Hypertens. 2014;32:673–80.

    CAS  PubMed  Google Scholar 

  59. Spiegel K, Tasali E, Leproult R, Van Cauter E. Effects of poor and short sleep on glucose metabolism and obesity risk. Nat Rev Endocrinol. 2009;5:253–61.

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Buxton OM, Cain SW, O’Connor SP, Porter JH, Duffy JF, Wang W, et al. Adverse metabolic consequences in humans of prolonged sleep restriction combined with circadian disruption. Sci Transl Med. 2012;4:129ra43.

    PubMed  PubMed Central  Google Scholar 

  61. Broussard JL, Ehrmann DA, Van Cauter E, Tasali E, Brady MJ. Impaired insulin signaling in human adipocytes after experimental sleep restriction: a randomized, crossover study. Ann Intern Med. 2012;157:549–57.

    PubMed  PubMed Central  Google Scholar 

  62. Möller-Levet CS, Archer SN, Bucca G, Laing EE, Slak A, Kabiljo R, et al. Effects of insufficient sleep on circadian rhythmicity and expression amplitude of the human blood transcriptome. Proc Natl Acad Sci USA. 2013;110:E1132–41.

    PubMed  PubMed Central  Google Scholar 

  63. Davies SK, Ang JE, Revell VL, Holmes B, Mann A, Robertson FP, et al. Effect of sleep deprivation on the human metabolome. Proc Natl Acad Sci USA. 2014;111:10761–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Cappuccio FP, D’Elia L, Strazzullo P, Miller MA. Quantity and quality of sleep and incidence of type 2 diabetes: a systematic review and meta-analysis. Diabetes Care. 2010;33:414–20.

    PubMed  Google Scholar 

  65. Anothaisintawee T, Reutrakul S, Van Cauter E, Thakkinstian A. Sleep disturbances compared to traditional risk factors for diabetes development: systematic review and meta-analysis. Sleep Med Rev. 2016;30:11–24.

    PubMed  Google Scholar 

  66. Lin CL, Chien WC, Chung CH, Wu FL. Risk of type 2 diabetes in patients with insomnia: a population-based historical cohort study. Diabetes Metab Res Rev. 2018;34. https://doi.org/10.1002/dmrr.2930.

  67. Gottlieb DJ, Yenokyan G, Newman AB, O’Connor GT, Punjabi NM, Quan SF, et al. Prospective study of obstructive sleep apnea and incident coronary heart disease and heart failure: the sleep heart health study. Circulation. 2010;122:352–60.

    PubMed  PubMed Central  Google Scholar 

  68. Higgins GA, Jones BJ, Oakley NR, Tyers MB. Evidence that the amygdala is involved in the disinhibitory effects of 5-HT3 receptor antagonists. Psychopharmacology (Berl). 1991;104:545–51.

    CAS  Google Scholar 

  69. Mehra R, Benjamin EJ, Shahar E, Gottlieb DJ, Nawabit R, Kirchner HL, et al. Association of nocturnal arrhythmias with sleep-disordered breathing: The Sleep Heart Health Study. Am J Respir Crit Care Med. 2006;173:910–6.

    PubMed  PubMed Central  Google Scholar 

  70. Gami AS, Howard DE, Olson EJ, Somers VK. Day-night pattern of sudden death in obstructive sleep apnea. N Engl J Med. 2005;352:1206–14.

    CAS  PubMed  Google Scholar 

  71. Strausz S, Havulinna AS, Tuomi T, Bachour A, Groop L, Mäkitie A, et al. Obstructive sleep apnoea and the risk for coronary heart disease and type 2 diabetes: a longitudinal population-based study in Finland. BMJ Open. 2018;8:e022752.

    PubMed  PubMed Central  Google Scholar 

  72. Marshall NS, Wong KKH, Phillips CL, Liu PY, Knuiman MW, Grunstein RR. Is sleep apnea an independent risk factor for prevalent and incident diabetes in the Busselton Health Study?. J Clin Sleep Med. 2009;5:15–20.

    PubMed  PubMed Central  Google Scholar 

  73. Reichmuth KJ, Austin D, Skatrud JB, Young T. Association of sleep apnea and type II diabetes: a population-based study. Am J Respir Crit Care Med. 2005;172:1590–5.

    PubMed  PubMed Central  Google Scholar 

  74. Mahmood K, Akhter N, Eldeirawi K, Onal E, Christman JW, Carley DW, et al. Prevalence of type 2 diabetes in patients with obstructive sleep apnea in a multi-ethnic sample. J Clin Sleep Med. 2009;5:215–21.

    PubMed  PubMed Central  Google Scholar 

  75. Kent BD, Grote L, Ryan S, Pépin J-L, Bonsignore MR, Tkacova R, et al. Diabetes mellitus prevalence and control in sleep-disordered breathing: the European Sleep Apnea Cohort (ESADA) study. Chest. 2014;146:982–90.

    PubMed  Google Scholar 

  76. Heffner JE, Rozenfeld Y, Kai M, Stephens EA, Brown LK. Prevalence of diagnosed sleep apnea among patients with type 2 diabetes in primary care. Chest. 2012;141:1414–21.

    PubMed  Google Scholar 

  77. Meslier N, Gagnadoux F, Giraud P, Person C, Ouksel H, Urban T, et al. Impaired glucose-insulin metabolism in males with obstructive sleep apnoea syndrome. Eur Respir J. 2003;22:156–60.

    CAS  PubMed  Google Scholar 

  78. Wang X, Bi Y, Zhang Q, Pan F. Obstructive sleep apnoea and the risk of type 2 diabetes: a meta-analysis of prospective cohort studies. Respirol Carlton Vic. 2013;18:140–6.

    Google Scholar 

  79. Leong WB, Jadhakhan F, Taheri S, Chen YF, Adab P, Thomas GN. Effect of obstructive sleep apnoea on diabetic retinopathy and maculopathy: a systematic review and meta-analysis. Diabet Med J Br Diabet Assoc. 2016;33:158–68.

    CAS  Google Scholar 

  80. Peppard PE, Young T, Palta M, Dempsey J, Skatrud J. Longitudinal study of moderate weight change and sleep-disordered breathing. JAMA. 2000;284:3015–21.

    CAS  PubMed  Google Scholar 

  81. Mokhlesi B, Grimaldi D, Beccuti G, Van Cauter E. Effect of one week of CPAP treatment of obstructive sleep apnoea on 24-hour profiles of glucose, insulin and counter-regulatory hormones in type 2 diabetes. Diabetes Obes Metab. 2017;19:452–6.

    CAS  PubMed  Google Scholar 

  82. Pamidi S, Wroblewski K, Stepien M, Sharif-Sidi K, Kilkus J, Whitmore H, et al. Eight hours of nightly continuous positive airway pressure treatment of obstructive sleep apnea improves glucose metabolism in patients with prediabetes. A randomized controlled trial. Am J Respir Crit Care Med. 2015;192:96–105.

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Weinstock TG, Wang X, Rueschman M, Ismail-Beigi F, Aylor J, Babineau DC, et al. A controlled trial of CPAP therapy on metabolic control in individuals with impaired glucose tolerance and sleep apnea. Sleep. 2012;35:617–625B.

    PubMed  PubMed Central  Google Scholar 

  84. Chen L, Kuang J, Pei J-H, Chen H-M, Chen Z, Li Z-W, et al. Continuous positive airway pressure and diabetes risk in sleep apnea patients: a systemic review and meta-analysis. Eur J Intern Med. 2017;39:39–50.

    PubMed  Google Scholar 

  85. Salord N, Fortuna AM, Monasterio C, Gasa M, Pérez A, Bonsignore MR, et al. A randomized controlled trial of continuous positive airway pressure on glucose tolerance in obese patients with obstructive sleep apnea. Sleep. 2016;39:35–41.

    PubMed  PubMed Central  Google Scholar 

  86. Labarca G, Reyes T, Jorquera J, Dreyse J, Drake L. CPAP in patients with obstructive sleep apnea and type 2 diabetes mellitus: Systematic review and meta-analysis. Clin Respir J. 2018;12:2361–8.

    PubMed  Google Scholar 

  87. Zhu B, Ma C, Chaiard J, Shi C. Effect of continuous positive airway pressure on glucose metabolism in adults with type 2 diabetes: a systematic review and meta-analysis of randomized controlled trials. Sleep Breath Schlaf Atm. 2018;22:287–95.

    Google Scholar 

  88. Martínez-Cerón E, Barquiel B, Bezos A-M, Casitas R, Galera R, García-Benito C, et al. Effect of continuous positive airway pressure on glycemic control in patients with obstructive sleep apnea and type 2 diabetes. A randomized clinical trial. Am J Respir Crit Care Med. 2016;194:476–85.

    PubMed  Google Scholar 

  89. Schauer PR, Bhatt DL, Kirwan JP, Wolski K, Aminian A, Brethauer SA, et al. Bariatric Surgery versus Intensive Medical Therapy for Diabetes - 5-Year Outcomes. N Engl J Med. 2017;376:641–51.

    PubMed  PubMed Central  Google Scholar 

  90. Buchwald H, Avidor Y, Braunwald E, Jensen MD, Pories W, Fahrbach K, et al. Bariatric surgery: a systematic review and meta-analysis. JAMA. 2004;292:1724–37.

    CAS  PubMed  Google Scholar 

  91. Grimaldi D, Beccuti G, Touma C, Van Cauter E, Mokhlesi B. Association of obstructive sleep apnea in rapid eye movement sleep with reduced glycemic control in type 2 diabetes: therapeutic implications. Diabetes Care. 2014;37:355–63.

    PubMed  PubMed Central  Google Scholar 

  92. Stamler J, Vaccaro O, Neaton JD, Wentworth D. Diabetes, other risk factors, and 12-yr cardiovascular mortality for men screened in the Multiple Risk Factor Intervention Trial. Diabetes Care. 1993;16:434–44.

    CAS  PubMed  Google Scholar 

  93. Kaneita Y, Uchiyama M, Yoshiike N, Ohida T. Associations of usual sleep duration with serum lipid and lipoprotein levels. Sleep. 2008;31:645–52.

    PubMed  PubMed Central  Google Scholar 

  94. Williams CJ, Hu FB, Patel SR, Mantzoros CS. Sleep duration and snoring in relation to biomarkers of cardiovascular disease risk among women with type 2 diabetes. Diabetes Care. 2007;30:1233–40.

    PubMed  Google Scholar 

  95. Bjorvatn B, Sagen IM, Øyane N, Waage S, Fetveit A, Pallesen S, et al. The association between sleep duration, body mass index and metabolic measures in the Hordaland Health Study. J Sleep Res. 2007;16:66–76.

    PubMed  Google Scholar 

  96. Hall MH, Muldoon MF, Jennings JR, Buysse DJ, Flory JD, Manuck SB. Self-reported sleep duration is associated with the metabolic syndrome in midlife adults. Sleep. 2008;31:635–43.

    PubMed  PubMed Central  Google Scholar 

  97. Choi KM, Lee JS, Park HS, Baik SH, Choi DS, Kim SM. Relationship between sleep duration and the metabolic syndrome: Korean National Health and Nutrition Survey 2001. Int J Obes 2005. 2008;32:1091–7.

    CAS  Google Scholar 

  98. Arora T, Jiang CQ, Thomas GN, Lam KH, Zhang WS, Cheng KK, et al. Self-reported long total sleep duration is associated with metabolic syndrome: the Guangzhou Biobank Cohort Study. Diabetes Care. 2011;34:2317–9.

    PubMed  PubMed Central  Google Scholar 

  99. Spruyt K, Molfese DL, Gozal D. Sleep duration, sleep regularity, body weight, and metabolic homeostasis in school-aged children. Pediatrics. 2011;127:e345–52.

    PubMed  PubMed Central  Google Scholar 

  100. Mullington JM, Chan JL, Van Dongen HPA, Szuba MP, Samaras J, Price NJ, et al. Sleep loss reduces diurnal rhythm amplitude of leptin in healthy men. J Neuroendocrinol. 2003;15:851–4.

    CAS  PubMed  Google Scholar 

  101. Taheri S. The link between short sleep duration and obesity: we should recommend more sleep to prevent obesity. Arch Dis Child. 2006;91:881–4.

    CAS  PubMed  PubMed Central  Google Scholar 

  102. Gangwisch JE, Malaspina D, Babiss LA, Opler MG, Posner K, Shen S, et al. Short sleep duration as a risk factor for hypercholesterolemia: analyses of the National Longitudinal Study of Adolescent Health. Sleep. 2010;33:956–61.

    PubMed  PubMed Central  Google Scholar 

  103. McNeil J, Doucet É, Chaput J-P. Inadequate sleep as a contributor to obesity and type 2 diabetes. Can J Diabetes. 2013;37:103–8.

    PubMed  Google Scholar 

  104. Toyama Y, Chin K, Chihara Y, Takegami M, Takahashi K-I, Sumi K, et al. Association between sleep apnea, sleep duration, and serum lipid profile in an urban, male, working population in Japan. Chest. 2013;143:720–8.

    CAS  PubMed  Google Scholar 

  105. Araghi MH, Thomas GN, Taheri S. The potential impact of sleep duration on lipid biomarkers of cardiovascular disease. Clin Lipidol. 2012;7:443–53.

    CAS  Google Scholar 

Download references

Acknowledgements

Obesity Programs of nutrition, Education, Research and Assessment (OPERA) group members served as collaborators and approved the final version of the manuscript: Colao Annamaria, Savastano Silvia, Barrea Luigi, Muscogiuri Giovanna, Alviggi Carlo, Angrisani Luigi, Annunziata Giuseppe, Beguinot Francesco, Belfiore Annamaria, Belfiore Antonino, Bellastella Giuseppe, Biondi Bernadette, Bonaduce Domenico, Bordoni Laura, Brasacchio Caterina, Capaldo Brunella, Caprio Massimiliano, Cataldi Mauro, Cignarelli Angelo, Cittadini Antonello, Conforti Alessandro, Cuomo Rosario, De Placido Giuseppe, De Siena Marina, Di Carlo Costantino, Di Luigi Luigi, Di Nisio Andrea, Di Renzo Laura, Di Somma Carolina, Docimo Ludovico, Donini Lorenzo Maria, Federici Massimo, Foresta Carlo, Gabbianelli Rosita, Gambineri Alessandra, Gastaldelli Amalia, Giallauria Francesco, Giardiello Cristiano, Gnessi Lucio, Guida Brunella, Laudisio Daniela, Lenzi Andrea, Macchia Paolo Emidio, Manno Emilio, Marzullo Paolo, Migliaccio Silvia, Muratori Fabrizio, Musella Mario, Nardone Gerardo, Nicasto Vincenzo, Piazza Luigi, Pilone Vincenzo, Pivari Francesca, Pivonello Rosario, Pugliese Gabriella, Riccardi Gabriele, Ritieni Alberto, Salzano Ciro, Sanduzzi Alessandro, Sbraccia Paolo, Sesti Giorgio, Soldati Laura, Taglialatela Maurizio, Trimarco Bruno, Tuccinardi Dario.

Funding

The 2019 OPERA meeting was organized by Panta Rei Srl and sponsored by Novo Nordisk, Therascience, Bruno Pharma, Merck, Savio Pharma Italia Srl, IBSA Institut Biochimique SA, Bioitalia Srl, Cohesion Pharmaceutical, and Specchiasol Srl. Publication of this article as part of a supplement was sponsored by Panta Rei Srl, Naples, Italy. The meeting sponsors and organizer did not have access to the manuscripts and the authors maintained control of the content.

Author information

Authors and Affiliations

Authors

Consortia

Contributions

The authors’ responsibilities were as follows: GM, DT, VN, LB and SS: were responsible for the concept of this paper and drafted the manuscript; GM, AC and SS: provided a critical review of the paper. OPERA Group members participated to the revision of the manuscript. All authors and OPERA Group Members contributed to and agreed on the final version of the manuscript.

Corresponding author

Correspondence to Giovanna Muscogiuri.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Muscogiuri, G., Tuccinardi, D., Nicastro, V. et al. Sleep disturbances: one of the culprits of obesity-related cardiovascular risk?. Int J Obes Supp 10, 62–72 (2020). https://doi.org/10.1038/s41367-020-0019-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41367-020-0019-z

This article is cited by

Search

Quick links