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BACKGROUND: When experimentally determined dislodgeable foliar residue (DFR) values are not available, regulatory agencies use
conservative default DFR values as a first-tier approach to assess post-application dermal exposures to plant protection products (PPPs).
These default values are based on a limited set of field studies, are very conservative, and potentially overestimate exposures from DFRs.
OBJECTIVE: Use Random Forest to develop classification and regression-type ensemble models to predict DFR values after last
application (DFR0) by considering experimentally-based variability due to differences in physical and chemical properties of PPPs,
agronomic practices, crop type, and climatic conditions.
METHODS: Random Forest algorithmwas used to develop in-silico ensemble DFR0 prediction models using more than 100 DFR studies
from Corteva AgriscienceTM. Several variables related to the active ingredient (a.i.) that was applied, crop, and climate conditions at the
time of last application were considered as model parameters.
RESULTS: The proposed ensemble models demonstrated 98% prediction accuracy that if a DFR0 is predicted to be less than the
European Food Safety Authority (EFSA) default DFR0 value of 3 µg/cm2/kg a.i./ha, it is highly indicative that the measured DFR value will
be less than the default if the study is conducted. If a value is predicted to be larger than or equal to the EFSA default, the model has an
83% prediction accuracy.
IMPACT STATEMENT: This manuscript is expected to have significant impact globally as it provides:

● A framework for incorporating in silico DFR data into worker exposure assessment,
● A roadmap for a tiered approach for conducting re-entry exposure assessment, and
● A proof of concept for using existing DFR data to provide a read-across framework that can easily be harmonized across all

regulatory agencies to provide more robust assessments for PPP exposures.

Keywords: Dislodgeable Foliar Residues (DFR) Prediction; Post-application Exposure; Dermal Exposure; Worker Exposure; In-silico
Model; Random Forest
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BACKGROUND
Post-application exposure to workers – individuals who enter an
area previously treated, or handle crops that have been treated, by
a plant protection product (PPP) as part of their employment – is
expected to occur mainly via the dermal route and predominantly
from contact with dried residues as they perform supported tasks
[1, 2]. Worker re-entry activities depend on the crop and growth
stage, and include hand harvesting, crop inspection, pruning,
cutting, sorting, bundling, and other supported activities [3]. Other
sub-populations like residents and bystanders could also be
exposed if they enter a treated area, but since this exposure is not
from work-related tasks, it is considered incidental. Re-entry/post-
application external dermal exposure can be generically expressed
mathematically as:

Dermal Exposure ¼ ffAR;DFR; TC; Tg

The application rate (AR) provides the amount of active ingredient
(a.i.) applied per unit area. Transfer coefficients (TC) and activity
duration (T) depend on the specific task and are usually provided
as defaults by regulatory agencies. Even though these parameters
can also be refined, the focus here is on refining the DFR
component only. The dislodgeable foliar residue (DFR) is a
measurement of how much dried active ingredient residue (µg
of a.i./cm2 of leaf surface) can potentially be dislodged from the
leaf surface to the skin or clothing if an individual enters a field
that has been treated with a PPP. The DFR value is usually
normalized for application rate when used in exposure calcula-
tions, for example, µg of a.i./cm2 of leaf surface/kg of a.i. applied/
hectare (µg/cm2/kg a.i./ha).
When experimentally determined DFR values are not available,

regulatory agencies use conservative default DFR values as a first-
tier approach to assess post-application dermal exposures to PPPs.
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In the EU, the European Food Safety Authority (EFSA) uses a
default value of 3 µg/cm2/kg a.i./ha to estimate DFR on Day 0
(DFR0) after the application, derived from a database with
55 studies [1, 4]. Based on an analysis of 19 DFR studies, the
United States Environmental Protection Agency (US EPA) and
Health Canada’s Pest Management Regulatory Agency (PMRA)
recommend a default DFR0 value of 2.5 µg/cm2/kg a.i./ha,
estimated based on 25% of the application rate [2, 5]. Additionally,
when re-entry exposure is calculated based on the default DFR
value, the US EPA requires a calculated margin of exposure (MOE)
of 2X higher than the level of concern (LOC) to waive the DFR
study [6]. These default values are based on significantly fewer
DFR studies than what the agencies and registrants currently have
access to, are very conservative, and potentially overestimate
exposures from dislodgeable foliar residues [7].
For tier 1 risk assessments of post-application dermal exposures

which are above the acceptable levels, a DFR study for the active
ingredient on a specific crop or crop group is one of the studies
that can be conducted to provide a higher-tier refined exposure
assessment. Since foliar residues are generally highest soon after
application, studies are conducted to determine DFR on Day 0
after application (DFR0) once spray has dried. The DFR0 value is
then used to refine post-application dermal exposure assessment
by providing a worst-case exposure scenario [8].
How much foliar residue is on the leaf surface, and thus

available for dislodging, depends not only on the active
ingredient’s chemical structure, physico-chemical factors, but also
on weather conditions. In turn, these factors impact chemical-
specific dissipation and transformation parameters like wash-off,
volatilization, hydrolysis, photolysis, and biodegradation [2]. In
addition to chemical-specific characteristics, dislodgeability of
foliar residues will also depend on crop-specific parameters which
affect how likely the chemical will interact with, and dissipate
from, the leaf surface such as crop 3-D architecture, crop growth
stage, leaf structure and texture [9]).
With the implementation of the new EFSA [1] guidance, DFR

studies are anticipated to get increasingly more complicated, with
existing studies potentially having less of a chance of fulfilling the
new criteria. European Union (EU) member states are not always
aligned on accepting bridging of DFR data, however, it is not
feasible to run a full-scale field study for each formulated product,
crop type, and geographical location as these types of studies can
take more than a year to plan, conduct, and report as they are
season dependent and costly. As such, the EFSA default DFR value
was used as the basis of the random forest classification model to
provide a robust option for the prediction of likely foliar residues
before conducting a field study as a higher tier refinement option
during registration of PPPs in the EU.
The random forest algorithm used to develop the classification

and regression-type ensemble models for predicting DFR0 values
takes into consideration experimentally-based variability that
accounts for physico-chemical properties of the PPP, as well as
crop and location-specific parameters, and thus these models can
be used as refinement options across all regulatory agencies. We
propose that these in-silico models can be used as decision-
making tools for when to conduct or waive DFR studies, and the
predicted values can be used as a second-tier refinement for
regulatory submissions. A similar approach for predicting dermal
absorption values using in-silico modeling in a tiered-approach
was recently proposed using a regression-type random forest
model [10].
The structure of this paper is as follows: Section “Data and

Methods” describes the DFR study database, and the methods
chosen to predict DFR0 values. The typical issue of imbalance is
highlighted and tackled by an over-sampling technique. Section
“Results and Discussions” compares random forest ensemble
classification and regression-type models built on the original
imbalanced dataset to those where the dataset was balanced by

an over-sampling technique. Several performance metrics, includ-
ing a confusion matrix, are employed to choose the best
performing models. Important variables which have significant
influences on DFR0 are later identified. Regulatory implications on
risk assessment of PPPs are discussed in Section “Implications for
regulatory risk assessment”.

DATA AND METHODS
The R software (version 4.2.2) was used for data cleaning and
statistical analyses. The rfImpute and randomForest functions from
randomForest package were used to impute the missing data and
build the models, while the smote function from performanceEs-
timation package was used to generate synthetic samples.

DFR database
The dataset used for this project consisted of data from 104 DFR
studies on 28 active ingredients with registrations held by Corteva
AgriscienceTM. All studies were conducted according to US EPA’s
Occupational and Residential Exposure Test Guideline OPPTS
875.2100 [11]. The products containing the a.i. were applied under
representative conditions following Good Agricultural Practices
(GAPs). Studies recorded DFR values at different times before and
after application. Analyses of the dataset indicated that in cases
where multiple applications were recommended, the magnitude
of DFR values on day 0 after the first application were similar to
DFR on day 0 (DFR0) after last application once spray had dried
(Fig. 1). The correlation value R2 is 0.747, showing a relatively
strong correlation between the first and last application. For
DFR0 ≥ 3 µg/cm2/kg a.i./ha, DFR0 values after the last application
were slightly greater than after the first application. Therefore, as a
conservative approach, DFR0 values after the last application,
without any correction for residues carried over from previous
applications, were used for model building and analysis presented
here.
Each of the 104 studies had 2–4 trial sites each, and about 3

replicates per site, for a total of 850 DFR0 data entries: 735 of them
were from open field studies and 115 were from greenhouse
studies. Ten of the trial sites did not have records for specific
replicates but had records for average DFR value for that trial site,
therefore the corresponding average value was imputed for each
missing trial replicate value. Eight entries did not have records of
either replicates or average values for DFR0 after last application,
and there were no experimental notes explaining the missing
values. Since all 8 missing entries had DFR0 values from the first
application recorded, these were used in modeling since they
were good estimates based on the similarity and strong
correlations between the first and last applications as shown in
Fig. 1. The 28 active ingredients were categorized into 11
formulation types, with the formulated products applied to 31

Fig. 1 DFR values (µg/cm2/kg a.i./ha) at Day 0 after first
application (crosses) and last application (circles) after residues
have dried. The x-axis is an index of all the trials with multiple
applications and had DFR values for both first and last applications.
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crops at 32 different trial locations across the United States (US),
Canada, and Europe. Weather conditions for each observation day
were available for all field studies, and the mean relative humidity
and temperature on the day of last application was used in model
building.
The univariate analyses demonstrated that the mean DFR0 on

each crop varied from 0.114 to 4.968 µg/cm2/kg a.i./ha. The mean
DFR0 at each location showed some variation across the different
geographies where the studies were conducted, an indication of
the influence of site-specific parameters on the magnitude
of DFR0.
Based on an initial hypothesis that DFR0 is related to the active

ingredient used, the crop/crop group, and location-specific
variables, 14 parameters (Table 1) were considered in model
building. These 14 parameters can be divided into three general
categories related to the applied PPP, crop on which the PPP was
applied, and site-specific properties.

Imbalanced classification
The EFSA Guidance assumes a default DFR0 value of 3 µg/cm2/kg
a.i./ha in instances where experimentally determined DFR values
are not available [1]. In the random forest classification model
discussed below, the response variable (DFR0) was classified into
two classes based on the EFSA default DFR0 value:

● DFR0 < 3 µg/cm2/kg a.i./ha is considered as negative (DFR0
Class= 0), and

● DFR0 ≥ 3 µg/cm2/kg a.i./ha is considered positive (DFR0
Class= 1).

The histogram of DFR0 after last application shown in Fig. 2
indicates that the response is skewed with the imbalance ratio
around 11:1, i.e., for every positive DFR0, there are 11 negative
DFR0 values. It is expected to be skewed to the right since DFR
follows a log normal distribution [12] with the EFSA default DFR0
value ranking in the 92nd percentile of the dataset considered

here, consistent with the EUROPOEM II data distribution [4] and
reflecting the conservatism of the current regulatory approach.
The US EPA value ranks in the 87th percentile of our dataset, also
highlighting the conservatism in the US approach.
Most of the algorithms used for classification assume balance.

Imbalance in the data lowers the prediction accuracy, especially
for the minority class due to a lower sample size. Typically, the
minority class is also of interest and requires a robust prediction
accuracy. For the current dataset with the ratio of 11:1, the
imbalance was remedied before modeling using the synthetic
minority over-sampling technique (SMOTE).
SMOTE is one approach generally used to handle imbalanced

classification problems by over-sampling the minority class “to
create ‘synthetic’ examples based on the nearest k minority class
neighbors instead of random sampling with replacement” [13].
The attractive feature of SMOTE is that the synthetic examples
balance the original dataset, allowing the classifier to create larger
and less specific decision regions which in turn can make the
decision trees more generalizable and increase prediction
accuracy of the minority class. For our analysis, SMOTE was used
to generate a more balanced dataset for learning the predictor
versus response relationship which was then compared with the
model built on the original imbalanced dataset. There was a
similar pattern of distribution in the original and SMOTE training
set, with active ingredients which possessed low or high DFR0
values in the original set being reflected in the SMOTE set.

Random forest imputation and model
Random forest is an ensemble learning method for both
regression and classification that operates by constructing a
multitude of decision trees at training time [14].

Imputation. In this study, random forest was used to impute any
missingness based on similarity between each observation, rather
than using any parametric model. There were 10 missing relative
humidity values which were not recorded during the study and

Table 1. Summary of study parameters in DFR database.

Category Parameters N Description

DFR0 850 DFR values at Day 0 after last application;
780 DFR0 < 3 µg/cm2/kg a.i./ha, 70 DFR0 ≥ 3 µg/cm2/kg a.i./ha.

PPP Active ingredient 28 Active ingredients monitored in the studies.

Indication 3 Insecticide, Fungicide, Herbicide.

Formulation Type 11 Aerosol, Emulsifiable Concentrate (EC), Emulsion in water (EW), Granular (GR), Microemulsion
(ME), Suspension Concentrate (SC) Oil-based suspension concentrate (OD), Soluble Concentrate
(SL), Water-soluble powder (SP), Water-dispensable granules (WDG), Wettable powder (WP)

Formulation Category 3 Dry solid, Water-based, Organic solvent-based;
Categories based on EFSA Dermal Absorption Guidance [22]

Application Equipment 6 Aerosol, Air blast, Backpack, Granular Spreader,
Ground boom, Handheld.

Crop Crop type 31 Different crop/crop types the product was applied on.

Crop Group 18 Classification based on similarities in agronomic practices. [1, 2]

Leaf Texture 3 Hairy, Smooth, Waxy
Based on Agricultural Re-entry Task Force (ARTF) classification [23]

Crop Height 2 High, Low; classification was based on a threshold of 0.6 meter at time of application [1].

Site Location 32 Geographical location where the study was conducted;
20 states in the US, 1 province in Canada, 8 countries in Europe.

Location Index 13 Classifications in the US/Canada are based on EPA region index [2];
European countries are grouped into North EU and South EU residue zones based on EU SANTE/
2019/12752;

Field/Greenhouse 2 735 Field DFR0 values, 115 Greenhouse DFR0 values

Relative Humidity 840 mean Relative humidity (%) at the last application day;
10 observations had missing humidity values.

Temperature 850 mean Temperature (F) at the last application day
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could not be determined from any official local weather logs for
some of the greenhouse studies. After reviewing the study reports
the missing values were predicted using other location variables
since the missingness for these values was assumed to be missing
at random (MAR) because the missing humidity values were
related to other observations in the data [15].

Model. The complete dataset was randomly sampled into training
and test sets stratified by the classes of DFR0. The training set
contained 546 negative cases (DFR0 < 3 µg/cm2/kg a.i./ha) and 49
positive cases (DFR0 ≥ 3 µg/cm2/kg a.i./ha), accounting for 70% of
the original dataset. The testing set had 234 negative cases and 21
positive cases, accounting for 30% of the original data. Both training
set and testing set preserved the original imbalance ratio of classes
(i.e., 11:1). A second training set was generated with a more
balanced ratio of around 1.7:1 by using SMOTE on the original
training set. A parameter of k= 5 was chosen to synthesize new
examples based on the closest 5 neighbors. The new SMOTE
training set had 588 negative cases and 343 positive cases.
Two methods were considered in developing the random forest

classification and regression models; one based on the original
imbalanced training set (Method A), and the other based on the
SMOTE training set (Method B). The random forest model
hyperparameters for each method were optimized by utilizing 10-
fold and 30 repeated cross validation methods. All training samples
were used to fit the random forest model and applied to the test set
data based on the selected optimal hyperparameters. This whole

process was repeated 200 times by randomly splitting the dataset
into training (70%) and testing (30%) sets so that the training and
testing samples represented different data structures, i.e., each of
the 200 repetitions is essentially a different model as it contains a
different set of training and testing datasets (Fig. 3A).
These 200 random forest models were used to build a final

ensemble model based on majority voting for classification model,
and average prediction for the regression model as detailed in
Section “Results and Discussions”.

RESULTS AND DISCUSSIONS
Classification models
The algorithm discussed above, and outlined in the schematic
represented by panel A in Fig. 3, was followed to build a random
forest classifier on both imbalanced (Method A) and SMOTE
(Method B) training sets, and the two methods were compared on
the same testing set (Fig. 3B). Multidimensional scaling (MDS) is a
common approach for graphically representing relationships
between observations in multidimensional space [16]. Panel B in
Fig. 3 shows the two-dimensional MDS plots for the two methods,
demonstrating that observations clustered within their own
groups better in Method B. In Method A, positive observations
blended into the negative observations indicating it is not as good
as Method B in distinguishing positives from negatives.
As shown in the schematic of the workflow in Fig. 3A, an

ensemble model based on the majority class classification using

Fig. 2 Histogram of DFR (µg/cm2/kg a.i./ha) at Day 0 of last application. The x-axis represents the DFR value (µg/cm2/kg a.i./ha), while the
y-axis represents the frequency of that observed DFR0 in the database.

Fig. 3 Random Forest Workflow for DFR prediction model development. Panel A is a schematic of the process followed for data processing
and the machine learning workflow for development of methods A & B while Panel B is the multidimensional scaling (MDS) plots for the
classification models based on the two methods. The axes for the MDS plot represent the first and second principal coordinates where these
two principal coordinates explain 69.1% and 7.4% of the total variations of the factors.
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200 random forest models fitted on randomly selected training
and testing sets was deployed to validate the predictive
capabilities of methods A and B. Table 2 lists performance metrics
for the two methods on the testing set as well as the ensemble
model performance.
The ensemble model used test datasets from each of the 200

repeated partitions, with performance statistics showing signifi-
cant improvement for the SMOTE-transformed dataset (Method B)
compared to the original imbalanced dataset (Method A) except
for specificity. Specificity and sensitivity are two frequently used
metrics for model reliability. Specificity measures a classifier’s
ability to identify a negative from true negatives (i.e., the model’s
ability to identify as negative given that DFR0 is truly less than
3 µg/cm2/kg a.i./ha), while sensitivity refers to a classifier’s
probability of correct “diagnosis” of positives (i.e., ability to
identify a positive given that DFR0 is truly greater or equal to
3 µg/cm2/kg a.i./ha) [17].
The area under the curve (AUC) increased by 2% for SMOTE

dataset compared to the original imbalanced dataset, indicating
that Method B has a slightly favorable measure of separability. In
the situation of an imbalanced dataset, balanced accuracy
accounts for both positive and negative observations and reflects
an average accuracy obtained from both the minority and
majority classes. Specificity for Method B was slightly lower (2%)
than for Method A, while sensitivity increased by 20% from
Method A to Method B. In the case where both higher sensitivity
and specificity cannot be achieved, higher sensitivity was
prioritized, i.e., in exposure assessments it is less desirable to
classify DFR values as less than 3 µg µg/cm2/kg a.i./ha when they
are not (false negative), than getting a false-positive (classify as
greater or equal to 3 µg/cm2/kg a.i./ha when measured value is
actually lower than 3). After considering these performance
metrics, the classifier built on SMOTE training set/Method B was
preferred for building the regression model.

Significant parameters
Gini impurity, a measurement of the diversity of a dataset, is one
of the most popular algorithms for selecting the best split in
decision trees and is often used to determine the importance of
variables in model building [18]. In our case, Gini impurity is the
probability of randomly choosing a pair of differently classified
DFR0 values from the random forest classifier. The lower the Gini
impurity is, the purer our dataset is after classification, and the
better our classifier is. The measurement of variable importance
used is the mean decrease of Gini impurity when a variable is
chosen to split a node; the larger the decrease in Gini impurity, the
better the model splits, thus the more important the variable is for
predicting DFR0.
Method B (SMOTE) was used to identify the most important

parameters from those listed in Table 1, based on their
corresponding mean Gini decrease. The parameters that had the

most impact on the predicted DFR0 values, in order of importance
(mean Gini decrease provided in parentheses), were identified as:
active ingredient (127), crop type (52), and location (51). Active
ingredient was not only the most important variable, but also had
a much larger mean decrease of Gini impurity compared with
other variables, suggesting that the various physico-chemical
properties associated with each active ingredient in the applied
PPP influences DFR0 the most. It is also not surprising that crop-
specific properties such as crop architecture, leaf type and texture,
play an important role in how much of the active ingredient can
be deposited and stick to the leaf surface. The geographical
location’s impact on the magnitude of DFR0 values is tied to site-
specific climate and weather conditions that influence mechan-
isms that affect stability, transformation, and dissipation of
residues such as photolysis, volatilization, hydrolysis, and biode-
gradation. Other variables investigated had much lower and
similar mean Gini decreases and the magnitude of their individual
impacts could not be fully characterized based on our database.

Regression model
Besides solving classification problems, random forest is also often
used to solve regression problems to predict a numeric value, as
shown by the successful efforts made to use random forest
regression model to determine the leaf nitrogen content of oil
palm [19] and chlorophyll levels in wheat [20] and tomato leaves
[21]. Since DFR0 is a continuous variable, random forest can
similarly be used to conduct a regression model to predict the
magnitude of DFR0. The same algorithm used to build the
classifier regression model was followed in building the random
forest regression model using the SMOTE-generated dataset. The
hyperparameters for the random forest regression model were
optimized based on 10-fold 30 repeated cross validation steps.
Mean squared error, mean absolute error and coefficient of
determination, R2, were considered for the model performance.
Additionally, the predicted value of the DFR0 was categorized into
two classes based on the EFSA default DFR0 value (predicted
DFR0 < 3 and predicted DFR0 ≥ 3) and then compared with the
DFR0 class variable that was used for the classification model. A
summary of performance metrics for the ensemble regression
models based on the average prediction from the 200 random
forest regression model are shown in Table 3.
Table 3 shows that in this ensemble regression model the

variation explained by the model (R2) is 82.44% for the SMOTE-
transformed dataset (Method B), while Fig. 4 shows that the
predicted DFR0 values from the preferred SMOTE-based ensemble
regression model have a good alignment with the measured
values. Most of the predictions cluster along the diagonal line in
the 1st (true negatives) and 3rd (true positives) quadrants,
indicating a high prediction accuracy of the regression model.
From the 1st and 4th quadrants, if the regression model predicts
that a DFR0 is less than the EFSA default value, there is about 98%

Table 2. Summary of performance metrics for the ensemble model classifiers based on test sets calculated from 200 partitions.

Imbalanced (Method A) SMOTE (Method B)

Observed
Negative

Observed
Positive

Observed
Negative

Observed
Positive

Confusion matrix Predicted
Negative

769
(90.47%)

27
(3.18%)

754
(88.71%)

12
(1.41%)

Predicted
Positive

11
(1.29%)

43
(5.06%)

26
(3.06%)

58
(6.82%)

AUC 0.911 0.930

Balanced accuracy 0.800 0.898

Specificity 0.986 0.968

Sensitivity 0.614 0.829
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predictive accuracy (NPV) that the measured DFR0 will be less
than 3 µg/cm2/kg a.i./ha. Unfortunately, our database does not
have as many studies with DFR0 greater than 3 µg/cm2/kg a.i./ha;
which might be good from a product safety perspective, but it is
not optimal for model building as it results in a lower prediction
accuracy for DFR0 values higher than the EFSA default. From the
2nd and 3rd quadrants, if a value is predicted to be larger than or
equal to the EFSA default, the model has about 83% prediction
accuracy (PPV) that the measured DFR0 will be greater than
3 µg/cm2/kg a.i./ha. Based on our original dataset, the likelihood of
getting a value above the EFSA default is low, and it is DFR0 values
less than the default value which are more relevant to refining risk
assessments and that is where the strength of the predictive tool
lies.

IMPLICATIONS FOR REGULATORY RISK ASSESSMENT
When these conservative default DFR values are used in
conjunction with other higher percentile default parameters, the
predicted re-entry exposures become truly over-conservative [7].

There are currently no available in silico models for DFR
prediction, or a consistent regulatory framework, that provides
an alternative approach to refine these default DFR values, besides
conducting a full-scale DFR study. Using the vast amount of data
that registrants and regulatory agencies have access to, the
models presented here can be made more robust and further
trained to provide the basis for more appropriate DFR0 values that
could be used in regulatory submissions. New data can be
generated specifically for scenarios with small sample sizes to
increase the robustness of the model and minimize the imbalance
in the dataset.
Statistical analysis from the proposed models indicated overall

high alignment between predicted and measured DFR0 values
suggesting that in-silico models such as the ones discussed here
can be used in a tiered re-entry exposure assessment as shown in
Fig. 5. What is considered Tier 1 is based on default parameters
that each regulatory agency uses in the absence of experimentally
determined DFR data. In the tiered approach proposed below, use
of in-silico modeling can be used in a Tier 2 assessment to provide
a basis for scientific justification of using read-across from

Fig. 4 Plot based on the random forest regression model built on SMOTE training set and shows the correlation between predicted and
measured DFR0 values (µg/cm2/kg a.i./ha). The lower left (1st) quadrant contains true negatives; lower right (2nd) quadrant contains false
negatives. The upper right (3rd) quadrant contains true positives, while upper left (4th) quadrant contains false positives.

Table 3. Performance metrics table for the ensemble regression model based on the average performance metrics from 200 repeated-sample
random forest regression models.

SMOTE (Method B)

Mean squared error 0.2695

Mean absolute error 0.3201

R2 0.8244

Observed negative Observed positive

Confusion matrix Predicted negative 769 (90.47%) 17 (2.00%)

Predicted positive 11 (1.29%) 53 (6.24%)

Specificity 0.986

Sensitivity 0.757

Negative predictive value (NPV) 0.978

Positive predictive value (PPV) 0.828
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previous studies, applying for DFR study waivers, and/or to predict
DFR0 values that can be used in the risk assessment. If a safe use
cannot be shown after all the relevant parameters are considered,
then conducting the relevant DFR study should be considered to
adequately characterize the re-entry exposure to that PPP.
Inclusion of a Tier 2 in-silico model approach allows for the use

of predicted DFR0 values that better capture the larger range of
PPPs, different agronomic practices, different crops/crop group-
ings, and variability in climatic conditions than what is currently
provided by a single default value for all use scenarios and all
PPPs. The proposed in-silico models not only provide estimates of
DFR0, but also provide a data driven approach to refine regulatory
defaults. As such, regulators and registrants can use these models
to provide more realistic exposure estimates than those provided
by current DFR0 default values.

DATA AVAILABILITY
The datasets analyzed for model development are proprietary studies but are
available publicly in instances where they have already been submitted to regulatory
agencies for product registration. In such instances, data summaries and regulatory
interpretation are publicly available as part of the registration reports published by
regulatory agencies or can be made available from the corresponding author on
reasonable request.
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