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Fully automatic AI segmentation of oral surgery-related tissues
based on cone beam computed tomography images
Yu Liu 1,2, Rui Xie3, Lifeng Wang1,2, Hongpeng Liu1,2, Chen Liu3, Yimin Zhao3✉, Shizhu Bai 3 and Wenyong Liu4

Accurate segmentation of oral surgery-related tissues from cone beam computed tomography (CBCT) images can significantly
accelerate treatment planning and improve surgical accuracy. In this paper, we propose a fully automated tissue segmentation
system for dental implant surgery. Specifically, we propose an image preprocessing method based on data distribution histograms,
which can adaptively process CBCT images with different parameters. Based on this, we use the bone segmentation network to
obtain the segmentation results of alveolar bone, teeth, and maxillary sinus. We use the tooth and mandibular regions as the ROI
regions of tooth segmentation and mandibular nerve tube segmentation to achieve the corresponding tasks. The tooth
segmentation results can obtain the order information of the dentition. The corresponding experimental results show that our
method can achieve higher segmentation accuracy and efficiency compared to existing methods. Its average Dice scores on the
tooth, alveolar bone, maxillary sinus, and mandibular canal segmentation tasks were 96.5%, 95.4%, 93.6%, and 94.8%, respectively.
These results demonstrate that it can accelerate the development of digital dentistry.
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INTRODUCTION
With the widespread application of cone beam computed
tomography (CBCT) technology in the oral field, digital technology
has gradually become the foundation of modern dental diagnosis
and treatment. As a high-resolution 3D imaging technology, CBCT
images can provide detailed information on the oral anatomy, and
by obtaining the complex anatomy of the oral cavity with precise
positioning in the images, it can guide the surgeon in planning
accurate implant position to avoid damage to surrounding nerves,
blood vessels, etc. To orthodontics, accurate CBCT image
segmentation can effectively avoid possible bone fenestration
and dehiscence issues, and are an important prerequisite for
achieving accurate evaluation of orthodontic plans, which can
change the current situation of relying solely on doctor experience
to estimate tooth root movement; to maxillofacial surgery, an
accurate jawbone model can significantly improve the efficiency
and accuracy of surgery, which is a prerequisite for scheme
planning automation and surgical robot precision surgery; to
dental implant surgery, with the gradual application of dental
implant surgery robot technology in clinical practice in recent
years, its accuracy and reliability have been effectively verified,
proving that it can achieve higher implantation accuracy and less
surgical time than manual implantation and navigation implanta-
tion, which is the future development direction of dental implant
field,1–7 accurate segmentation results can provide a reference for
the position of the mandibular nerve canal and maxillary sinus for
surgery, which is the basis for computer automatic planning of
implant positions8 and can be used to track implant positions for

accurate postoperative evaluation,9 at the same time, it can guide
the shape of preparation holes in autologous tooth transplanta-
tion surgery. To achieve these goals, the key step is to precisely
segment the oral structures of interest from CBCT images and
perform 3D reconstruction.
In the field of medical imaging, the automatic segmentation of

teeth, maxillary and mandibular bones, maxillary sinus, and
mandibular nerve canal remains a practically and technically
challenging task. Currently applied methods usually require
segmentation using pre-designed manual features for tooth
segmentation,10–12 such as level sets,13,14 template fitting,15 or
manual adjustment after merely preforming threshold segmenta-
tion.16 However, due to the complexity of the dental occlusal
surface, the flexibility of tooth topology changes, the low contrast
between the root and the alveolar bone, and the uncertainty of
third molar eruption make it difficult for existing segmentation
methods to obtain accurate segmentation results. In addition, the
efficiency of the existing tooth image segmentation methods is
too low, which leads to a significant reduction in the efficiency of
the dental implant surgery robot, and the professional dentist
needs to spend more time on surgical planning and image
processing compared to traditional freehand implants, and cannot
focus on the surgical plan design.
And with the continuous development of deep learning

methods, such as deep learning based on convolutional neural
networks (CNNs), which have shown great robustness and
accuracy in the field of medical images,17–26 a series of studies
related to the application of deep learning methods for the
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segmentation of tooth, bone, and mandibular neural tube
structures have emerged.27–31 Among these studies, the tooth
instance segmentation task is one of the most important and
complex tasks, existing methods typically require designing
complex tooth morphology representations and attaching tooth
prior knowledge. Cui et al.32 first proposed the first network for
tooth CBCT segmentation task in 2019: ToothNet. This method
first extracts tooth edges from the input CBCT image, and then
sends the detected edge map and the original CBCT image to the
region proposal network to obtain segmentation results. Lee
et al.33 and Gerhardt et al.34 proposed a method of first obtaining
the position of a single tooth from the original CBCT image
through object detection and other methods for segmentation,
dividing the segmentation task into two stages and reducing the
complexity of the network. To obtain better segmentation results,
Cui et al.27 proposed to learn the tooth centroids and skeletons for
identifying each tooth’s rough position and topological structures,
respectively. Chung et al.31 proposed to first realign the
CBCT image according to the maximum intensities projection.
Liu et al.’s35 method requires first automatically registering the
intraoral scan model obtained by an intraoral scanner or scanning
traditional oral impressions with the CBCT image, and then
segmenting the CBCT image based on the segmentation results of
the intraoral scan model. Second, current methods are based on
CNN networks, which have major problems in modeling long-
range information because of the inherent properties of convolu-
tional kernels24 and obtaining accurate the adjacent relationship
between teeth and missing teeth. In addition, due to significant
differences in grayscale range, contrast, and field of view between
different CBCT images, existing methods have not optimized for
this.36

Summarizing the current methods, four shortcomings can be
found as follows:

1. Tooth segmentation results of existing methods do not
mark the teeth according to the FDI Two-Digit Notation,37 so
that the missing tooth information cannot be accurately
detected and represented. We reproduced the method of
Cui et al.27 which is the state-of-the-art in this field, the result
is shown in Fig. 1. It cannot achieve the same classification
results for teeth in the same position, which is mapped in
the figure as different colors of teeth in the same position.
The method proposed by Liu et al.35 requires first
segmenting the oral scan model and registering it with
the CBCT image to obtain segmentation results. This limits
the application of these methods in the analysis and
diagnosis of dental defects, since information on missing
teeth is essential for the correct localization and assessment
of the patient’s oral health status.

2. Unlike conventional CT, different CBCT equipment manu-
facturers use different imaging devices and interpolation
methods, and also dynamically select imaging parameters
according to the patient’s condition when in use, so CBCT
images will have different grayscale distribution and
contrast, which makes it difficult to apply simple image

preprocessing methods to all CBCT images; and in the tooth
instance segmentation task, most of the original images are
soft tissue regions that are not useful for segmentation,
resulting in an unbalanced distribution of data, which is not
addressed by the current methods. The actual CBCT images
are shown in Fig. 2, and it can be seen that there are large
differences in image contrast, field of view, etc.

3. Existing methods are too complex and often require
multiple steps to obtain good segmentation results. These
methods may require the use of multiple preprocessing
techniques, feature extraction methods, classifiers or mod-
els, and post-processing steps to complete the segmenta-
tion of teeth. This complexity leads to less computationally
efficient methods, each step may introduce errors or
mistakes, and each step in the whole process requires
careful tuning and validation, which increases the difficulty
of method development and application.

4. Current methods do not perform all these segmentation
tasks completely automatically in an end-to-end manner, as
they usually focus on a single task, such as tooth
segmentation or alveolar bone segmentation on predefined
region of interest (ROI), with little research on the
segmentation of the mandibular canal from the maxillary
sinus.

These aforementioned drawbacks limit the accuracy, general-
izability, and efficiency of these methods for oral structure
segmentation and diagnostic tasks.
In this paper, we propose a deep learning-based fully

automated segmentation system aimed at the precise delineation
of tissues relevant to dental implantation. Specifically, we propose
a data distribution histogram-based image preprocessing method
by statistically analyzing the data distribution histograms of
different brands of CBCT images. Based on this, we use a skeletal
segmentation network to obtain maxillary and mandibular bone,
tooth, and maxillary sinus segmentation results, and use the tooth
and mandibular bone segmentation results as the ROI for
subsequent tooth instance segmentation and mandibular neural
tube segmentation, respectively. For the tooth segmentation, an
attention-based deep learning network is proposed to obtain
accurate tooth instance segmentation results, and the segmenta-
tion results can be labeled according to the FDI Two-Digit
Notation37 to obtain information about the patient’s tooth missed
sit; for the mandibular canal segmentation, we design a multilayer
hierarchical feature extraction neural network to perform this task.
The corresponding experimental results show that our method
can obtain more accurate segmentation results and higher
efficiency than the current methods, and the proposed data
preprocessing method can effectively improve the segmentation
accuracy.

RESULTS
An overview of the proposed method applied to the segmenta-
tion of oral CBCT images is illustrated in Fig. 3, it consists of three
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Fig. 1 Segmentation results of existing algorithms for tooth roots (upper and lower right regions, as can be seen, the same teeth 13, 14, 15, 16
are labeled as different teeth)
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parts. First, the image preprocessing method proposed in this
paper is applied and the preprocessed images are used for
subsequent training. In the deep learning processing stage, a
skeletal segmentation network is used to segment the prepro-
cessed images to obtain four types of segmentation results:
teeth, maxillary bone, mandibular bone, and maxillary sinus.

Then, the tooth segmentation results and mandibular bone
segmentation results are used as ROIs regions for the subsequent
tasks, and the subsequent tooth instance segmentation results are
combined with neural tube segmentation results and bone
segmentation results to obtain the final oral CBCT image
segmentation results.

Adaptive 
preprocessing

Extraction of jaw 
and maxillary sinus

Swin-UNETR

Extraction of jaw 
and maxillary sinus

Fig. 3 Overview of our proposed artificial intelligence system for segmenting individual teeth, maxillary and mandibular bones, maxillary
sinus, and mandibular neural tube from CBCT images (The input to the system is a 3D CBCT scan of the patient; a uniform image is first
obtained using a CBCT image adaptive preprocessing algorithm, then processed by a bone extraction, neural tube extraction and tooth
instance segmentation network, and finally a mask containing all structures to be segmented is output)

Fig. 2 Slices of CBCT data from different sources
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Table 1 shows the segmentation accuracy achieved by our
proposed method on the validation dataset, containing tooth
segmentation, maxillary and mandibular segmentation, maxillary

sinus segmentation with mandibular neural tube segmentation.
As can be seen, on the test dataset, our AI system was able to
obtain an average Dice score of 96.5%, an average mean
Intersection over Union (mIoU) of 88.4%, an average Hausdorff
distance (HD) of 1.62 mm, and an average surface distance (ASD)
error of 0.12 mm in the segmentation of teeth task; while it was
able to achieve 92.4%, 98.3%, 93.6%, and 94.8% in the maxillary,
mandible, maxillary sinus, and mandibular neural tube segmenta-
tion tasks, respectively. Figure 4 shows the segmentation results
for the teeth, maxillary and mandibular bones, maxillary sinus, and
mandibular canal, respectively.
We compared our proposed method with deep learning

methods from previous years, including Hi-MoToothSeg,38 nnU-
Net,39 ToothNet,32 RELU-Net,34 and DenseASPP-UNet,40 all apply-
ing common data preprocessing methods to validate the
effectiveness of our proposed method. The results are shown in
Table 2, and it can be seen that our method achieves higher

Table 1. Segmentation accuracy of teeth, maxillary and mandibular
bones, maxillary sinus, and mandibular nerve canal on the dataset

Segment classes Dice/% mIoU/% HD/mm ASD/mm

Tooth 96.5 ± 0.8 88.4 ± 0.6 1.62 ± 0.12 0.12 ± 0.12

Maxillary bone 92.4 ± 3.1 79.5 ± 1.0 4.25 ± 0.61 0.49 ± 0.76

Mandible bone 98.3 ± 1.8 93.4 ± 0.8 0.97 ± 1.58 0.11 ± 0.54

Mandibular canal 94.8 ± 0.9 82.0 ± 2.1 1.53 ± 0.22 0.35 ± 0.98

Maxillary sinus 93.6 ± 1.7 84.8 ± 0.7 1.12 ± 0.85 0.28 ± 0.23

Average 95.1 ± 1.5 85.6 ± 1.1 1.90 ± 0.68 0.27 ± 0.53

Fig. 4 Results of tooth, maxillary and mandibular bone, maxillary sinus, and mandibular nerve canal segmentation
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accuracy in all four metrics compared to current methods.
Meanwhile, we conducted ablation experiments to verify the
effectiveness of our proposed pretreatment method, and the
results are shown in Table 3. It can be seen that our adaptive
preprocessing method achieves a large improvement in all four
metrics compared to the generic preprocessing method.

Moreover, our method was able to obtain accurate relative
tooth positions, and teeth in the same position were able to
obtain the same markers, thus enabling us to assess the
segmentation accuracy for each specific tooth, and the segmenta-
tion results are shown in Fig. 5. We chose the Dice coefficient as
the evaluation index and evaluated the segmentation accuracy of
maxillary and mandibular central incisors (T1), lateral incisors (T2),
canine/acute teeth (T3), first premolars (T4), second premolars (T5),
first molars (T6), second molars (T7), and third molars (T8),
respectively, and the results are shown in Table 4.
In summary, our method is able to identify the relative positions

of teeth while obtaining higher accuracy, obtain segmentation
results marked according to the FDI Two-Digit Notation, and
achieve higher segmentation efficiency with better clinical
application prospects.
Taking the tooth segmentation task as an example, we

validated the generalizability of the proposed method for different
CBCT data on the independent validation dataset constructed
above, and the validation results are shown in Table 5. It can be
seen that our method achieves good performance on CBCT data
using different image protocols, where it is able to obtain the best
performance on the LargeV dataset, reaching an average Dice
score of 96.9%.
Finally, we experimentally verify the efficiency and accuracy of

the proposed fully automated end-to-end segmentation method
compared to the traditional expert manual outlining method. The
experimental results are shown in Table 6, where we can see that
our method can achieve hundreds of times higher efficiency and
the same segmentation accuracy as the expert.

DISCUSSION
In this study, we present a deep learning-based method for
segmenting teeth, maxillary and mandibular bones, maxillary
sinus, and mandibular nerve canal in oral CBCT images. Our
method has several distinguishing features that make it different
from current methods.
First, we achieve an end-to-end segmentation of all the

necessary structures required for dental implant surgery planning
and robotic navigation of the dental implant. This feature is critical
because it allows for a streamlined and efficient workflow in
treatment planning without the need for manual annotation or
multiple individual segmentation steps. Experiment results show

Table 3. Analysis of the effect of choosing different relationships
between d and σ on segmentation accuracy during image
preprocessing

Items Dice/% mIoU/% HD/mm ASD/mm

Normal preprocess 94.3 ± 1.0 86.3 ± 1.1 1.73 ± 0.52 0.18 ± 0.04

d= 0 × σ 94.9 ± 1.2 86.9 ± 1.0 1.68 ± 0.87 0.18 ± 0.21

d= 1 × σ 95.8 ± 0.7 87.5 ± 0.6 1.63 ± 0.38 0.15 ± 0.34

d= 2 × σ 96.2 ± 0.6 88.9 ± 0.6 1.65 ± 0.18 0.13 ± 0.08

d= 3 × σ 96.5 ± 0.8 88.4 ± 0.6 1.62 ± 0.12 0.12 ± 0.12

d= 4 × σ 96.5 ± 1.1 88.7 ± 1.2 1.64 ± 0.21 0.12 ± 0.68

d= 5 × σ 95.9 ± 0.7 86.8 ± 0.9 1.69 ± 0.32 0.14 ± 0.10

d= 6 × σ 95.2 ± 1.8 86.1 ± 1.6 1.70 ± 0.31 0.16 ± 0.49

Bold text represents the highest value in its column

Fig. 5 Segmentation results for different CBCT data (teeth with the same number are shown as the same color when displayed using the
same color mapping relationship)

Table 2. Experimental results of quantitative comparison with existing
advanced methods in terms of segmentation and detection accuracy

Methods Dice/% mIoU/% HD/mm ASD/mm

Hi-MoToothSeg 93.1 ± 0.8 82.5 ± 1.8 1.63 ± 0.75 0.28 ± 0.14

nnUNet 85.3 ± 2.5 75.1 ± 2.0 5.04 ± 2.48 0.51 ± 0.31

ToothNet 91.7 ± 1.3 76.2 ± 0.7 2.85 ± 1.11 0.49 ± 0.08

RELU-Net 92.9 ± 1.0 85.7 ± 0.9 1.52 ± 0.42 0.24 ± 0.11

DenseASPP-UNet 92.5 ± 1.4 79.4 ± 1.2 2.34 ± 0.76 0.31 ± 0.21

Ours 94.3 ± 1.0 86.3 ± 1.1 1.43 ± 0.52 0.18 ± 0.04

Bold text represents the highest value in its column
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that our approach can significantly improve efficiency and
accuracy compared to experts manually outlining ROI using
existing software.
Second, we developed an adaptive algorithm that can

efficiently handle the variations of CBCT images acquired from
different manufacturers. This adaptation is critical because CBCT
images may exhibit variations in image quality, resolution, noise,
and contrast due to differences in acquisition protocols and
equipment, and current methods are not targeted for CBCT
images, making them less generalizable and requiring increasing
data volumes to improve the applicability of the method. By
adapting to these variations, our method is able to achieve the
same or even better segmentation accuracy on a smaller training
dataset. Experimental results show that our method exhibits
robust performance on data from multiple CBCT manufacturers,
improving the average Dice score by 3.6% in the most dominant
tooth instance segmentation task compared to the best available
method, and by applying the proposed adaptive preprocessing
method, it also achieves an average Dice score improvement of
2.8% compared to itself.
An important contribution of our study is the ability of the

proposed tooth instance segmentation method to obtain tooth
classification results based on the FDI Two-Digit Notation. This
feature enables automatic identification of missing teeth, which is
an important aspect of dental analysis and treatment planning.
Current methods often lack the ability to accurately capture
information about missing teeth32,38,40 or require the use of oral
scan models35 which can make the practical application of the

algorithm difficult and make it impossible to accurately locate and
select specific teeth during software interaction. The ability to
accurately capture information about missing teeth makes our
method more conducive to comprehensive dental evaluation.
To evaluate the performance of our method, we conducted

extensive experiments and compared it with existing techniques.
The results demonstrate the effectiveness and accuracy of our
method in segmenting teeth, maxillary and mandibular bones,
maxillary sinus, and mandibular nerve canal, with an overall
average Dice score of 95.1% and the ability to achieve state-of-
the-art on the most important tooth segmentation tasks,
indicating the robustness and generalizability of our method in
capturing anatomical structures of interest.
In addition, we evaluated the impact of the adaptive algorithm

on different CBCT images obtained from different manufacturers.
The results show the superiority of our adaptive approach
compared to conventional methods, as it consistently achieves
high segmentation accuracy regardless of the imaging character-
istics of the CBCT system.
Although our research results promise competitive results, there

are some limitations that need to be acknowledged. First, the
evaluation is conducted on a specific dataset, which does not
include severe metal artifacts or image blurring caused by patient
movement issues. Therefore, further exploration should be
conducted on the generalizability of this method to a wider
population and various clinical scenarios. Second, although our
adaptive algorithm showed effective performance, there is still
room for improvement, such as severe metal artifacts in images,41

deep learning-based CBCT image grayscale value processing,42,43

and the combination of segmentation results with vitro
experiments.44

CONCLUSION
In this paper, we present a comprehensive study on the
segmentation of dental implant structures of interest in oral CBCT
images using deep learning techniques. Our proposed method
provides several new features and demonstrates a significant
improvement over current methods.

Table 5. Segmentation accuracy performance of the proposed tooth instance segmentation method on CBCT images from different sources

Manufacturer Manufacturer’s model name Dice/% mIoU/% HD/mm ASD/mm

Carestream Health CS 9300, CS 9301 95.9 ± 1.2 89.1 ± 1.0 1.45 ± 0.23 0.17 ± 0.25

Imaging Sciences International 9–17 95.3 ± 1.2 88.6 ± 0.2 1.42 ± 0.21 0.18 ± 0.11

J.Morita.Mfg.Corp. 96.2 ± 0.8 90.3 ± 0.9 1.15 ± 0.31 0.09 ± 0.08

LargeV HighRes3D, SMART3D 96.9 ± 0.3 91.2 ± 0.8 1.22 ± 0.25 0.09 ± 0.10

NewTom NTVGiMK4, NTVGiEVO, NT5G 93.8 ± 1.5 86.7 ± 0.6 1.10 ± 0.25 0.16 ± 0.13

NNT NTVGiEVO 96.1 ± 1.2 89.8 ± 0.9 1.22 ± 0.42 0.15 ± 0.32

PaloDEx Group Oy ORTHOPANTOMOGRAPH OP 3D 94.8 ± 0.9 87.9 ± 1.1 1.81 ± 0.21 0.18 ± 0.23

RAY Co., Ltd. RAYSCAN N Alpha Plus 95.9 ± 1.1 89.4 ± 0.7 1.84 ± 0.25 0.15 ± 0.14

Sirona ORTHOPHOS SL 94.1 ± 2.1 86.8 ± 1.1 2.72 ± 0.62 0.42 ± 0.52

Vatech Company Limited PHT-35LHS 93.7 ± 3.8 85.5 ± 2.0 2.12 ± 0.40 0.32 ± 0.24

YOFO Pirox-R 96.1 ± 1.2 90.1 ± 0.8 1.21 ± 0.35 0.16 ± 0.09

Bold text represents the highest value in its column

Table 6. Quantitative comparison of segmentation accuracy and
segmentation time between our AI system and a dental expert (three
CBCT images randomly selected from the dataset)

Items AI Expert AI-assist+ hand-tuning

Time cost/min 1.52 240 5.6

Dice/% 95.7 92.6

Bold text represents the highest value in its column

Table 4. Segmentation accuracy of Dice for teeth in different positions

Methods T1 T2 T3 T4 T5 T6 T7 T8

Ours 97.1 ± 1.2 96.8 ± 0.5 97.0 ± 0.2 93.7 ± 1.4 94.1 ± 1.7 96.5 ± 0.8 92.3 ± 2.5 93.1 ± 2.1
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We have successfully developed an end-to-end segmentation
method that contains the necessary information required for
dental implant surgical planning. Unlike current methods that
require manual outlining or segmentation in multiple steps, our
method simplifies the image segmentation and surgical planning
process and is the basis for fully automated planning of dental
implant surgery, saving the clinician valuable time and effort.
In addition, we propose an adaptive algorithm capable of

handling the variations inherent in CBCT images obtained from
different manufacturers. This adaptability ensures the consistency
and robustness of deep learning methods on multiple CBCT
images, overcoming the challenges posed by differences in image
quality, resolution, noise, and contrast.
A notable contribution of our work is the direct extraction of

tooth segmentation results based on the FDI Two-Digit Notation.
This enables the automatic identification of missing teeth, a key
aspect of dental analysis and treatment planning. Unlike current
methods, our approach successfully captures information about
missing teeth, improving the comprehensiveness of dental
assessments.
Our extensive experimental evaluation and comparison with

existing techniques demonstrated the superiority and accuracy of
our method in segmenting the teeth, maxillary and mandibular
bones, maxillary sinus, and mandibular nerve canal. The results
confirm the robustness of our method in capturing the anatomical
structures of interest, even at different tooth positions.
Although our study yielded remarkable results, it is important to

acknowledge its limitations. Our evaluation was performed on a
specific dataset and further investigation is necessary to assess the
generalizability of our approach to different populations and
clinical scenarios, and to further validate the efficiency and
accuracy of the method through broader integration with clinical
practice. In addition, there is potential for further improvement in
handling extreme variations in CBCT image features, which should
be addressed in future studies.
In conclusion, our study introduces a new deep learning-based

method to segment structures in oral CBCT images. The end-to-
end segmentation capability of all structures required for dental
implant surgery, the segmentation capability based on the FDI
Two-Digit Notation, the adaptability to different CBCT images, and
the ability to extract information about missing teeth offer
significant advantages over current methods. The experimental
results demonstrate the effectiveness and accuracy of our
approach and the ability to significantly reduce the preoperative
planning time consumed by the surgeon when performing
surgery with the dental implant surgery robot. Further research
should focus on validating our method on larger and diverse
datasets and addressing the identified limitations to enhance its
robustness and applicability in clinical practice.

METHODS
CBCT image adaptive preprocessing method
CBCT images use a grayscale density value scale, which is similar
to the HU value of ordinary CT. However, the difference is that
the HU value is fixed, usually set to 0,45 and the range of
grayscale values and contrast of CBCT images can vary
depending on the interpolation method chosen by the
equipment manufacturer, the imaging equipment, the para-
meters chosen during scanning and the field of view, etc.
Moreover, the voxels containing teeth in CBCT images only
account for about 1%–3% of the whole image, which causes
unbalanced distribution of categories and slows down the
training speed and accuracy of the network. The existing
methods do not provide targeted processing for the above
characteristics of CBCT images, only using general image
preprocessing methods, which delete the first 0.5% and last
99.5% data of the image, and then perform regularization.

After performing CT value distribution statistics on the existing
dataset, we plotted the histogram of grayscale value distribution
for each data, and Fig. 6a–d shows several typical distributions of
grayscale values of CBCT images in the dataset. It can be seen that
each image usually contains one or two spikes and one peak.
Based on the original image, it can be seen that the spikes
represent the air in the image, while the peak represents the
grayscale value of the soft tissue. The goal of image preprocessing
is to delete data with a grayscale value smaller than the bone
tissue and then perform normalizing processing.
Looking at the statistical histogram, it can be seen that the CBCT

images vary in their grayscale range and that one or two spikes
appear because the voxels appearing outside the field of view and
the voxels representing air have the same grayscale value,
respectively; on the other hand, since most of the images are of
soft tissues, a peak appears, whereas there is no significant
undulation of bones, teeth, and artificial restoration. Therefore, the
average grayscale value xs for soft tissue can be obtained by
calculating the midpoint of the soft tissue peak in the histogram,
while the truncated gray value for bone is:

xb ¼ xs þ d (1)

where d is the difference between the soft tissue grayscale value
and the bone grayscale value.
To obtain the values of xs and d, we consider the histogram of

the grayscale distribution as a digital signal and introduce
frequency domain processing methods for signal processing,
and finally obtain the requested values. The detailed method is as
follows.
First, we consider the calculated histogram of the gray

distribution as a signal curve representing the frequency of
captured gray values for further analysis. To improve the curve
quality, a median filter is applied to remove spikes or noise
artifacts.
Next, the midpoint of the soft tissue peak on the filtered signal

curve is determined, and this point is the xs to be calculated. To
eliminate the impact of curve fluctuations on peak calculation, it is
necessary to set a minimum threshold for the width and height of
the target peak. In this experiment, the width was set to 5, and the
height was set to 0.1% of the total number of pixels in the image
through statistical analysis of the dataset used.
Subsequently, define the ROI around the peak by selecting a

width of 200 units on both sides of the midpoint of the peak. We
assume that the peak in this area obeys the Gaussian distribution,
and select the Gaussian distribution density function to model the
ROI. The functional equation is:

f xð Þ ¼ kffiffiffiffiffiffi
2π

p
σ
e
� x�μð Þ2

2σ2 (2)

where μ is the midpoint of the wave, σ is the standard deviation,
and k is the amplitude.
Finally, based on the fitted Gaussian distribution function, the

relationship between the soft tissue and bone gray value disparity
d and σ to be calculated is obtained experimentally.
Figure 7 illustrates the above processing flow, where the blue

curve is the original histogram, the red curve is the curve after
median filtering, the green curve is the fitted Gaussian distribution
probability density function, and the black line segment is the
wave peak midpoint.
Figure 8 shows the CBCT image slices after the application of the

above preprocessing method, in relation to the selected d and σ.

Network structure
For the two stages of skeletal segmentation and neural tube
segmentation, we selected the 3D-UNet network39,46 as
the network backbone. The Swin-UNETR network was selected
for the tooth instance segmentation stage to achieve this task.
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Due to the limitations of the size of the convolutional kernel and
the number of filter channels in CNNs, the receptive field is
limited, making it difficult to capture and store long-range
dependency information.25 In order to capture long-range
dependencies, it is usually only possible to increase the size of
the convolutional kernel or the number of channels, which can
lead to gradient vanishing or dimensional disasters. In terms of the
problem to be solved in this paper, the above problems will make

it difficult to obtain the relationship between two teeth that are far
away when performing tooth instance segmentation, which leads
to low segmentation accuracy. The existing CNN-based tooth
instance segmentation methods require other feature information
as input, such as pre-obtained tooth centroids, tooth positions
obtained using oral scan models, etc.
The transformer structure in the NLP domain is inherently

capable of capturing long-range dependency information, thus
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achieving significant success in the field of computer vision in
recent years.8,17,22,47–49 In the field of tooth instance segmenta-
tion, the localization of teeth according to the FDI Two-Digit
Notation and the identification of missing teeth depend mainly on
their adjacent teeth and the overall dentition information, which
makes it necessary that the applied deep learning network also
has the ability to model between pixels at long distances and
requires the network to be able to learn local features of the
image at the same time due to the close grayscale values and
blurred boundaries of the teeth and jaws in the root portion of the
tooth. Therefore, we chose the Swin-UNETR25 network, which has
demonstrated excellent performance in semantic segmentation of
brain tumors, as the segmentation network. This method can

simultaneously model the relationships between long-distance
pixels and extract local information, which is crucial for predicting
tooth position.
The Swin-UNETR model consists of the following components:
Swin-Transformer: as a feature extractor, used to extract

meaningful feature representations from the input image. It is
based on the Swin-Transformer architecture50 and uses non-
overlapping sliding windows at multiple levels for feature
extraction through a self-attentive mechanism and a fully
connected network. This feature extraction method takes full
account of the global contextual information and local detail
information of the image, which helps to improve the semantic
segmentation performance.

Origin
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d = 0 × � d = 1 × �

Fig. 8 Images when different preprocessing parameters are selected separately
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Encoder part: it includes several UNetR base modules51 for
gradually decreasing feature dimensionality. The encoder extracts
a more abstract and semantically rich feature representation from
the output features of the Swin-Transformer through multiple
layers of convolution and normalization operations. Each encoder
block contains convolution operations and residual concatenation,
which help to preserve important feature information and
mitigate the gradient disappearance problem.
Decoder part: includes multiple UNetR upsampling blocks for

gradually restoring the feature dimension to its original size. The
decoder recovers the lost detail information by fusing the encoder
features with higher resolution features through upsampling
operations and jump connections. This improves the accuracy and
precision of the segmentation results.
Output layer: used to generate the final segmentation

prediction results. The output layer maps the decoder features
to the probability distribution of the target class through a
series of convolution and normalization operations. The final
output results can be used for semantic segmentation at the
pixel level.
The network structure of the Swin-UNETR model takes full

advantage of the Swin-Transformer to enable fine-grained
segmentation tasks with the encoder–decoder design of the
UNet structure while maintaining the global perception cap-
ability. In this task, the selected hyperparameters are shown in
Table 7.

Loss function
We weighted the results of the CE loss and Dice loss26 calculations
together as the loss function at training.

Loss ¼ wCELossCE þ wDiceLossDice (3)

where wCE and wDice are the weights of CE loss and Dice loss,

respectively, which are both set to 1 in this experiment.

LossCE ¼ � 1
C

XC

j¼1

XN

i¼1

wjGi;j log Pi;j
� �

(4)

LossDice ¼ 1� 2
C

XC

j¼1

PN
i¼1Pi;jGi;jPN

i¼1P
2
i;j þ

PN
i¼1G

2
i;j

(5)

where C is the number of categories; N is the total number of
voxels; wj is the weight of category j; Pi,j is the probability that the
i-th voxel belongs to category j as output from the model; Gi,j is
the probability that the i-th voxel belongs to category j after
encoding the ground truth with one-hot code.

Dataset
In this study, we collected a total of 451 CBCT data with entire
dental arch from 10 different medical institutions and publicly
available datasets, including 11 CBCT manufacturers and 13
imaging modalities, to evaluate the accuracy of the proposed
method, excluding CBCT blurring caused by patient motion or
insufficient imaging parameters during the imaging process. The
detailed imaging protocols (i.e., image resolution, manufacturer,
manufacturer’s model name, and radiation dose information for
tube current and tube voltage) and patient age–sex distribution of
the data are shown in Table 8. At the same time, we also collected
a total of 55 CBCT data from the 10 medical institutions
mentioned above, including 11 CBCT manufacturers, to verify
the generalizability of the proposed method.
CBCT images were labeled under the guidance of professional

dentists to obtain the gold standard. The dataset was randomly
divided into three categories: training set, validation set, and test
set, while all personal information of patients is removed.

Table 7. Network hyperparameters selection

Embed dimension Feature size Number of blocks Window size Number of heads Parameters FLOPS

768 48 [2,2,2,2] [7,7,7] [3,6,12,24] 62.19M 394.84G

Table 8. Description and characteristics of the CBCT datasets from different medical institutions (only voxel size is available in the public dataset)

Manufacturer Manufacturer’s model name Sex (Female/
Male)

Tube
voltage/kVp

Tube
current/mA

Spacing/
mm

Average age/
years

CBCT number
(cases)

Carestream Health CS 9300, CS 9301 90 10 0.18 40.1 15

Imaging Sciences
International

9–17 10F/4M 120 5 0.2 44.1 14

J.Morita.Mfg.Corp. 2F/2M 89 7 0.25 25.3 4

LargeV HighRes3D, SMART3D 60F/52M 100 4 0.25 44.5 112

NewTom NTVGiMK4, NTVGiEVO, NT5G 22F/13M 110 1, 2, 3, 4, 5,
7, 9, 10

0.3, 0.25 42.1 35

NNT NTVGiEVO 7M 110 3, 7, 8, 9, 10,
11, 14

0.3 31.2 7

PaloDEx Group Oy ORTHOPANTOMOGRAPH OP 3D 5M 95 3, 8 0.25 44.2 7

RAY Co., Ltd. RAYSCAN N Alpha Plus 1F/2M 90 10 1 3

Sirona ORTHOPHOS SL 85 10 0.22 46.7 10

Vatech Company Limited PHT-35LHS 1F/3M 94 8 0.2 47.8 4

YOFO Pirox-R 29F/23M 90 8 0.25 40.1 52

0.4 91

0.4 97
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The physical resolution of the CBCT images we collected was
distributed from 0.18 to 1.0 mm. Considering the clinical applica-
tion and data processing efficiency, it was, therefore, necessary to
first resample the data according to the physical resolution of
0.4 mm. The resampled CBCT data were first preprocessed by the
preprocessing method proposed above, and the retained
grayscale values ranged from the grayscale values of the bones
obtained by preprocessing to 99.5% of the overall, and then
normalized to obtain a standard image with a mean of 0 and a
standard deviation of 1. During the training process, data of size
96 × 160 × 160 were randomly cropped from the 3D images as
training data. In order to improve the generalizability of the
model, we also apply random mirror flip and random add mask
methods to enhance the data, where random mirror flip is
performed along three axes and random add mask is a random
crop operation on the training data, where the size of 12 × 12 × 12
data is cropped and replaced by 0. The number of crops is in the
range of 0–16 and the location of the crops is random.

Evaluation metrics
We chose to use Dice similarity coefficient (DSC), mIoU, HD, and
ASD to accurately evaluate the segmentation results.
DCS is used to measure the similarity between two sets, and the

value range of DSC is between 0 and 1, where 1 indicates
complete overlap between sets A and B, and 0 indicates no
overlap. In image segmentation tasks, A and B typically represent
predicted segmentation results and actual segmentation annota-
tions, respectively.
IoU is the ratio of intersection divided by union, and mIoU is the

average of all categories of IoU, which is used to measure the
segmentation performance of the model on each category.
The higher the value, the better the segmentation performance
of the model on different categories.
HD is used to measure the maximum difference between two

sets, that is, the maximum value of the shortest distance from a
point in one set to another set, reflecting the worst situation
between the two sets, that is, the maximum distance between the
model segmentation result and the actual annotation. The smaller
the value of HD, the closer the two are.
ASD is the average surface distance between two sets, which is

the average of the shortest distance from each point in one set to
another set. It is used to evaluate the average error of the
segmentation boundary, which is the average distance between
the model segmentation result and the actual annotation. A
smaller ASD indicates a closer segmentation boundary between
the two.

Implementation details
We chose the training framework PyTorch 2.0.0 with AdamW as
the optimizer, a fixed learning rate of 5e-4 and a weight decay
factor of 1e-5. The network was trained on two Nvidia GeForce
RTX 3090Ti GPUs in a Linux environment with the batch size of 2
and 300 epochs.
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