Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The interplay of renal potassium and sodium handling in blood pressure regulation: critical role of the WNK-SPAK-NCC pathway

Abstract

Renal salt handling has a profound effect on body fluid and blood pressure (BP) maintenance as exemplified by the use of diuretic medications to treat states of volume expansion or hypertension. It has recently been proposed that a low potassium (K+) intake turns on a “renal K+ switch” which increases sodium (Na+) and chloride (Cl) reabsorption, causing salt-retention, and in susceptible individuals, this causes hypertension. A signaling network, involving with-no-lysine (WNK) kinases, underpins the switch activity to coordinate aldosterone’s two essential actions (K+ secretion and Na+ retention). A dysfunctional WNK kinase network drives excessive and inappropriate Na+, Cl and urinary K+ retention in familial hyperkalemic hypertension (FHHt, also known as Gordon’s syndrome). Mutations in genes encoding WNK1 and WNK4 or components of an ubiquitin ligase complex, cullin3, and kelch-like family member 3 (KLHL3), cause FHHt by upregulating the thiazide-sensitive sodium chloride cotransporter (NCC). Inhibition of NCC with thiazide diuretics corrects hypertension and hyperkalaemia in FHHt. These observations highlight the critical role of the NCC in the regulation of Na+ and K+ balance and of BP. Here we discuss the physiology of Na+ and K+ handling in the distal renal tubule with respect to BP regulation, with a focus on recent discoveries in the WNK- Ste20-related proline-alanine-rich kinase (SPAK)-NCC pathway.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Lawes CM, Vander Hoorn S, Rodgers A.International Society of Hypertension. Global burden of blood-pressure-related disease, 2001. Lancet. 2008;371:1513–8.

    Article  PubMed  Google Scholar 

  2. Thomopoulos C, Parati G, Zanchetti A. Effects of blood pressure-lowering treatment on cardiovascular outcomes and mortality: 14 effects of different classes of antihypertensive drugs in older and younger patients: overview and meta-analysis. J Hypertens. 2018;36:1637–47.

    Article  CAS  PubMed  Google Scholar 

  3. Mancilha-Carvalho Jde J, Souza e Silva NA. The Yanomami Indians in the INTERSALT Study. Arq Bras Cardiol. 2003;80:289–300.

    PubMed  Google Scholar 

  4. Dahl LK. Possible role of salt intake in the development of essential hypertension. 1960. Int J Epidemiol. 2005;34:967–72. discussion 72-4, 75-8

    Article  CAS  PubMed  Google Scholar 

  5. Buendia JR, Bradlee ML, Daniels SR, Singer MR, Moore LL. Longitudinal effects of dietary sodium and potassium on blood pressure in adolescent girls. Jama Pediatr. 2015;169:560–8.

    Article  PubMed  Google Scholar 

  6. Kupper N, Willemsen G, Riese H, Posthuma D, Boomsma DI, de Geus EJ. Heritability of daytime ambulatory blood pressure in an extended twin design. Hypertension. 2005;45:80–5.

    Article  CAS  PubMed  Google Scholar 

  7. Lifton RP, Gharavi AG, Geller DS. Molecular mechanisms of human hypertension. Cell . 2001;104:545–56.

    Article  CAS  PubMed  Google Scholar 

  8. Arcand J, Wong MMY, Santos JA, Leung AA, Trieu K, Thout SR, et al. More evidence that salt increases blood pressure and risk of kidney disease from the Science of Salt: A regularly updated systematic review of salt and health outcomes (April-July 2016). J Clin Hypertens. 2017;19:813–23.

    Article  Google Scholar 

  9. Aburto NJ, Hanson S, Gutierrez H, Hooper L, Elliott P, Cappuccio FP. Effect of increased potassium intake on cardiovascular risk factors and disease: systematic review and meta-analyses. BMJ. 2013;346:f1378.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Mente A, O'Donnell M, Rangarajan S, McQueen M, Dagenais G, Wielgosz A, et al. Urinary sodium excretion, blood pressure, cardiovascular disease, and mortality: a community-level prospective epidemiological cohort study. Lancet. 2018;392:496–506.

    Article  PubMed  Google Scholar 

  11. Messerli FH, Hofstetter L, Bangalore S. Salt and heart disease: a second round of "bad science"? Lancet. 2018;392:456–8.

    Article  PubMed  Google Scholar 

  12. Rozansky DJ, Cornwall T, Subramanya AR, Rogers S, Yang YF, David LL, et al. Aldosterone mediates activation of the thiazide-sensitive Na-Cl cotransporter through an SGK1 and WNK4 signaling pathway. J Clin Invest. 2009;119:2601–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Vallon V, Schroth J, Lang F, Kuhl D, Uchida S. Expression and phosphorylation of the Na+-Cl- cotransporter NCC in vivo is regulated by dietary salt, potassium, and SGK1. Am J Physiol Renal Physiol. 2009;297:F704–F12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Loffing J, Zecevic M, Feraille E, Kaissling B, Asher C, Rossier BC, et al. Aldosterone induces rapid apical translocation of ENaC in early portion of renal collecting system: possible role of SGK. Am J Physiol Renal Physiol. 2001;280:F675–82.

    Article  CAS  PubMed  Google Scholar 

  15. Yang L, Frindt G, Lang F, Kuhl D, Vallon V, Palmer LG. SGK1-dependent ENaC processing and trafficking in mice with high dietary K intake and elevated aldosterone. Am J Physiol Renal Physiol. 2017;312:F65–F76.

    Article  CAS  PubMed  Google Scholar 

  16. Bachmann S, Bostanjoglo M, Schmitt R, Ellison DH. Sodium transport-related proteins in the mammalian distal nephron - distribution, ontogeny and functional aspects. Anat Embryol (Berl). 1999;200:447–68.

    Article  CAS  Google Scholar 

  17. Grossmann C, Scholz T, Rochel M, Bumke-Vogt C, Oelkers W, Pfeiffer AF, et al. Transactivation via the human glucocorticoid and mineralocorticoid receptor by therapeutically used steroids in CV-1 cells: a comparison of their glucocorticoid and mineralocorticoid properties. Eur J Endocrinol. 2004;151:397–406.

    Article  CAS  PubMed  Google Scholar 

  18. Funder JW, Pearce PT, Smith R, Smith AI. Mineralocorticoid action: target tissue-specificity is enzyme, not receptor, mediated. Science. 1988;242:583–5.

    Article  CAS  PubMed  Google Scholar 

  19. Odermatt A, Dick B, Arnold P, Zaehner T, Plueschke V, Deregibus MN, et al. A mutation in the cofactor-binding domain of 11beta-hydroxysteroid dehydrogenase type 2 associated with mineralocorticoid hypertension. J Clin Endocrinol Metab. 2001;86:1247–52.

    CAS  PubMed  Google Scholar 

  20. Ueda K, Nishimoto M, Hirohama D, Ayuzawa N, Kawarazaki W, Watanabe A, et al. Renal dysfunction induced by kidney-specific gene deletion of Hsd11b2 as a primary cause of salt-dependent hypertension. Hypertension. 2017;70:111–8.

    Article  CAS  PubMed  Google Scholar 

  21. Briet M, Schiffrin EL. Vascular actions of aldosterone. J Vasc Res. 2013;50:89–99.

    Article  CAS  PubMed  Google Scholar 

  22. Pruthi D, McCurley A, Aronovitz M, Galayda C, Karumanchi SA, Jaffe IZ. Aldosterone promotes vascular remodeling by direct effects on smooth muscle cell mineralocorticoid receptors. Arterioscler Thromb Vasc Biol. 2014;34:355–64.

    Article  CAS  PubMed  Google Scholar 

  23. Galmiche G, Pizard A, Gueret A, El Moghrabi S, Ouvrard-Pascaud A, Berger S, et al. Smooth muscle cell mineralocorticoid receptors are mandatory for aldosterone-salt to induce vascular stiffness. Hypertension. 2014;63:520–6.

    Article  CAS  PubMed  Google Scholar 

  24. Yan Y, Wang C, Lu Y, Gong H, Wu Z, Ma X, et al. Mineralocorticoid receptor antagonism protects the aorta from vascular smooth muscle cell proliferation and collagen deposition in a rat model of adrenal aldosterone-producing adenoma. J Physiol Biochem. 2018;74:17–24.

    Article  CAS  PubMed  Google Scholar 

  25. Dinh QN, Young MJ, Evans MA, Drummond GR, Sobey CG, Chrissobolis S. Aldosterone-induced oxidative stress and inflammation in the brain are mediated by the endothelial cell mineralocorticoid receptor. Brain Res. 2016;1637:146–53.

    Article  CAS  PubMed  Google Scholar 

  26. Munoz-Durango N, Vecchiola A, Gonzalez-Gomez LM, Simon F, Riedel CA, Fardella CE, et al. Modulation of Immunity and Inflammation by the mineralocorticoid receptor and aldosterone. Biomed Res Int. 2015;2015:652738.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Hill NR, Lasserson D, Thompson B, Perera-Salazar R, Wolstenholme J, Bower P, et al. Benefits of Aldosterone Receptor Antagonism in Chronic Kidney Disease (BARACK D) trial-a multi-centre, prospective, randomised, open, blinded end-point, 36-month study of 2,616 patients within primary care with stage 3b chronic kidney disease to compare the efficacy of spironolactone 25 mg once daily in addition to routine care on mortality and cardiovascular outcomes versus routine care alone: study protocol for a randomized controlled trial. Trials. 2014;15:160.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Blacher J, Amah G, Girerd X, Kheder A, Ben Mais H, London GM, et al. Association between increased plasma levels of aldosterone and decreased systemic arterial compliance in subjects with essential hypertension. Am J Hypertens. 1997;10:1326–34.

    Article  CAS  PubMed  Google Scholar 

  29. He FJ, Li JF, MacGregor GA. Effect of longer-term modest salt reduction on blood pressure. Cochrane Db Syst Rev 2013;346:f1325.

  30. Sacks FM, Svetkey LP, Vollmer WM, Appel LJ, Bray GA, Harsha D, et al. Effects on blood pressure of reduced dietary sodium and the dietary approaches to stop hypertension (DASH) diet. New Engl J Med. 2001;344:3–10.

    Article  CAS  PubMed  Google Scholar 

  31. Carey RM, Schoeffel CD, Gildea JJ, Jones JE, McGrath HE, Gordon LN, et al. Salt sensitivity of blood pressure is associated with polymorphisms in the sodium-bicarbonate cotransporter. Hypertension. 2012;60:1359.

    Article  CAS  PubMed  Google Scholar 

  32. Intersalt: an international study of electrolyte excretion and blood pressure. Results for 24 hour urinary sodium and potassium excretion. Intersalt Cooperative Research Group. BMJ. 1988;297:319–28.

    Article  Google Scholar 

  33. Krishna GG, Kapoor SC. Potassium depletion exacerbates essential hypertension. Ann Intern Med. 1991;115:77–83.

    Article  CAS  PubMed  Google Scholar 

  34. Coruzzi P, Brambilla L, Brambilla V, Gualerzi M, Rossi M, Parati G, et al. Potassium depletion and salt sensitivity in essential hypertension. J Clin Endocrinol Metab. 2001;86:2857–62.

    Article  CAS  PubMed  Google Scholar 

  35. Shoda W, Nomura N, Ando F, Mori Y, Mori T, Sohara E, et al. Calcineurin inhibitors block sodium-chloride cotransporter dephosphorylation in response to high potassium intake. Kidney Int. 2017;91:402–11.

    Article  CAS  PubMed  Google Scholar 

  36. Wolley MJ, Wu AH, Xu SX, Gordon RD, Fenton RA, Stowasser M. In primary aldosteronism, mineralocorticoids influence exosomal sodium-chloride cotransporter abundance. J Am Soc Nephrol. 2017;28:56–63.

    Article  CAS  PubMed  Google Scholar 

  37. Glover M, Clayton J. Thiazide‐induced hyponatraemia: epidemiology and clues to pathogenesis. Cardiovasc Ther. 2012;30:e219–e26.

    Article  CAS  PubMed  Google Scholar 

  38. Veiras LC, Han J, Ralph DL, McDonough AA. Potassium supplementation prevents sodium chloride cotransporter stimulation during Angiotensin II hypertension. Hypertension. 2016;68:904–12.

    Article  CAS  PubMed  Google Scholar 

  39. Gordon RD. Syndrome of hypertension and hyperkalemia with normal glomerular filtration rate. Hypertension. 1986;8:93–102.

    Article  CAS  PubMed  Google Scholar 

  40. Ellison DH, Terker AS. Why your mother was right: how potassium intake reduces blood pressure. Trans Am Clin Climatol Assoc. 2015;126:46–55.

    PubMed  PubMed Central  Google Scholar 

  41. Matsubara M. Renal sodium handling for body fluid maintenance and blood pressure regulation. Yakugaku Zasshi. 2004;124:301–9.

    Article  CAS  PubMed  Google Scholar 

  42. Bandulik S, Schmidt K, Bockenhauer D, Zdebik AA, Humberg E, Kleta R, et al. The salt-wasting phenotype of EAST syndrome, a disease with multifaceted symptoms linked to the KCNJ10 K+ channel. Pflugers Arch. 2011;461:423–35.

    Article  CAS  PubMed  Google Scholar 

  43. Wilson FH, Disse-Nicodeme S, Choate KA, Ishikawa K, Nelson-Williams C, Desitter I, et al. Human hypertension caused by mutations in WNK kinases. Science. 2001;293:1107–12.

    Article  CAS  PubMed  Google Scholar 

  44. Boyden LM, Choi M, Choate KA, Nelson-Williams CJ, Farhi A, Toka HR, et al. Mutations in kelch-like 3 and cullin 3 cause hypertension and electrolyte abnormalities. Nature. 2012;482:98–U126.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Glover M, Ware JS, Henry A, Wolley M, Walsh R, Wain LV, et al. Detection of mutations in KLHL3 and CUL3 in families with FHHt (familial hyperkalaemic hypertension or Gordon's syndrome). Clin Sci. 2014;126:721–6.

    Article  CAS  Google Scholar 

  46. Rojas-Vega L, Jimenez-Vega AR, Bazua-Valenti S, Arroyo-Garza I, Jimenez JV, Gomez-Ocadiz R, et al. Increased phosphorylation of the renal Na+-Cl- cotransporter in male kidney transplant recipient patients with hypertension: a prospective cohort. Am J Physiol Ren Physiol. 2015;309:F836–42.

    Article  CAS  Google Scholar 

  47. Esteva-Font C, Guillen-Gomez E, Diaz JM, Guirado L, Facundo C, Ars E, et al. Renal sodium transporters are increased in urinary exosomes of cyclosporine-treated kidney transplant patients. Am J Nephrol. 2014;39:528–35.

    Article  CAS  PubMed  Google Scholar 

  48. Hoorn EJ, Walsh SB, McCormick JA, Furstenberg A, Yang CL, Roeschel T, et al. The calcineurin inhibitor tacrolimus activates the renal sodium chloride cotransporter to cause hypertension. Nat Med. 2011;17:1304–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Lazelle RA, McCully BH, Terker AS, Himmerkus N, Blankenstein KI, Mutig K, et al. Renal deletion of 12 kDa FK506-binding protein attenuates tacrolimus-induced hypertension. J Am Soc Nephrol. 2016;27:1456–64.

    Article  CAS  PubMed  Google Scholar 

  50. Tutakhel OAZ, Moes AD, Valdez-Flores MA, Kortenoeven MLA, von den Vries M, Jelen S, et al. NaCl cotransporter abundance in urinary vesicles is increased by calcineurin inhibitors and predicts thiazide sensitivity. PLoS ONE 2017;12:e0176220.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  51. Sorensen MV, Grossmann S, Roesinger M, Gresko N, Todkar AP, Barmettler G, et al. Rapid dephosphorylation of the renal sodium chloride cotransporter in response to oral potassium intake in mice. Kidney Int. 2013;83:811–24.

    Article  CAS  PubMed  Google Scholar 

  52. Penton D, Czogalla J, Wengi A, Himmerkus N, Loffing-Cueni D, Carrel M, et al. Extracellular K+ rapidly controls NaCl cotransporter phosphorylation in the native distal convoluted tubule by Cl-dependent and independent mechanisms. J Physiol. 2016;594:6319–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Terker AS, Zhang C, McCormick JA, Lazelle RA, Zhang CB, Meermeier NP, et al. Potassium modulates electrolyte balance and blood pressure through effects on distal cell voltage and chloride. Cell Metab. 2015;21:39–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Ishizawa K, Xu N, Loffing J, Lifton RP, Fujita T, Uchida S, et al. Potassium depletion stimulates Na-Cl cotransporter via phosphorylation and inactivation of the ubiquitin ligase Kelch-like 3. Biochem Biophys Res Commun. 2016;480:745–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Edelheit O, Ben-Shahar R, Dascal N, Hanukoglu A, Hanukoglu I. Conserved charged residues at the surface and interface of epithelial sodium channel subunits-roles in cell surface expression and the sodium self-inhibition response. FEBS J. 2014;281:2097–111.

    Article  CAS  PubMed  Google Scholar 

  56. Kashlan OB, Kleyman TR. ENaC structure and function in the wake of a resolved structure of a family member. Am J Physiol Renal Physiol. 2011;301:F684–F96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Wynne BM, Mistry AC, Al-Khalili O, Mallick R, Theilig F, Eaton DC, et al. Aldosterone Modulates the Association between NCC and ENaC. Sci Rep. 2017;7:4149

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  58. Hanukoglu I, Hanukoglu A. Epithelial sodium channel (ENaC) family: phylogeny, structure-function, tissue distribution, and associated inherited diseases. Gene. 2016;579:95–132.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Rayner BL, Owen EP, King JA, Soule SG, Vreede H, Opie LH, et al. A new mutation, R563Q, of the beta subunit of the epithelial sodium channel associated with low-renin, low-aldosterone hypertension. J Hypertens. 2003;21:921–6.

    Article  CAS  PubMed  Google Scholar 

  60. Hiltunen TP, Hannila-Handelberg T, Petajaniemi N, Kantola I, Tikkanen I, Virtamo J, et al. Liddle's syndrome associated with a point mutation in the extracellular domain of the epithelial sodium channel gamma subunit. J Hypertens. 2002;20:2383–90.

    Article  CAS  PubMed  Google Scholar 

  61. Cheek DB, Perry JW. A salt wasting syndrome in infancy. Arch Dis Child. 1958;33:252–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Simon DB, Karet FE, RodriguezSoriano J, Hamdan JH, DiPietro A, Trachtman H, et al. Genetic heterogeneity of Bartter's syndrome revealed by mutations in the K+ channel, ROMK. Nat Genet. 1996;14:152–6.

    Article  CAS  PubMed  Google Scholar 

  63. Peters M, Jeck N, Reinalter S, Leonhardt A, Tonshoff B, Klaus G, et al. Clinical presentation of genetically defined patients with hypokalemic salt-losing tubulopathies. Am J Med. 2002;112:183–90.

    Article  PubMed  Google Scholar 

  64. Bailey MA, Cantone A, Yan Q, MacGregor GG, Leng Q, Amorim JBO, et al. Maxi-K channels contribute to urinary potassium excretion in the ROMK- deficient mouse model of Type II Bartter's syndrome and in adaptation to a high-K diet. Kidney Int. 2006;70:51–9.

    Article  CAS  PubMed  Google Scholar 

  65. Wang J, Sun CX, Gerdes N, Liu CL, Liao MY, Liu J, et al. Interleukin 18 function in atherosclerosis is mediated by the interleukin 18 receptor and the Na-Cl co-transporter. Nat Med. 2015;21:820.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Dvorak MM, De Joussineau C, Carter DH, Pisitkun T, Knepper MA, Gamba G, et al. Thiazide diuretics directly induce osteoblast differentiation and mineralized nodule formation by interacting with a sodium chloride co-transporter in bone. J Am Soc Nephrol. 2007;18:2509–16.

    Article  CAS  PubMed  Google Scholar 

  67. Mastroianni N, DeFusco M, Zollo M, Arrigo G, Zuffardi O, Bettinelli A, et al. Molecular cloning, expression pattern, and chromosomal localization of the human Na-Cl thiazide-sensitive cotransporter (SLC12A3). Genomics. 1996;35:486–93.

    Article  CAS  PubMed  Google Scholar 

  68. Tutakhel OA, Jelen S, Valdez-Flores M, Dimke H, Piersma SR, Jimenez CR, et al. Alternative splice variant of the thiazide-sensitive NaCl cotransporter: a novel player in renal salt handling. Am J Physiol Ren Physiol. 2016;310:F204–16.

    Article  CAS  Google Scholar 

  69. De Jong JC, Van der Vliet WA, Van den Heuvel LPWJ, Willems PHGM, Knoers KVAM, Bindels RJM. Functional expression of mutations in the human NaCl cotransporter: Evidence for impaired routing mechanisms in Gitelman's syndrome. J Am Soc Nephrol. 2002;13:1442–8.

    Article  CAS  PubMed  Google Scholar 

  70. de Jong JC, Willems PH, Mooren FJ, van den Heuvel LP, Knoers NV, Bindels RJ. The structural unit of the thiazide-sensitive NaCl cotransporter is a homodimer. J Biol Chem. 2003;278:24302–7.

    Article  PubMed  CAS  Google Scholar 

  71. Hoover RS, Poch E, Monroy A, Vazquez N, Nishio T, Gamba G, et al. N-glycosylation at two sites critically alters thiazide binding and activity of the rat thiazide-sensitive Na+: Cl cotransporter. J Am Soc Nephrol. 2003;14:271–82.

    Article  CAS  PubMed  Google Scholar 

  72. Bross P, Corydon TJ, Andresen BS, Jørgensen MM, Bolund L, Gregersen N. Protein misfolding and degradation in genetic diseases. Hum Mutat. 1999;14:186–98.

    Article  CAS  PubMed  Google Scholar 

  73. Pacheco-Alvarez D, Cristobal PS, Meade P, Moreno E, Vazquez N, Munoz E, et al. The Na+: Cl cotransporter is activated and phosphorylated at the amino-terminal domain upon intracellular chloride depletion. J Biol Chem. 2006;281:28755–63.

    Article  CAS  PubMed  Google Scholar 

  74. Rosenbaek LL. Phosphorylation decreases ubiquitylation of the thiazide-sensitive cotransporter NCC and subsequent clathrin-mediated endocytosis. J Biol Chem. 2014;289:13347–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Subramanya AR, Liu J, Ellison DH, Wade JB, Welling PA. WNK4 diverts the thiazide-sensitive nacl cotransporter to the lysosome and stimulates AP-3 interaction. J Biol Chem. 2009;284:18471–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Richardson C, Rafiqi FH, Karlsson HKR, Moleleki N, Vandewalle A, Campbell DG, et al. Activation of the thiazide-sensitive Na+-Cl cotransporter by the WNK-regulated kinases SPAK and OSR1. J Cell Sci. 2008;121:675–84.

    Article  CAS  PubMed  Google Scholar 

  77. Feric M, Zhao B, Hoffert JD, Pisitkun T, Knepper MA. Large-scale phosphoproteomic analysis of membrane proteins in renal proximal and distal tubule. Am J Physiol-Cell Physiol. 2011;300:C755–C70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Rosenbaek L, Assentoft M, Pedersen NB, MacAulay N, Fenton RA. Characterization of a novel phosphorylation site in the sodium–chloride cotransporter, NCC. J Physiol. 2012;590:6121–39.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Ferdaus MZ, Barber KW, Lopez-Cayuqueo KI, Terker AS, Argaiz ER, Gassaway BM, et al. SPAK and OSR1 play essential roles in potassium homeostasis through actions on the distal convoluted tubule. J Physiol. 2016;594:4945–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Ronzaud C, Loffing-Cueni D, Hausel P, Debonneville A, Malsure SR, Fowler-Jaeger N, et al. Renal tubular NEDD4-2 deficiency causes NCC-mediated salt-dependent hypertension. J Clin Investig. 2013;123:657–65.

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Arroyo JP, Lagnaz D, Ronzaud C, Vázquez N, Ko BS, Moddes L, et al. Nedd4-2 modulates renal Na+-Cl− cotransporter via the aldosterone-SGK1-Nedd4-2 pathway. J Am Soc Nephrol. 2011;22:1707–19.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Lagnaz D, Arroyo JP, Chavez-Canales M, Vazquez N, Rizzo F, Spirli A, et al. WNK3 abrogates the NEDD4-2-mediated inhibition of the renal Na+-Cl cotransporter. Am J Physiol Renal Physiol. 2014;307:F275–F86.

    Article  CAS  PubMed  Google Scholar 

  83. Chiga M, Rai T, Yang S-S, Ohta A, Takizawa T, Sasaki S, et al. Dietary salt regulates the phosphorylation of OSR1/SPAK kinases and the sodium chloride cotransporter through aldosterone. Kidney Int. 2008;74:1403–9.

    Article  CAS  PubMed  Google Scholar 

  84. Abdallah JG, Schrier RW, Edelstein C, Jennings SD, Wyse B, Ellison DH. Loop diuretic infusion increases thiazide-sensitive Na+/Cl-cotransporter abundance: Role of aldosterone. J Am Soc Nephrol. 2001;12:1335–41.

    Article  CAS  PubMed  Google Scholar 

  85. Good DW. Nongenomic actions of aldosterone on the renal tubule. Hypertension. 2007;49:728–39.

    Article  CAS  PubMed  Google Scholar 

  86. Terker AS, Zhang C, Erspamer KJ, Gamba G, Yang CL, Ellison DH. Unique chloride-sensing properties of WNK4 permit the distal nephron to modulate potassium homeostasis. Kidney Int. 2016;89:127–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Czogalla J, Vohra T, Penton D, Kirschmann M, Craigie E, Loffing J. The mineralocorticoid receptor (MR) regulates ENaC but not NCC in mice with random MR deletion. Pflugers Arch. 2016;468:849–58.

    Article  CAS  PubMed  Google Scholar 

  88. Terker AS, Yarbrough B, Ferdaus MZ, Lazelle RA, Erspamer KJ, Meermeier NP, et al. Direct and indirect mineralocorticoid effects determine distal salt transport. J Am Soc Nephrol. 2016;27:2436–45.

    Article  CAS  PubMed  Google Scholar 

  89. Liddle GW, Cornfield J, Casper AG, Bartter FC. The physiological basis for a method of assaying aldosterone in extracts of human urine. J Clin Invest. 1955;34:1410–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Ko B, Mistry AC, Hanson L, Mallick R, Wynne BM, Thai TL, et al. Aldosterone acutely stimulates NCC activity via a SPAK-mediated pathway. Am J Physiol Renal Physiol. 2013;305:F645–F52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Kim GH, Masilamani S, Turner R, Mitchell C, Wade JB, Knepper MA. The thiazide-sensitive Na-Cl cotransporter is an aldosterone-induced protein. Proc Natl Acad Sci USA. 1998;95:14552–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Masilamani S, Wang XY, Kim GH, Brooks H, Nielsen J, Nielsen S, et al. Time course of renal Na-K-ATPase, NHE3, NKCC2, NCC, and ENaC abundance changes with dietary NaCl restriction. Am J Physiol Renal Physiol. 2002;283:F648–F57.

    Article  PubMed  Google Scholar 

  93. van der Lubbe N, Lim CH, Meima ME, van Veghel R, Rosenbaek LL, Mutig K, et al. Aldosterone does not require angiotensin II to activate NCC through a WNK4–SPAK–dependent pathway. Pflügers Arch. 2012;463:853–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. van der Lubbe N, Moes AD, Rosenbaek LL, Schoep S, Meima ME, Danser AH, et al. K+-induced natriuresis is preserved during Na+ depletion and accompanied by inhibition of the Na+-Cl- cotransporter. Am J Physiol Renal Physiol. 2013;305:F1177–88.

    Article  PubMed  CAS  Google Scholar 

  95. Sandberg MB, Riquier ADM, Pihakaski-Maunsbach K, McDonough AA, Maunsbach AB. ANG II provokes acute trafficking of distal tubule Na(+)-Cl(-) cotransporter to apical membrane. Am J Physiol Renal Physiol. 2007;293:F662–F9.

    Article  CAS  PubMed  Google Scholar 

  96. Zhao D, Seth DM, Navar LG. Enhanced distal nephron sodium reabsorption in chronic Angiotensin II-infused mice. Hypertension. 2009;54:120–U82.

    Article  CAS  PubMed  Google Scholar 

  97. van der Lubbe N, Lim CH, Fenton RA, Meima ME, Jan Danser AH, Zietse R, et al. Angiotensin II induces phosphorylation of the thiazide-sensitive sodium chloride cotransporter independent of aldosterone. Kidney Int. 2011;79:66–76.

    Article  PubMed  CAS  Google Scholar 

  98. Talati G, Ohta A, Rai T, Sohara E, Naito S, Vandewalle A, et al. Effect of angiotensin II on the WNK-OSR1/SPAK-NCC phosphorylation cascade in cultured mpkDCT cells and in vivo mouse kidney. Biochem Biophys Res Commun. 2010;393:844–8.

    Article  CAS  PubMed  Google Scholar 

  99. Ko B, Mistry A, Hanson L, Mallick R, Hoover RS. Mechanisms of angiotensin II stimulation of NCC are time-dependent in mDCT15 cells. Am J Physiol Renal Physiol. 2015;308:F720–F7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Shibata S, Arroyo JP, Castaneda-Bueno M, Puthumana J, Zhang JH, Uchida S, et al. Angiotensin II signaling via protein kinase C phosphorylates Kelch-like 3, preventing WNK4 degradation. Proc Natl Acad Sci USA. 2014;111:15556–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Pedersen NB, Hofmeister MV, Rosenbaek LL, Nielsen J, Fenton RA. Vasopressin induces phosphorylation of the thiazide-sensitive sodium chloride cotransporter in the distal convoluted tubule. Kidney Int. 2010;78:160–9.

    Article  CAS  PubMed  Google Scholar 

  102. Mutig K, Saritas T, Uchida S, Kahl T, Borowski T, Paliege A, et al. Short-term stimulation of the thiazide-sensitive Na+Cl- cotransporter by vasopressin involves phosphorylation and membrane translocation. Eur J Med Res. 2010;15:122–3.

    Google Scholar 

  103. Saritas T, Borschewski A, McCormick JA, Paliege A, Dathe C, Uchida S, et al. SPAK Differentially mediates vasopressin effects on sodium cotransporters. J Am Soc Nephrol. 2013;24:407–18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Nedvetsky PI, Tabor V, Tamma G, Beulshausen S, Skroblin P, Kirschner A, et al. Reciprocal regulation of Aquaporin-2 abundance and degradation by protein kinase A and p38-MAP kinase. J Am Soc Nephrol. 2010;21:1645–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Snyder PM, Olson DR, Kabra R, Zhou R, Steines JC. cAMP and serum and glucocorticoid-inducible kinase (SGK) regulate the epithelial Na(+) channel through convergent phosphorylation of Nedd4-2. J Biol Chem. 2004;279:45753–8.

    Article  CAS  PubMed  Google Scholar 

  106. Piala AT, Moon TM, Akella R, He H, Cobb MH, Goldsmith EJ. Chloride sensing by WNK1 involves inhibition of autophosphorylation. Sci Signal. 2014;7:ra41.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  107. Bazua-Valenti S, Chavez-Canales M, Rojas-Vega L, Gonzalez-Rodriguez X, Vazquez N, Rodriguez-Gama A, et al. The effect of WNK4 on the Na+:Cl- cotransporter is modulated by intracellular chloride. J Am Soc Nephrol. 2015;26:1781–6.

    Article  PubMed  CAS  Google Scholar 

  108. Rengarajan S, Lee DH, Oh YT, Delpire E, Youn JH, McDonough AA. Increasing plasma [K+] by intravenous potassium infusion reduces NCC phosphorylation and drives kaliuresis and natriuresis. Am J Physiol Ren Physiol. 2014;306:F1059–68.

    Article  CAS  Google Scholar 

  109. Reckelhoff JF. Gender differences in the regulation of blood pressure. Hypertension. 2001;37:1199–208.

    Article  CAS  PubMed  Google Scholar 

  110. Cobo G, Hecking M, Port FK, Exner I, Lindholm B, Stenvinkel P, et al. Sex and gender differences in chronic kidney disease: progression to end-stage renal disease and haemodialysis. Clin Sci (Lond). 2016;130:1147–63.

    Article  Google Scholar 

  111. Verlander JW, Tran TM, Zhang L, Kaplan MR, Hebert SC. Estradiol enhances thiazide-sensitive NaCl cotransporter density in the apical plasma membrane of the distal convoluted tubule in ovariectomized rats. J Clin Invest. 1998;101:1661–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Rojas-Vega L, Reyes-Castro LA, Ramirez V, Bautista-Perez R, Rafael C, Castaneda-Bueno M, et al. Ovarian hormones and prolactin increase renal NaCl cotransporter phosphorylation. Am J Physiol Renal Physiol. 2015;308:F799–808.

    Article  CAS  PubMed  Google Scholar 

  113. Veiras LC, Girardi ACC, Curry J, Pei L, Ralph DL, Tran A, et al. Sexual dimorphic pattern of renal transporters and electrolyte homeostasis. J Am Soc Nephrol. 2017;28:3504–17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Oelkers WKH. Effects of estrogens and progestogens on the renin-aldosterone system and blood pressure. Steroids. 1996;61:166–71.

    Article  CAS  PubMed  Google Scholar 

  115. White RE. Estrogen and vascular function. Vasc Pharmacol. 2002;38:73–80.

    Article  CAS  Google Scholar 

  116. Almey A, Milner TA, Brake WG. Estrogen receptors in the central nervous system and their implication for dopamine-dependent cognition in females. Horm Behav. 2015;74:125–38.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Ko B, Hoover RS. Molecular physiology of the thiazide-sensitive sodium chloride cotransporter. Curr Opin Nephrol Hypertens. 2009;18:421.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Richardson C, Rafiqi FH, Karlsson HK, Moleleki N, Vandewalle A, Campbell DG, et al. Activation of the thiazide-sensitive Na+-Cl- cotransporter by the WNK-regulated kinases SPAK and OSR1. J Cell Sci. 2008;121(Pt 5):675–84.

    Article  CAS  PubMed  Google Scholar 

  119. Bazua-Valenti S, Chavez-Canales M, Rojas-Vega L, Gonzalez-Rodriguez X, Vazquez N, Rodriguez-Gama A, et al. The effect of WNK4 on the Na+-Cl- cotransporter is modulated by intracellular chloride. J Am Soc Nephrol. 2015;26:1781–6.

    Article  PubMed  CAS  Google Scholar 

  120. Rinehart J, Kahle KT, de los Heros P, Vazquez N, Meade P, Wilson FH, et al. WNK3 kinase is a positive regulator of NKCC2 and NCC, renal cation-Cl−cotransporters required for normal blood pressure homeostasis. Proc Natl Acad Sci USA. 2005;102:16777–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Vitari AC, Deak M, Morrice NA, Alessi DR. The WNK1 and WNK4 protein kinases that are mutated in Gordon's hypertension syndrome phosphorylate and activate SPAK and OSR1 protein kinases. Biochem J. 2005;391:17–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Rinehart J, Vazquez N, Kahle KT, Hodson CA, Ring AM, Gulcicek EE, et al. WNK2 kinase is a novel regulator of essential neuronal cation-chloride cotransporters. J Biol Chem. 2011;286:30171–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Hoorn EJ, Nelson JH, McCormick JA, Ellison DH. The WNK kinase network regulating sodium, potassium, and blood pressure. J Am Soc Nephrol. 2011;22:605–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Oi K, Sohara E, Rai T, Misawa M, Chiga M, Alessi DR, et al. A minor role of WNK3 in regulating phosphorylation of renal NKCC2 and NCC co-transporters in vivo. Biol Open. 2012;1:120–7.

    Article  CAS  PubMed  Google Scholar 

  125. Mederle K, Mutig K, Paliege A, Carota I, Bachmann S, Castrop H, et al. Loss of WNK3 is compensated for by the WNK1/SPAK axis in the kidney of the mouse. Am J Physiol Renal Physiol. 2013;304:F1198–F209.

    Article  CAS  PubMed  Google Scholar 

  126. Lee JW, Chou CL, Knepper MA. Deep sequencing in microdissected renal tubules identifies nephron segment-specific transcriptomes. J Am Soc Nephrol. 2015;26:2669–77.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Bazua-Valenti S, Gamba G. Revisiting the NaCl cotransporter regulation by with-no-lysine kinases. Am J Physiol Cell Physiol. 2015;308:C779–91.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  128. Cai H, Cebotaru V, Wang JH, Zhang XM, Cebotaru L, Guggino SE, et al. WNK4 kinase regulates surface expression of the human sodium chloride cotransporter in mammalian cells. Kidney Int. 2006;69:2162–70.

    Article  CAS  PubMed  Google Scholar 

  129. Xu BE, Min XS, Stippec S, Lee BH, Goldsmith EJ, Cobb MH. Regulation of WNK1 by an autoinhibitory domain and autophosphorylation. J Biol Chem. 2002;277:48456–62.

    Article  CAS  PubMed  Google Scholar 

  130. San-Cristobal P, Pacheco-Alvarez D, Richardson C, Ring AM, Vazquez N, Rafiqi FH, et al. Angiotensin II signaling increases activity of the renal Na-Cl cotransporter through a WNK4-SPAK-dependent pathway.Proc Natl Acad Sci USA. 2009;106:4384–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Hadchouel J, Ellison DH, Gamba G. Regulation of renal electrolyte transport by WNK and SPAK-OSR1 kinases. Annu Rev Physiol. 2016;78:367–89.

    Article  CAS  PubMed  Google Scholar 

  132. Argaiz ER, Chavez-Canales M, Ostrosky-Frid M, Rodriguez-Gama A, Vazquez N, Gonzalez-Rodriguez X, et al. Kidney-specific WNK1 isoform (KS-WNK1) is a potent activator of WNK4 and NCC. Am J Physiol Ren Physiol. 2018;315:F734–F45.

    Article  CAS  Google Scholar 

  133. Boyd-Shiwarski CR, Shiwarski DJ, Roy A, Namboodiri HN, Nkashama LJ, Xie J, et al. Potassium-regulated distal tubule WNK bodies are kidney-specific WNK1 dependent. Mol Biol Cell. 2018;29:499–509.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Al-Qusairi L, Basquin D, Roy A, Stifanelli M, Rajaram RD, Debonneville A, et al. Renal tubular SGK1 deficiency causes impaired K+ excretion via loss of regulation of NEDD4-2/WNK1 and ENaC. Am J Physiol Ren Physiol. 2016;311:F330–42.

    Article  CAS  Google Scholar 

  135. Wang MX, Cuevas CA, Su XT, Wu P, Gao ZX, Lin DH, et al. Potassium intake modulates the thiazide-sensitive sodium-chloride cotransporter (NCC) activity via the Kir4.1 potassium channel. Kidney Int. 2018;93:893–902.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Simon DB, Karet FE, Hamdan JM, DiPietro A, Sanjad SA, Lifton RP. Bartter's syndrome, hypokalaemic alkalosis with hypercalciuria, is caused by mutations in the Na-K-2Cl cotransporter NKCC2. Nat Genet. 1996;13:183–8.

    Article  CAS  PubMed  Google Scholar 

  137. Birkenhager R, Otto E, Schurmann MJ, Vollmer M, Ruf EM, Maier-Lutz I, et al. Mutation of BSND causes Bartter syndrome with sensorineural deafness and kidney failure. Nat Genet. 2001;29:310–4.

    Article  CAS  PubMed  Google Scholar 

  138. Schlingmann KP, Konrad M, Jeck N, Waldegger P, Reinalter SC, Holder M, et al. Salt wasting and deafness resulting from mutations in two chloride channels. New Engl J Med. 2004;350:1314–9.

    Article  CAS  PubMed  Google Scholar 

  139. Simon DB, NelsonWilliams C, Bia MJ, Ellison D, Karet FE, Molina AM, et al. Gitelman's variant of Bartter's syndrome, inherited hypokalaemic alkalosis, is caused by mutations in the thiazide-sensitive Na-Cl cotransporter. Nat Genet. 1996;12:24–30.

    Article  CAS  PubMed  Google Scholar 

  140. Geller DS, Farhi A, Pinkerton N, Fradley M, Moritz M, Spitzer A, et al. Activating mineralocorticoid receptor mutation in hypertension exacerbated by pregnancy. Science. 2000;289:119–23.

    Article  CAS  PubMed  Google Scholar 

  141. Lankes E, Krude H, Schnabel D. Severe form of systemic pseudohypoaldosteronism type 1-a novel mutation in the alpha subunit of ENaC. Horm Res. 2009;72:208.

    Google Scholar 

  142. Edelheit O, Hanukoglu I, Shriki Y, Tfilin M, Dascal N, Gillis D, et al. Truncated beta epithelial sodium channel (ENaC) subunits responsible for multi-system pseudohypoaldosteronism support partial activity of ENaC. J Steroid Biochem. 2010;119:84–8.

    Article  CAS  Google Scholar 

  143. Adachi M, Tachibana K, Asakura Y, Abe S, Nakae J, Tajima T, et al. Clinical case seminar—Compound heterozygous mutations in the gamma subunit gene of ENaC (1627delG and 1570-1G -> A) in one sporadic Japanese patient with a systemic form of pseudohypoaldosteronism type 1. J Clin Endocr Metab. 2001;86:9–12.

    CAS  PubMed  Google Scholar 

  144. Kent WJ, Sugnet CW, Furey TS, Roskin KM, Pringle TH, Zahler AM, et al. The human genome browser at UCSC. Genome Res. 2002;12:996–1006.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Louis-Dit-Picard H, Barc J, Trujillano D, Miserey-Lenkei S, Bouatia-Naji N, Pylypenko O, et al. KLHL3 mutations cause familial hyperkalemic hypertension by impairing ion transport in the distal nephron. Nat Genet. 2012;44:456–60. S1-3

    Article  CAS  PubMed  Google Scholar 

  146. Shimkets RA, Warnock DG, Bositis CM, Nelsonwilliams C, Hansson JH, Schambelan M, et al. Liddles syndrome—heritable human hypertension caused by mutations in the beta-subunit of the epithelial sodium-channel. Cell . 1994;79:407–14.

    Article  CAS  PubMed  Google Scholar 

  147. Hansson JH, Nelsonwilliams C, Suzuki H, Schild L, Shimkets R, Lu Y, et al. Hypertension caused by a truncated epithelial sodium-channel gamma-subunit—genetic-heterogeneity of Liddle syndrome. Nat Genet. 1995;11:76–82.

    Article  CAS  PubMed  Google Scholar 

  148. Lifton RP, Dluhy RG, Powers M, Rich GM, Cook S, Ulick S, et al. A chimeric 11-beta-hydroxylase aldosterone synthase gene causes glucocorticoid-remediable aldosteronism and human hypertension. Nature. 1992;355:262–5.

    Article  CAS  PubMed  Google Scholar 

  149. Scholl UI, Stolting G, Schewe J, Thiel A, Tan H, Nelson-Williams C, et al. CLCN2 chloride channel mutations in familial hyperaldosteronism type II.Nat Genet.2018;50:349–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Choi M, Scholl UI, Yue P, Bjorklund P, Zhao BX, Nelson-Williams C, et al. K+ channel mutations in adrenal aldosterone-producing adenomas and hereditary hypertension. Science. 2011;331:768–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Scholl UI, Stolting G, Nelson-Williams C, Vichot AA, Choi M, Loring E, et al. Recurrent gain of function mutation in calcium channel CACNA1H causes early-onset hypertension with primary aldosteronism. Elife. 2015;4:e06315.

  152. Trakakis E, Loghis C, Kassanos D. Congenital adrenal hyperplasia because of 21-hydroxylase deficiency a genetic disorder of interest to obstetricians and gynecologists. Obstet Gynecol Surv. 2009;64:177–89.

    Article  PubMed  Google Scholar 

  153. Rheaume E, Simard J, Morel Y, Mebarki F, Zachmann M, Forest MG, et al. Congenital adrenal-hyperplasia due to point mutations in the type-Ii 3-beta-hydroxysteroid dehydrogenase gene. Nat Genet. 1992;1:239–45.

    Article  CAS  PubMed  Google Scholar 

  154. Bose HS, Sugawara T, Strauss JF, Miller WL. The pathophysiology and genetics of congenital lipoid adrenal hyperplasia. New Engl J Med. 1996;335:1870–8.

    Article  CAS  PubMed  Google Scholar 

  155. White PC, Dupont J, New MI, Leiberman E, Hochberg Z, Rosler A. A mutation in CYP11B1 (Arg-448----His) associated with steroid 11 beta-hydroxylase deficiency in Jews of Moroccan origin. J Clin Invest. 1991;87:1664–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Goldsmith. O, Solomon DH. Horton R. Hypogonadism and Mineralocorticoid Excess—17-Hydroxylase Deficiency Syndrome. New Engl J Med. 1967;277:673.

    Article  CAS  PubMed  Google Scholar 

  157. Mune T, Rogerson FM, Nikkila H, Agarwal AK, White PC. Human hypertension caused by mutations in the kidney isozyme of 11 beta-hydroxysteroid dehydrogenase. Nat Genet. 1995;10:394–9.

    Article  CAS  PubMed  Google Scholar 

  158. McCormick JA, Bhalla V, Pao AC, Pearce D. SGK1: a rapid aldosterone-induced regulator of renal sodium reabsorption. Physiology. 2005;20:134–9.

    Article  CAS  PubMed  Google Scholar 

  159. Chou CL, Yip KP, Michea L, Kador K, Ferraris JD, Wade JB, et al. Regulation of aquaporin-2 trafficking by vasopressin in the renal collecting duct—oles of ryanodine-sensitive Ca2+ stores and calmodulin. J Biol Chem. 2000;275:36839–46.

    Article  CAS  PubMed  Google Scholar 

  160. Mu S, Shimosawa T, Ogura S, Wang H, Uetake Y, Kawakami-Mori F, et al. Epigenetic modulation of the renal beta-adrenergic-WNK4 pathway in salt-sensitive hypertension. Nat Med. 2011;17:573–U92.

    Article  CAS  PubMed  Google Scholar 

  161. Terker AS, Yang CL, McCormick JA, Meermeier NP, Rogers SL, Grossmann S, et al. Sympathetic stimulation of thiazide-sensitive sodium chloride cotransport in the generation of salt-sensitive hypertension. Hypertension. 2014;64:178–84.

    Article  CAS  PubMed  Google Scholar 

  162. Ko B, Cooke LL, Hoover RS. Parathyroid hormone (PTH) regulates the sodium chloride cotransporter via Ras guanyl releasing protein 1 (Ras-GRP1) and extracellular signal-regulated kinase (ERK)1/2 mitogen-activated protein kinase (MAPK) pathway. Transl Res. 2011;158:282–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Lupp A, Klenk C, Rocken C, Evert M, Mawrin C, Schulz S. Immunohistochemical identification of the PTHR1 parathyroid hormone receptor in normal and neoplastic human tissues. Eur J Endocrinol. 2010;162:979–86.

    Article  CAS  PubMed  Google Scholar 

  164. Ko B, Joshi LM, Cooke LL, Vazquez N, Musch MW, Hebert SC, et al. Phorbol ester stimulation of RasGRP1 regulates the sodium-chloride cotransporter by a PKC-independent pathway. Proc Natl Acad Sci USA. 2007;104:20120–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Gesek FA, Friedman PA. Mechanism of calcium transport stimulated by chlorothiazide in mouse distal convoluted tubule cells. J Clin Invest. 1992;90:429–38.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Bickel CA, Verbalis JG, Knepper MA, Ecelbarger CA. Increased renal Na-K-ATPase, NCC, and beta-ENaC abundance in obese Zucker rats. Am J Physiol Ren Physiol. 2001;281:F639–48.

    Article  CAS  Google Scholar 

  167. Chavez-Canales M, Arroyo JP, Ko B, Vazquez N, Bautista R, Castaneda-Bueno M, et al. Insulin increases the functional activity of the renal NaCl cotransporter. J Hypertens. 2013;31:303–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Komers R, Rogers S, Oyama TT, Xu B, Yang CL, McCormick J, et al. Enhanced phosphorylation of Na+-Cl- co-transporter in experimental metabolic syndrome: role of insulin. Clin Sci. 2012;123:635–47.

    Article  CAS  Google Scholar 

  169. Nishida H, Sohara E, Nomura N, Chiga M, Alessi DR, Rai T, et al. Phosphatidylinositol 3-kinase/Akt signaling pathway activates the WNK-OSR1/SPAK-NCC phosphorylation cascade in hyperinsulinemic db/db mice. Hypertension. 2012;60:981–90.

    Article  CAS  PubMed  Google Scholar 

  170. Sohara E, Rai T, Yang SS, Ohta A, Naito S, Chiga M, et al. Acute Insulin Stimulation Induces Phosphorylation of the Na-Cl Cotransporter in Cultured Distal mpkDCT Cells and Mouse Kidney. PLoS ONE 2011;6:e24277.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Chen ZF, Vaughn DA, Blakely P, Fanestil DD. Adrenocortical steroids increase renal thiazide diuretic receptor density and response. J Am Soc Nephrol. 1994;5:1361–8.

    Article  CAS  PubMed  Google Scholar 

  172. Velazquez H, Bartiss A, Bernstein P, Ellison DH. Adrenal steroids stimulate thiazide-sensitive NaCl transport by rat renal distal tubules. Am J Physiol Renal Physiol. 1996;270:F211–F9.

    Article  CAS  Google Scholar 

  173. Ivy JR, Oosthuyzen W, Peltz TS, Howarth AR, Hunter RW, Dhaun N, et al. Glucocorticoids induce nondipping blood pressure by activating the thiazide-sensitive cotransporter. Hypertension. 2016;67:1029–37.

    Article  CAS  PubMed  Google Scholar 

  174. Hoorn EJ, Walsh SB, McCormick JA, Zietse R, Unwin RJ, Ellison DH. Pathogenesis of calcineurin inhibitor-induced hypertension. J Nephrol. 2012;25:269–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Sandberg MB, Maunsbach AB, McDonough AA. Redistribution of distal tubule Na+-Cl- cotransporter (NCC) in response to a high-salt diet. Am J Physiol Renal Physiol. 2006;291:F503–8.

    Article  CAS  PubMed  Google Scholar 

  176. Fanestil DD, Hyde RH, Blakely P, Vaughn DA. Dietary magnesium, not calcium, regulates renal thiazide receptor. J Am Soc Nephrol. 1999;10:458–63.

    Article  CAS  PubMed  Google Scholar 

  177. Matsuoka H. Aldosterone and magnesium. Clin Calcium. 2005;15:187–91.

    PubMed  Google Scholar 

  178. Castaneda-Bueno M, Graciela Cervantes-Perez L, Rojas-Vega L, Arroyo-Garza I, Vazquez N, Moreno E, et al. Modulation of NCC activity by low and high K+ intake: insights into the signaling pathways involved. Am J Physiol Renal Physiol. 2014;306:F1507–F19.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  179. Wade JB, Liu J, Coleman R, Grimm PR, Delpire E, Welling PA. SPAK-mediated NCC regulation in response to low-K+ diet. Am J Physiol Renal Physiol. 2015;308:F923–F31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  180. Moes AD, van der Lubbe N, Zietse R, Loffing J, Hoorn EJ. The sodium chloride cotransporter SLC12A3: new roles in sodium, potassium, and blood pressure regulation. Pflugers Arch. 2014;466:107–18.

    Article  CAS  PubMed  Google Scholar 

  181. Costanzo LS. Localization of diuretic action in microperfused rat distal tubules: Ca and Na transport. Am J Physiol. 1985;248(4 Pt 2):F527–35.

    CAS  PubMed  Google Scholar 

  182. Ellison DH, Velazquez H, Wright FS. Thiazide-sensitive sodium chloride cotransport in early distal tubule. Am J Physiol. 1987;253(3 Pt 2):F546–54.

    CAS  PubMed  Google Scholar 

  183. Abdallah JG, Schrier RW, Edelstein C, Jennings SD, Wyse B, Ellison DH. Loop diuretic infusion increases thiazide-sensitive Na(+)/Cl(−)-cotransporter abundance: role of aldosterone. J Am Soc Nephrol. 2001;12:1335–41.

    Article  CAS  PubMed  Google Scholar 

  184. Melnikov S, Mayan H, Uchida S, Holtzman EJ, Farfel Z. Cyclosporine metabolic side effects: association with the WNK4 system. Eur J Clin Invest. 2011;41:1113–20.

    Article  CAS  PubMed  Google Scholar 

  185. van Angelen AA, Glaudemans B, van der Kemp AW, Hoenderop JG, Bindels RJ. Cisplatin-induced injury of the renal distal convoluted tubule is associated with hypomagnesaemia in mice. Nephrol Dial Transplant. 2013;28:879–89.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We thank the Leducq Foundation for financial support of potassium in hypertension research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Stowasser.

Ethics declarations

Conflict of interest

MS is currently Editor-in-Chief of the Journal of Human Hypertension, necessitating handling of the manuscript by one of the other co-editors. The remaining authors declare no conflict of interest.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, A., Wolley, M. & Stowasser, M. The interplay of renal potassium and sodium handling in blood pressure regulation: critical role of the WNK-SPAK-NCC pathway. J Hum Hypertens 33, 508–523 (2019). https://doi.org/10.1038/s41371-019-0170-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41371-019-0170-6

This article is cited by

Search

Quick links