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The interaction between the nervous system and the
stomatognathic system: from development to diseases
Yuzhu Wu1, Yanhua Lan1, Jiajie Mao1, Jiahui Shen1, Ting Kang1✉ and Zhijian Xie 1✉

The crosstalk between the nerve and stomatognathic systems plays a more important role in organismal health than previously
appreciated with the presence of emerging concept of the “brain-oral axis”. A deeper understanding of the intricate interaction
between the nervous system and the stomatognathic system is warranted, considering their significant developmental homology
and anatomical proximity, and the more complex innervation of the jawbone compared to other skeletons. In this review, we
provide an in-depth look at studies concerning neurodevelopment, craniofacial development, and congenital anomalies that occur
when the two systems develop abnormally. It summarizes the cross-regulation between nerves and jawbones and the effects of
various states of the jawbone on intrabony nerve distribution. Diseases closely related to both the nervous system and the
stomatognathic system are divided into craniofacial diseases caused by neurological illnesses, and neurological diseases caused by
an aberrant stomatognathic system. The two-way relationships between common diseases, such as periodontitis and
neurodegenerative disorders, and depression and oral diseases were also discussed. This review provides valuable insights into
novel strategies for neuro-skeletal tissue engineering and early prevention and treatment of orofacial and neurological diseases.
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INTRODUCTION
With the advancement of brain science in recent years, the
association between the nervous system and the stomatognathic
system has become increasingly evident. To this effect, new
concepts, such as neuromuscular dentistry1,2 and stomatopsy-
chology3 have been proposed to explain the interaction between
the two systems. Additionally, research has highlighted the
importance of nerves in craniomaxillofacial development,4 as well
as the crosstalk between nerves and jawbone,5 and the diseases
that can arise from them.
Anatomically, the nervous and stomatognathic systems are

evidently close in proximity. The nervous system consists of the
central nervous system (CNS) and the peripheral nervous system
(PNS). The former includes the brain and spinal cord, and the latter
comprises cranial nerves (linking with the brain) and spinal nerves
(linking with the spinal cord).6 The peripheral nerves associated with
the oral and maxillofacial development region include the
trigeminal nerve, facial nerve, glossopharyngeal nerve, vagus nerve,
accessory nerve, hypoglossal nerve and even cervical spinal nerves.7

The nervous system regulates the stomatognathic system in a
variety of ways, frommaxillofacial bones to dental pulp, periodontal
ligament (PDL), muscles, glands, oral mucosa, the tongue, the
temporomandibular joint (TMJ), mouth, skin, and other structures.8

This intricate regulation of the nervous system is vital for the proper
development and functioning of the maxillofacial system. Max-
illofacial deformity and skeletal dysplasia are common comorbid-
ities in neurodevelopmental deficit patients, such as trisomy 21
(ref. 9), neurofibromatosis,10 and achondroplasia.11

The regulation between nerves and bones has been widely
studied,12 with intrabony nerves being found in cortical bone,8

trabecular bone, periosteum, and bone marrow.13,14 The CNS
regulates bone metabolism through the peripheral autonomic
nervous system (ANS) and sensory nerves. The ANS comprises the
sympathetic nervous system (SNS) and the parasympathetic
nervous system (PSNS).15,16 All peripheral nerves regulate bone
development and recover via neurotransmitters, neuropeptides,
neurotrophins, and others.17 In the case of the jawbone, nerves
not only distribute in the same parts as other bones, but also in
special parts, such as the subchondral condyle, PDL, and dental
pulp.18 In addition to classic targets, such as osteoclasts and
osteoblasts, these parts are also targets of the nervous system that
mediates jawbone remodeling. The regulation of nerves on the
oral and maxillofacial systems is unique and significant due to the
presence of more targets. Furthermore, because of the special
anatomy of the jawbone—branches of the trigeminal nerve travel
in the intraosseous canals and innervate peripheral tissues,19

concomitant peripheral nerve injury can be caused by jawbone
defects, and bone repair is accompanied by nerve repair.20

The proximity of anatomical structures, and the rich circulatory
system of the brain and maxillofacial region, enable the nervous
system and the stomatognathic system to interact with each
other. The decline or loss of neurological function can result in
some oral symptoms, such as facial paralysis21 and salivation.22

Conversely, oral diseases can influence the nervous system. If oral
bacteria intrude into the brain via hematogenous spread, caries,
periodontitis, and other oral infections may lead to intracranial
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infection and even neurodegenerative and neuropsychological
diseases.23 Oral squamous cell carcinoma (OSCC) and adenoid
cystic carcinoma (ACC) can lead to perineural invasion (PNI) of the
head and neck as well, resulting in numbness, pain, or
dysfunction.24 More importantly, the mechanism of some systemic
diseases, such as Alzheimer’s disease (AD) and Parkinson’s disease
(PD), are too complex to recognize their initiating lesions. Some
nervous system diseases and stomatognathic diseases can
promote each other, such as depression and periodontal
disease,25 and pain caused by neuropathy and stomatognathic
lesions.26 Although abnormalities in the stomatognathic system
are not the major cause of neurological diseases, it is important to
note that the abnormalities can contribute to their progression.
Therefore, understanding the potential links between these two
systems is essential for early diagnosis and improved prognosis.
This review provides a comprehensive analysis of the cellular

and molecular regulatory mechanisms between nerves and
maxillofacial cells during growth and in both physiological and
abnormal environments. It further examines the development of
the oral and maxillofacial systems, wound healing, and other
visible changes from a macro perspective. Additionally, it
summarizes the nervous system diseases and disorders caused
by the oral and maxillofacial systems, as well as the complex
diseases that are strongly linked to the interaction between the
nervous and stomatognathic systems. By gaining a better
understanding of these complex scenarios, we can further
investigate the underlying mechanisms and apply them to
clinical settings for the early prevention and treatment of
diseases in the future.

THE PHYSIOLOGICAL GROWTH AND DEVELOPMENTAL
ANOMALIED OF NERVOUS AND CRANIOMAXILLOFACIAL
SYSTEMS
Physiological growth of nervous and craniomaxillofacial systems
It has been reported that cranial and maxillofacial development in
vertebrates is closely related to neural growth.4 During this
process, neural crest (NC) cells play a pivotal role, which are
characterized by their multi-potential, migration, and differentia-
tion abilities. In early embryonic development, NC cells first appear
on the dorsal side of the neural tube and initiate the expression of
NC signature genes (FoxD3, Sox10, etc.), signifying the formation
of true NC cells.27,28 Subsequently, NC cells undergo an epithelial-
to-mesenchymal transition to migrate extensively during the
entire embryonic development. NC cells can be divided into four
main groups along the cephalic and caudal axis: cranial, vagal,
trunk, and sacral ganglion subgroups.29 Among them, cranial
neural crest (CNC) cells, derived from labeling NC cells with Wnt1,
are the most significant group involved in craniofacial develop-
ment, and the only group related to cranial bone formation.30 The
migration of CNC cells is highly regulated and occurs along well-
defined pathways, terminating in the ventral part of the brain and
the branchial arch. CNC cells first migrate as continuous waves
and rapidly split into three discrete streams to fill the first, second
and third branchial arches. Subsequently, CNC cells contribute to
various structures, including the skeletal system (cartilage and
jawbone), cranial nerves and ganglia, as well as smooth muscle,
vascular connective tissue, and the dermis of the head.31

Moreover, CNC cells form multiple components of the tooth
through sequential and induced epithelial-mesenchymal interac-
tions between odontogenic mesenchymal cells derived from CNC
and the covering ectoderm.32 Consequently, nerves play a crucial
role in cranial and maxillofacial development.

Developmental anomalies of the nervous and craniomaxillofacial
systems. There are many congenital or genetic diseases that have
multiple concurrent developmental alterations affecting the ner-
vous system and stomatognathic system, some definitely serious for

survival and others with less dramatic prognoses for life. Here are
three of the typical diseases, and Table 1 lists additional ones.

Trisomy 21: Trisomy 21 (Down syndrome) is a genetic disorder
resulting from an extra copy of human chromosome 21, occurring
at a frequency of 1:600 to 1:2 000 (ref. 33). In fact, abnormal
expression of non‑HSA21 genes and deregulated non-coding
genetic elements also influences brain and cognitive development
in Trisomy 21. Patients with Trisomy 21 often suffer from mental
retardation, neurodevelopmental disorders, and even AD with age.9

They typically exhibit deficits in short-term memory and language
abilities, as well as a variety of oral symptoms such as periodontitis,
angular lip cheilitis,34 missing teeth, malformed teeth, delayed tooth
eruption, malocclusion, fissured lips and tongue, macroglossia,
mouth breathing, and bruxism.35 The etiology of hypodontia
abnormal development of the teeth may refer to alterations in
the PNS36 or the abnormalities in tooth germs.37 Inflammation, on
the other hand, can be linked to alterations in patients’ immune
response38 or various systemic or infectious diseases.39 Although
novel treatments are being investigated, treatment of Trisomy 21 is
largely based on approaches used for other diseases, such as AD.40

And craniofacial or dentoalveolar aesthetics of patients with
Trisomy 21 can be improved with surgical procedures and
orthodontic treatments.35,41

Neurofibromatosis type 1: Many reports have demonstrated
concomitant morpho-functional alteration in the stomatognathic
system in individuals with neurofibromatosis. Neurofibromatosis is
divided into two types: type 1 and type 2, the more common
being Neurofibromatosis type 1 (NF1), which occurs at a frequency
of 1 in 1000. NF1 is an autosomal dominant inherited disorder, and
its pathogenesis is associated with mutations of the NF1 gene,
which encodes the tumor suppressor neurofibromin.42,43 These
mutations lead to the hyperactivation of the rat sarcoma mitogen-
activated protein kinase (RAS-MAPK) pathway, which provokes cell
hyperproliferation or tumorigenesis, like neurofibromas, optic
pathway gliomas, astrocytomas, and malignant peripheral nerve
sheath tumors.10 Because NF1 affects the underlying facial
skeleton and can even directly infiltrate or pull down surrounding
tissues, midface deformity is common in NF1 patients.44 Oral
manifestations can be found in approximately 72% of NF1
patients,45 with hard tissue (jawbone and teeth) malformations
like intrabony cystic lesions, enlarged or branched mandibular
canals46 and malocclusion remaining prominent across the
board.47 In addition, soft tissue deformities are frequently seen
due to the morphological variations in particular sites. Examples of
such deformities include malformed nose and upper lip areas,
gingival enlargement,48 gingival neurofibroma,45 nodular lesions
on the tongue,49 and perineural fibrous thickening within the
dental pulp.50 Due to a broad spectrum of lesions associated with
NF1, surgical resection is usually used for therapy44

Achondroplasia: The formation of mammalian skeletons occurs
via intramembranous or endochondral ossification. The former
occurs in the midface and the latter occurs in the skull base and
nasal septum.51 Achondroplasia is the most prevalent genetic
disorder of dwarfism, occurring at a frequency of 1 in 26,000
(ref. 52). Its pathogenesis is linked to activating mutations in the
gene encoding fibroblast growth factor receptor 3 (FGFR3),53

which is a pivotal regulator of endochondral bone growth.
Activated FGFR3 signaling in chondrocytes increases the expres-
sion of Bmp ligand mRNA, which promotes osteoblast differentia-
tion and accelerates bone formation and synchondrosis closure.
Furthermore, the early closure of synchondroses may lead to the
narrowing of the foramen magnum and spinal canals,54 resulting
in severe neurological complications, including radiculopathy,
myelopathy, and neurogenic claudication. In terms of maxillofacial
symptoms, achondroplasia patients may have a prominent
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forehead, midface hypoplasia, occlusal abnormality, low nose
bridge, narrow nasal passages, all of which are caused by
defective endochondral ossification in craniofacial cartilage and
premature closure of the growth center in craniomaxillofacial
skeletogenesis.11 Due to critical illness in the nervous and orofacial
system, any intervention ought to be implemented before the
synchondrosis closure.

HOMESTASIS AND REGULATION BETWEEN THE NERVOUS
SYSTEM AND JAWBONES
Effect of nerves on jawbones
The anatomical structure of the jawbone is unique: the nerves
travel in the bony ducts and send branches directly to
surrounding tissues. The trigeminal nerve, the largest cranial
nerve, comprises the ophthalmic, maxillary, and mandibular
branches.55 The maxillary nerve innervates the maxilla, and the
inferior alveolar nerve (IAN), which is the largest branch of the
mandibular nerve, innervates the mandible.56 In addition to
branches of the trigeminal nerve, ANS also plays a significant
role in the physiology and pathology of the jawbone.57

Experimental animal studies have shown that the complex and
intricate mechanism involves various nerves and bioactive
factors secreted within the microenvironment.57,58 In particular,
intrabony nerves regulate jawbone metabolism through neuro-
transmitters, neuropeptides, neurotrophins, and other signaling
molecules.59,60 The tyrosine-hydroxylase-immunoreactive (TH-IR)
fibers and vasoactive intestinal polypeptide (VIP)-IR fibers are
sympathetic fibers. The TH-IR and VIP-IR fibers secrete norepi-
nephrine (NE) and VIP respectively. Sensory neurons secrete
calcitonin gene-related peptide (CGRP) and substance P (SP), so
CGRP-IR fibers and SP-IR fibers are sensory fibers.61 The
accumulation of various biological factors within the micro-
environment of jawbones, along with the presence of their
receptors in osteogenic and osteoblast lineage cells,62–64

provides compelling evidence of bilateral homeostasis between
nerves and the jawbone (Table 2 and Fig. 1).

Autonomic nervous system. Animal experiments show that SNS
negatively affects bone mass,65 whereas PSNS does the opposite.66

Previous research indicates that heightened SNS activity causes
bone loss.67 SNS promotes bone resorption through the released NE
and active β2-adrenergic receptors (β2-ARs),62 as well as the
receptor activator of nuclear factor kappa B ligand (RANKL)—
osteoprotegerin (OPG) system.68 The impact of SNS on the jawbone
is more complicated than previously reported. Both TH-IR fibers and
VIP-IR fibers distribute within the mandible periosteum and alveolar
wall, but the distribution of TH-IR fibers is wider, and includes the
mandibular endosteal retromolar zone. NE and VIP are two bioactive
factors that contribute to osteoclast differentiation and bone
resorption. Following sympathectomy, the number of TH-IR fibers
and VIP-IR fibers declines, while the number of CGRP-IR fibers
increases,61 which is associated with sensory-sympathetic interac-
tions mediated by neurotrophic factors.69 Sympathectomy changes
the expression of NGF and semaphorin 3A (sema3a), leading to the
increase of CGRP-IR fibers.70 Following a superior cervical gang-
lionectomy in female rats, bone mineral density increased
significantly.57 This can be attributed to the inhibition of the SNS,
which decreases the number of RANKL-expressing osteoblasts and
preosteoclasts in the mandibular periosteum, thereby facilitating
osteogenesis.5 Nerve fibers also innervate the TMJ, and active
sympathetic signaling has been found to be related to bone loss
during osteoarthritis of the TMJ, whereas the use of β2-ARs
antagonists can suppress subchondral bone resorption and
osteoclast function.71 Therefore, the metabolism of different regions
of the jawbone is modulated by the sympathetic pathways.
In addition, the relationship between ANS and immune

response has been investigated in the alveolar bone.72 Acetylcho-
line (a neurotransmitter secreted by PSNS) and its receptors have
been found to be expressed in various non-neuronal cells
including human keratinocytes,73 fibroblasts, T cells, B cells and
macrophages.74,75 Clinical data and animal experiments reveals
that acetylcholine can regulate inflammation-related cells by
activating the α7 nicotinic receptor, which promotes anti-
inflammatory activity75 and reduces the release of inflammatory
factors.76–78 In fact, PSNS activation can promote osteoclast

Table 2. Published studies on the effect of nerves on jawbones

Types of
nerves

Fibers/Neurotransmitter Signaling pathways Function References

ANS SNS Catecholaminergic
innervation (TH-IR
fibers)/NE

Distributed within the mandibular endosteal retromolar zone.
NE→ osteoblast with β2-ARs activation→ RANKL and pro-resorbing
factors ↑→ osteoclast differentiation ↑

Osteoclasis 5,57,62,65–69,257,258

Cholinergic innervation
(VIP-IR fibers)/VIP

Distributed within mandible periosteum and alveolar wall. VIP→ osteoblast
with VIPR 1 activation→ prostaglandin E-2 ↑ , the activating effect of the pro-
resorbing factors ↑

Osteoclasis 5,61,259,260

PSNS Ach PSNS activation→OC ↓→ bone loss ↓
Baroreflex and chemoreflex ↑→ PSNS activation ↑→ anti-
inflammatory→OC ↓→ bone loss ↓

Osteogenesis 66,72–78

Sensory
nerves

CGRP Dilates blood vessels and induces angiogenesis,
CGRP→ osteoblasts and progenitor cells with receptors→ osteoblasts
survival ↑
OPG/RANKL ratio ↑→ osteoclast ↓

Osteogenesis 79,261

SP SP→ BMSCs with NK1-R→ proliferation and osteoblastic
differentiation ↑→; osteogenesis
SP→ osteoclasts with NK1-R→ osteoclast activity ↑

Osteogenesis
and
osteoclasis

64,81,82,80

NGF Axons regeneration ↑→ bone formation ↑
NGF→ osteoblasts differentiation↑

Osteogenesis 83–85

ANS autonomic nervous system, SNS sympathetic nerve system, PSNS parasympathetic nervous system, TH-IR tyrosine-hydroxylase immunoreactive, NE
norepinephrine, RANKL receptor activator for nuclear factor-KB ligand, β2-ARs beta-2 adrenergic receptors, VIP-IR vasoactive intestinal peptide immunoreactive,
VIPR 1 VIP receptor 1, Ach acetylcholine, CGRP calcitonin gene-related peptide, OPG osteoprotegerin, SP substance P, NK1-R neurokinin 1 receptor, NGF nerve
growth factor
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apoptosis to favor bone mass accrual.66 It has been found that
electrical activation of the carotid sinus nerve can alleviate alveolar
bone loss and periodontal disease in rats. This effect may be
attributed to activation of PSNS and its anti-inflammatory
response by provoking baroreflex and chemoreflex.72 However,
comprehensive and thorough research investigating the regula-
tion of ANS on the jawbone is relatively scarce. Therefore, further
exploration is needed to understand the effect of ANS on the
jawbone and its underlying mechanism.

Sensory nerves. The role of sensory nerves should not be ignored
in bone regeneration. At the micro‐level, these nerves promote
bone recovery through the release of neuropeptides, such as
CGRP and SP. Their receptors are expressed on bone cells,5,63,64

indicating a strong association between the nervous system and
bone metabolism in animal models. CGRP is a positive mediator
for bone modeling, as it suppresses the number of osteoclasts by
regulating the OPG/RANKL ratio. CGRP also promotes the
osteogenic differentiation of human PDL stem cells to repair rat

NE
RANKL

RANKL

PGE 2, IL-6
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activate corresponding receptors and upregulate RANKL in OBs, and RANKL contributes to OC maturation. All of them lead to bone
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alveolar bone defects.79 However, the effect of SP appears to be
contradictory. In vitro, studies indicate that SP can stimulate
osteoblast and osteoclast differentiation and function.80 In vivo,
studies show that a combination of SP and calcium phosphate
cement can contribute to alveolar bone defect restoration.81

Additionally, SP has been found to hasten bone formation during
mandibular distraction osteogenesis.82 Nonetheless, SP can inhibit
osteogenesis induced by lipopolysaccharide from Porphyromonas
gingivalis.64 Generally, CGRP and SP act synergistically since they
are frequently co-localized in the same fibers and bone defect
sites and released synergistically. After transection of the IAN, the
secretion of CGRP and SP decreases,58,59 which reduces the OPG/
RANKL ratio and promotes osteoclastogenesis. Thus, injured or
transected IAN result in sensory nerve degradation and mandib-
ular bone destruction. Nerve growth factor (NGF), a key
neurotrophin released by sympathetic and sensory nerves,83,84

has been found to stimulate bone formation by inducing
regenerating axons,85 and consequently, improving the density
and quality of new bone in a rabbit model of mandibular
distraction osteogenesis.86 Altogether, these findings indicate that
sensory nerves play a significant role in bone formation and
regeneration (Fig. 1a).
In addition to the classical pathways of neural regulation, such as

those of limb bones, jawbone remodeling is also regulated by neural
signals within the PDL.87 The PDL is the soft tissue between the teeth
and alveolar bone, and it serves as a critical anatomical structure in
orthodontic treatment. It has been reported that fibroblasts and
osteoblasts in the PDL may respond directly to mechanical forces and
initiate the remodeling of alveolar bone88,89 through mechanotrans-
duction90,91 and intracellular signaling cascades.92,93 Additionally, the
PDL is abundantly supplied with sympathetic, parasympathetic and
sensory fibers,94,95 which contribute to alveolar bone remodeling and
tooth movement. As mentioned before, sympathetic fibers release NE
and VIP to promote bone resorption, while parasympathetic fibers
secret acetylcholine to inhibit bone resorption.66 Thinly myelinated and
unmyelinated sensory fibers express CGRP and SP to facilitate
osteogenesis.87 Sensory fibers in the PDL contain nociceptors,96 which
are triggered by orthodontic force, resulting in transmission of painful
signals to the brain.97–99 This process activates an inflammatory
cascade in the trigeminal spinal nucleus.87 It is mediated by the
activation of neurons and inflammatory cells,100,101 leading to an
increase in the secretion of NGF,102 CGRP,103 SP104 and various
inflammatory molecules.87 In addition, the activated neural loop of the
sensory-central-SNS influences orthodontic tooth movement.105 In
summary, the PDL is a complex system, and nerves within it play a
critical role in tooth movement and alveolar bone remodeling (Fig. 1b).

Regulation of jawbones to nerves
The condition of the jawbone can also affect the distribution of
nerves.

Anatomical factors. The presence of teeth and the intraosseous
canal makes the jawbone unique compared to other bones, and
also affects nerve distribution. The mandibular canal is a compact
bone canal in the cancellous bone of the mandible. The IAN runs
through the mandibular canal and sends branches to control the
teeth in what are known as mandibular canal branches. The
number of these mandibular canal branches is largely determined
by the number of teeth and occlusion elements in the human
mandible.106 Since the presence of teeth helps to maintain the
alveolar bone matrix,107 when teeth are lost, nerve branches may
disappear due to the absorption of alveolar bone.106,108

Mechanical factors. Actually, nerves can sense and respond to
mechanical signals, which include the rigidity of the environment and
press/traction exerted on the neurons by neighboring cells.109 The
latter signal includes the tension of the jawbone and the orthodontic
force of the teeth. After mandibular distraction osteogenesis, the

elongation of the IAN occurs along with mandible regeneration in
dogs.110 Aside from traction on the mandible, the orthodontic force on
the teeth can also affect the distribution of nerves in the PDL, which is a
specialized fibrous connective tissue, and dental pulp, which is
connected to the PDL through the dentinal tubules and apical
foramen. Dental pulp and PDL are richly supplied with sensory and
sympathetic nerve fibers. They also feature immunoreactivity to protein
gene product 9.5 and CGRP.95,111 It has been demonstrated that the
reaction of the PDL is directly related to the duration, type, direction,
and magnitude of the force on the teeth.112,113 Appropriate and
intermittent orthodontic force will not cause permanent damage for
the PDL and pulp.114 The density of nerve fibers in the pulp and PDL
increases initially and then recovers as the duration of the force
increases. However, constant, or excessive forcemay lead to irreversible
damage of the PDL, and even cause pulp necrosis and root
resorption.115 Injury to the IAN and related neuropathy is rare during
orthodontic treatment. However, the roots of molar or premolar teeth
are situated in close proximity to the IAN, the IAN may be injured.116

Bioactive factors. Bioactive signaling factors secreted by bone
lineage cells have the potential to modulate the physiological
activity of the nerves. Osteoblastic cells express NGF and sema3a.
The former is a nerve attractant molecule involved in nerve fiber
maintenance and plasticity,117 and the latter is a repulsive
molecule that inhibits fiber sprouting.118,119 The molecular
network is disrupted after sympathectomy and the subsequent
loss of VIP expression, leading to changes in the expressions of
NGF and sema3a in rat mandible. As a result, CGRP-positive fibers
invade the osteogenic layer due to the decrease in pro NGF and
sema3a, and CGRP-positive fibers increase in the periosteum non-
osteogenic layer due to an increase in mature NGF.70

NON-DEVELOPMENTAL DISEASES CAUSED BY RECIPROCAL
REGULATION BETWEEN THE NERVOUS SYSTEM AND THE
STOMATOGNATHIC SYSTEM
Craniofacial diseases caused by neurological illnesses
Several main oral symptoms arise from the decline or loss of
neurological function, such as facial paralysis, facial spasm,
salivation, and Frey syndrome (Fig. 2).

Facial paralysis. Facial paralysis is a typical neuro-stomatology
disease that is divided into central facial paralysis and peripheral
facial paralysis. Facial paralysis is caused by a dysfunction of the
facial nerve, leading to the limitation of the activity of the facial
muscles innervated by the nerve.120 Central facial paralysis lesions
are located between the cerebral cortex and the facial nerve
nucleus. Common etiologies include cerebrovascular diseases,
intracranial tumor compression, brain trauma, and congenital
facial nerve dysplasia.121–123 Symptoms of central facial paralysis
manifest in facial muscle palsies below the opposite palpebral
fissure, disappearance of the nasolabial fold, and food retention in
the oral vestibule. Peripheral facial paralysis is more commonly
caused by extracranial etiologies, including viral infections
(especially herpes zoster virus),124 parotid malignant tumors,
trauma, and even cold wind.125,126 Bell palsy is the most prevalent
type of peripheral facial paralysis.127 Symptoms of Bell palsy
include paralysis of all facial muscles on the lesion side,
disappearance of forehead lines, inability to close the eyelids,
sagging of the mouth angles, and even accompanying auditory
changes and hypogeusia (Fig. 2a).128

Facial spasm. Facial spasm refers to involuntary convulsions or
spasms129 of half of the facial muscles. It is classified as primary and
secondary facial spasm.130 Primary facial spasm arises from
demyelination caused by cerebellar pontine angle tumors131 and
vascular malformations that compress the facial nerve root.132,133 This
demyelination disrupts the normal flow of action currents along the
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nerve fiber, resulting in overexcitation of the facial nerve and
subsequent facial spasm.134 Secondary facial spasm is caused by
facial nerve injury due to facial paralysis, trauma, inflammation, and
other factors.130 The twitching typically begins with the orbicularis
oculi muscle and gradually extends to other facial expression muscles
on the affected side.135 And the twitching of the angularis oris muscle
is the most prominent symptom (Fig. 2b).129,136

Salivation. Saliva is secreted by salivary glands, which are
stimulated by the PSNS, but the contraction of the salivary duct’s
smooth muscle is controlled by the SNS. Therefore, neurological
lesions can cause abnormal salivary secretion. The etiology of
salivation may refer to weakness or poor coordination of bulbar or
facial muscles, leading to poor lip seal, ineffective saliva control, and
impaired swallowing mechanics.137 Therefore, neurological condi-
tions like stroke, neuromuscular diseases like amyotrophic lateral
sclerosis, and neurodegenerative diseases including PD, multiple
system atrophy, and cerebral palsy can cause salivation.22 Excessive
saliva accumulation in the mouth corner leads to a rapid
propagation of microbes such as Candida albicans, Streptococcus
spp, Staphylococcus spp, and herpesvirus, resulting in oral mucosal
diseases, such as candidal stomatitis, coccal stomatitis, and herpes
stomatitis (Fig. 2c).138–140

Frey syndrome. The salivary glands receive signals from the PSNS,
while the sweat glands and cutaneous blood vessels are regulated
by the SNS.141 Physiologically, saliva secretion and sweating are two
separate processes. The salivary gland secretes saliva in response to
chewing stimulation, while there is no significant change in the skin
condition. However, after parotid gland surgery, PSNS fibers can
control denervated sweat glands and blood vessels in the skin.142

Therefore, chewing can lead to not only saliva secretion from other
salivary glands, but also sweating and flushing in the preauricular
area due to increased PSNS activity. This phenomenon is known as
Frey syndrome,143 which is characterized by sweating and flushing
in response to mastication or a salivary stimulus.144 In fact, it is
common symptom following salivary gland surgery.145 And other
symptoms include face rash,146 burning, itching, forehead and scalp
sweating147 and neuralgia (Fig. 2d).144

Neurological diseases caused by an aberrant stomatognathic
system
While stomatognathic system abnormalities may not be the primary
cause of neurological diseases, it is important to consider the
potential links between them. Craniofacial symptoms or diseases,
such as oral infection, OSCC, malocclusion and Sjogren syndrome
(SS), can play a role in the development of neurological diseases. A
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comprehensive understanding of these links can aid in early
prevention and treatment of these neurological diseases (Fig. 3).

The link between oral infection and CNS infection. The presence of
abundant microflora in the oral cavity,148 combined with
anatomical proximity of the brain and maxillofacial region, makes
the CNS susceptible to infection. In analogy to the “gut-brain axis”,
the proposed concept of the brain-oral axis suggests the profound
influence of an oral microbiome on the brain.23,149 Hematogenous
spread is the predominant mode of intracranial dissemination,
and caries with periapical involvement and periodontitis are the
most frequently-triggering factors.150 In addition, other oral and
maxillofacial specific infections, including herpes simplex,151

herpes zoster, hand-foot-mouth disease,152 and oral tuberculo-
sis,151 also invade the CNS along the peripheral nerve or blood-
brain barrier, causing pain, meningitis or intracranial infection.
Notably, even oral manipulations, like endodontic treatments,
tooth extractions, oral surgery, and simple toothbrushing, may
cause acute or chronic infection.153 When oral pathogens spread
through the blood system or nerve fibers into the brain, severe
consequences may occur, such as chronic inflammation, brain
abscesses,150 ischemic stroke,154 neurodegenerative diseases,
neuropsychological diseases,155 and even mortality. For instance,
Porphyromonas gingivalis, a pivotal pathogen in gingivitis and
periodontitis, can disrupt the blood-brain barrier via inflammation,

which is a characteristic feature of cerebral small vessel disease,154

thereby increasing the risk of acute ischemic stroke (Fig. 3a).

Perineural invasion resulting from tumors in the oral and
maxillofacial regions. Certain types of oral tumors, such as ACC
and OSCC, can invade nerves, leading to PNI, which is
characterized by tumor cells tracking along nerves and/or
enveloping at least one-third of the nerve’s circumference.156

Furthermore, ACC is one of the most common salivary gland
tumors, particularly in the small salivary glands of the palate and
parotid gland. Due to its high propensity for spreading along
nerves, ACC is capable of causing PNI in the head and neck
region.157 Facial nerve invasion caused by ACC leads to facial
paralysis, while invasion of the trigeminal nerve causes facial pain.
Additionally, invasion of the glossopharyngeal nerve and hypo-
glossal nerve may result in tongue numbness and tongue
movement disorders.24

The sixth most common malignant tumor, OSCC, can infiltrate
the CNS via the facial and trigeminal nerves, leading to the
development of intracranial space-occupying lesions24 and
leptomeningeal disease.158 Although PNI in carcinoma of the lip
is rare, malignant cells may trail along the IAN to the brainstem,
resulting in leptomeningeal carcinomatosis.158 In addition, PNI
appears in the advanced stages of tongue cancer.159 Patients may
feel ear pain, throat pain, and pain in other areas involved in
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PNI.160 Although its mechanisms are not yet understood, PNI has
been shown to be linked to an elevated risk of recurrence,
regional transfer, distant metastasis, and overall worse prognosis
(Fig. 3b).161

Aberrant stomatognathic system and headache. Headache is a
prevalent condition that can be caused by various factors.162

Some studies have showed that malocclusion and sleep bruxism
may contribute to the development of headache.163 Among
different types of malocclusion, overbite, posterior crossbite,
lingual crossbite, and lower crowding have been identified as
potential risk factors for tension-type headaches in children and
adolescents.162,164 The underlying mechanism may be related to
the imbalanced bite, which can lead to tension in the masticatory
muscles165,166 and subsequently trigger headache.167,168 Sleep
bruxism, which is characterized by tooth grinding and jaw
clenching during sleep,169 has also been associated with head-
ache.163 This association may be due to the development of
trigger points in the head and neck,170 which are hyperalgesic
zones that can induce headache (Fig. 3c).171

Sjogren syndrome. Although the abnormal oral and maxillofacial
system in SS is not the direct cause of neuropathy, neurological
and oral symptoms often coexist in SS.172 SS is a chronic
inflammatory autoimmune disease characterized by mononuclear
lymphocytic infiltration in lacrimal and salivary glands,172,173

resulting in dry eyes and dry mouth. As the disease progresses,
patients may experience various oral symptoms such as swallow
dysfunction, oral malodour, rampant caries, periodontal disease,
tongue papilla atrophy, sore tongue, salivary gland swelling or
mumps, and poor denture retention.174 Additionally, orofacial
myofunctional disorders and temporomandibular disorders (TMD)
are common among SS patients,175 with main symptoms
including orofacial pain and mandibular function limitation.176 In
addition to orofacial regions, the nervous system is affected in SS,
with CNS lesions such as aseptic meningitis,177 cerebellar
syndromes178 and neuromyelitis optica and others, as well as
peripheral neuropathy including sensory neuropathy, sensorimo-
tor neuropathies, and cranial neuropathies.172 SS can even
increase the risk of PD, dementia179 and depression (Fig. 3d).180

Interaction effects of neurological diseases and craniofacial
diseases
The pathogeneses of some chronic diseases are exceedingly
intricate, making it difficult to identify definitive instigating factors.
In fact, in some cases, the diseases may mutually promote each
other during their distinct stages. Consequently, this section aims
to expound upon the plausible bidirectional associations between
these diseases (Fig. 4).

Neurodegenerative disorders. AD is the most common neurode-
generative disorder, its clinical characteristic is often manifested
as progressive cognitive impairment.181 It has been discussed
extensively that periodontitis is a risk factor for AD.182,183

Bacterial proteins and DNA from periodontal pathogens can
provoke neuronal damage and cognitive impairment.184 Con-
versely, the severity of oral diseases is positively linked to AD,185

because patients in the advanced stage of AD lose intellectual
and social abilities, as well as the ability to maintain proper oral
hygiene practices. This leads to oral lesions like caries,186

periodontitis,187 stomatitis,188 ulcerations, angular cheilitis,
candidiasis189,190 and oral dysfunction.191 The second most
common neurodegenerative disorder, PD, is characterized by
motor dysfunction.192 Periodontal inflammatory disease is also
linked to the morbidity of PD.193 The pathogenic mechanism
may involve neuroinflammation, which is a prevalent character-
istic of various neurodegenerative disorders.155 Due to auto-
nomic dysfunction, muscle stiffness, slowness of movement and

tremor, PD patients are prone to developing stomatognathic
diseases and motor impairments, like caries, periodontitis,194

TMJ dysfunction,195and oral dysfunctions (Fig. 4a).196–198

Psychological disorders. In addition to neurodegenerative dis-
eases, there is mutual promotion between psychic disorders and
stomatognathic diseases. Psychological factors, emotional stress,
and schizophrenia may induce various oral diseases,199 such as
oral ulcers, migratory stomatitis, polymorphous erythema, mucoid
pemphigus, and chronic periodontitis.200–202 Among these psy-
chological factors, the dyadic relation between depression and
periodontal disease has been extensively studied.203 Depression is
a relevant pathogenetic factor for periodontitis,25 and in turn, oral
diseases can exacerbate the progression of depression (Fig. 4b).

Temporomandibular disorders. TMD are associated with an
individual’s mental state. In fact, the biopsychosocial model of
TMD was proposed long ago to describe how psychological
distress,204 psychosocial impairment, and behavioral upset are
highly prevalent among TMD patients.205–207 Stress and negative
affect are considered potentially important risk factors for TMD.208

But the specific mechanism has not been fully clarified, which may
refer to dysregulation of the hypothalamic-pituitary-adrenal209

and aberrant secretion of cortisol.210 However, the effect of TMD
and associated pain on the nervous system is relatively weak.
Patients with painful TMD have been found that salivary levels of
NGF and brain-derived neurotrophic factor (BDNF) are lower
compared to healthy control subjects211 NGF212 and BDNF213 are
related to psychological impairment, which reflects a potential
connection between an abnormal mental state and TMD. And
patients suffering from painful TMD surely experience heightened
self-perceived cognitive impairments and depressive symp-
toms.214 Furthermore, extensive alterations in brain structures
have been observed in individuals afflicted with TMD pain,215

including modifications in the trigemino-thalamo-cortical system,
the lateral and medial pain systems, periaqueductal gray-raphe
magnus pathway and the motor system. Nevertheless, the relation
between these neuropeptides and psychological distress is more
complicated than previously thought, and further research is
required to understand the intricate interaction between TMD and
psychological distress (Fig. 4c).

Pain. Oral and maxillofacial pain is a significant issue that
perplexes many patients and seriously impacts their facial muscle
movement and daily routines. Pain-sensitive structures in the oral
and maxillofacial region are distributed in the intracranial
trigeminal and glossopharyngeal nerves, and in the extracranial
oral and maxillofacial skin, subcutaneous tissue, muscle, TMJ,
dental pulp, and oral mucosa.216 Therefore, diseases that stimulate
pain-sensitive structures may cause oral and maxillofacial pain.
The most common facial pain is trigeminal neuralgia (TN), which is
divided into primary TN and second TN.26 Primary TN is typically
caused by vascular compression with morphologic changes of the
trigeminal nerve root.217 Second TN may be caused by an
intracranial tumor,218 such as those in the cerebellopontine angle
or multiple sclerosis, infiltrative malignant tumors, trauma, and
rheumatologic diseases. Even extracranial infections can lead to
TN, especially odontogenic infections, such as endodontic
infections, and periodontal infections or abscesses.219 Acute
pulpitis is a distinct form of dental inflammation that can elicit
severe and spontaneous sharp pain upon compression of the
involved nerve without timely drainage. Patients experience
radiating pain along the second or third branch of the trigeminal
nerve to the ipsilateral head, ear, face, and temporal region,220

often leading to secondary TN. Besides, herpes zoster infection
can affect the trigeminal ganglion to trigger secondary TN.219 The
underlying pathology of both primary TN and secondary TN is
widely acceptable to be demyelination,218 which triggers impulses
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with high-frequency afterdischarges.221,222 Therefore, innocuous
mechanical stimuli in the trigeminal territory, including light
touch, cold air, brushing teeth, and eating, can trigger severe
pain.217 As a result, patients may avoid basic hygiene practices,
like washing their face, brushing their teeth, and smiling, leading
to poor facial and oral hygiene accompanied by calculus and
stomatitis. Furthermore, during the pain attack phase, patients
may vigorously rub their facial skin to alleviate the pain, leading to
partial abrasion and secondary infection.
Glossopharyngeal neuralgia (GPN) is a relatively rare condition

that may be affected by both the nervous system and oral
structure. Patients with GPN experience paroxysmal pain in the
tonsils, pharynx, tongue base, and other areas. Similar to TN, one
of the recognized lesions associated with GPN is nerve
compression by a blood vessel at the root entry zone of the
brainstem.223,224 Furthermore, CPN has also been linked to
cerebellopontine angle masses, oropharyngeal tumors, multiple
sclerosis, and TN.225–227 Also, GPN has trigger points that can
elicit pain, such as swallowing, chewing, coughing, yawning, and
talking. In addition to neuralgia, other symptoms may occur,
such as excessive saliva, throat spasm,228 twitch, and epilepsy
(Fig. 4d).229

CONCLUSIONS AND FUTURE PERSPECTIVES
This review summarizes the connection between neurodevelop-
ment and craniofacial development, highlighting the intricate
crosstalk between nerves and jawbones, as well as diseases
among the two systems. The current research on the association
between the nervous system and the stomatognathic system is
extensive and intricate; however, it also has limitations. The
underlying causes of congenital diseases in the stomatognathic
system, such as Moebius syndrome, Parry–Romberg syndrome,
and AS, remain unclear. Moreover, the connection between facial
deformities and other neurodevelopmental disorders has not
been established; this lack of understanding causes more complex
disease management and higher costs, particularly without the aid
of genetic screening. There is also a scarcity of studies that
incorporate pathways related to the immune system and cation
channels in jaw-regulating nerves. Research about the regulation
of the CNS on the jawbone is also inadequate. At the molecular
level, there is a lack of in-depth studies regarding the effect of
acetylcholine and SP on the jawbone. In particular, the regulation
of SP on the jawbone is perplexing, as opposing effects of SP have
been observed at different concentrations. Interestingly, even at
the same tested concentration, SP exerts different effects on the
regulation of the jawbone. The role of SP may be strongly
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influenced by the specific surrounding environment, the duration
of exposure, and the state of the jawbone. In addition, the
interaction of neurological diseases and craniofacial diseases
further complicates the issue, and the initial factors and the
specific mechanism remain unclear.
Therefore, prioritizing neurodevelopment and neurological

diseases related to the stomatognathic system is crucial for the
timely prevention and treatment of oral diseases. It is imperative
to investigate the contribution of published gene mutations to
congenital diseases in both systems and expand the scope of
gene mutation research. Such work would enhance the efficiency
of prevention and treatment through embryo intervention and
prenatal screening for dysplasia, as well as the early detection and
diagnosis of refractory diseases, such as AD and TN. In addition,
further investigations are necessary to examine the effects of
bioactive factors, such as acetylcholine and SP, in regulating
jawbone acquisition and loss. Furthermore, neural pathways
mediated by the immune system and cation channels within
jawbones are worth investigating. This may lead to the develop-
ment of innovative strategies for neuro-bone tissue engineering.
Moreover, we found that the relationship between these two

systems was far more complicated than what has been previously
demonstrated. Based on existing research and obvious contro-
versy, it is evident that the interaction mechanism between the
nervous system and the stomatognathic system merits further
investigation and potentially opens new research avenues.
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