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Abstract
Sudden cardiac death (SCD) is most commonly secondary to sustained ventricular arrhythmias (VAs). This
review aimed to evaluate if left ventricular hypertrophy (LVH) secondary to systemic hypertension in humans is an
isolated risk factor for ventricular arrhythmogenesis. Animal models of hypertensive LVH have shown changes in ion
channel function and distribution, gap junction re-distribution and fibrotic deposition. Clinical data has consistently
exhibited an increase in prevalence and complexity of non-sustained VAs on electrocardiographic monitoring. However,
there is a dearth of trials suggesting progression to sustained VAs and SCD, with extrapolations being confounded by
presence of co-existent asymptomatic coronary artery disease (CAD). Putatively, this lack of data may be due to the
presence of more homogenous distribution of pathophysiological changes seen in those with hypertensive LVH versus
known pro-arrhythmic conditions such as HCM and myocardial infarction. The overall impression is that sustained VAs
in the context of hypertensive LVH are most likely to be precipitated by other causes such as CAD or electrolyte
disturbance.

Introduction

Systemic hypertension is a major public health problem
with recent estimates implicating it as the cause of around
7.5 million deaths globally per annum [1]. It is an estab-
lished risk factor for congestive heart failure (CHF), cor-
onary artery disease (CAD) and cerebrovascular disease [2].
Sudden cardiac death (SCD) is the most serious
clinical manifestation of cardiac disease. In most
instances, SCD relates to the occurrence of sustained ven-
tricular arrhythmias (VAs), particularly ventricular
tachycardia (VT) and fibrillation (VF) [3]. Patients
with chronic, systemic hypertension are known to develop
left ventricular hypertrophy (LVH) secondary to adverse
ventricular remodelling. However, it is unclear whether
hypertensive LVH is an isolated risk factor for ventricular
arrhythmogenesis.

Aims and hypothesis

The aim of this review was to assess whether systemic
hypertension in combination with LVH is an independent
risk factor for VAs in those without established CAD. We
hypothesised that hypertensive heart disease on its own
does not contribute to the risk of VAs or SCD. We therefore
reviewed the published literature on hypertension and VAs
and critically appraised the data to determine whether
hypertensive LVH on its own causes VAs.

Search strategy

MEDLINE (inception to 10th October 2020), Embase
(inception to 10th October 2020), Oxford Academic (to
10th October 2020) and Google Scholar (to 10th October
2020) were searched using a priori database-appropriate
MESH terms relating to ‘hypertension’, ‘left ventricular
hypertrophy’, ‘arrhythmia’, ‘ventricular arrhythmias’,
‘ventricular fibrillation’, ‘ventricular tachycardia’ and
‘sudden cardiac death’. Both animal and human studies
were eligible for inclusion. All types of study were included
for assessment including reviews, systematic reviews, meta-
analyses and original research (case series, case-control
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studies, cohort studies and randomised controlled trials).
Articles in languages other than English were excluded.

From this initial search, duplicate records were removed,
and the remainder screened for suitability based on title and
abstract independently by acknowledged contributors BSK
and AS and then combined. Potentially suitable studies
were then viewed in full text by BSK, AS and author RN
independently and relevance for inclusion was decided by
either unanimous agreement or, when there was disagree-
ment, adjudicated by RN. Derived references from these
sources were used to seek other potentially relevant cita-
tions. The final choice of included studies was then vali-
dated by authors PP and MHT.

Basic science data

The most common pattern of left ventricular (LV) remo-
delling in hypertension is concentric hypertrophy, reflecting
increased LV mass and relative wall thickness. At a cardi-
omyocyte level, this arises from assembly of contractile
protein units in parallel, resulting in increased width of
individual myocytes. These alterations are accompanied by
changes in ion channels, extracellular matrix, gap junctions
and microvasculature, which could play a role in ventricular
arrhythmogenesis in hypertensive LVH (see Fig. 1).

Changes in ion channels

In vitro animal models of hypertensive LVH have shown a
number of changes in the density and function of ion chan-
nels in ventricular myocytes. Histological analysis of spon-
taneously hypertensive rat hearts have observed reductions in
the density and activity of the sodium–potassium–adenosine
triphosphatase (Na+K+ATPase) pump at the sarcolemma;
this could affect the stability of the resting membrane
potential and theoretically predispose to VAs [4]. Another
study has observed that 90% of isolated ventricular myocytes

in spontaneously hypertensive rats can express an If-like
current that may be activated at voltages near the physiolo-
gical diastolic potential and produce abnormal, spontaneous
cell depolarisation (i.e. heightened automaticity) [5]. Simi-
larly, a murine model of hypertensive LVH using whole-cell
patch-clamp recordings found that potassium current den-
sities during repolarisation were significantly lower when
compared with controls [6]. This was associated with a more
prolonged QTc interval and action potential duration (APD),
which may provide substrate for development of early
(EADs) or delayed afterdepolarisations (DADs) that can
precipitate VAs. Moreover, non-uniform prolongation that is
characteristically associated with LVH may be pro-
arrhythmic by increasing dispersion of repolarisation or
refractoriness and favouring conditions for re-entry
mechanisms that may result in VAs [7].

In vitro studies of human hypertrophied cardiac myo-
cytes have also demonstrated changes in ion channels. One
study observed that afterload-induced hypertrophy was
associated with messenger RNA upregulation and con-
current protein expression of a non-cardiac voltage-gated
sodium channel (NaV1.8). Using a whole-cell patch-clamp
technique, inhibition of these channels with novel blockers
reduced late and persistent sodium current and shortened
APD. In addition, this current precipitated spontaneous
calcium release in diastole, secondary to leak from the
sarcoplasmic reticulum, which can also give rise to DADs
and therefore VAs [8].

Fibrosis and gap junctions

There is increased collagen synthesis in cultured ventricular
myocytes in response to hypertension [9]. The presence of
fibrosis may create a milieu that leads to dispersion of
refractoriness, heterogeneity of electrical conduction and re-
entry circuit formation. Spontaneously hypertensive rats had
higher cardiac mass and fibrotic burden, which was asso-
ciated with higher burden of VAs (defined as an isolated
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ventricular ectopic beat or more) and suppressed with tran-
dolapril therapy [10]. In humans, simple regression analysis
confirmed a strong correlation between hypertrophy, fibrosis
and VAs; however, analysis was confined to VAs collectively
without differentiation between sustained and non-sustained
dysrhythmias; additionally, the correlation was present only
for severe hypertrophy. In patients with established LVH,
those with known VAs had more subendocardial fibrosis
when assessed by endomyocardial biopsy; notably, there was
no similar correlation with co-existent CAD or CHF albeit
VAs were limited to those that were non sustained [11].

Pressure-overloaded hearts in aortic-banded rats have a
more heterogeneous distribution of Connexin-43 (Cx43)
gap junctions throughout the ventricular myocardium [12].
This may conceivably lead to slower inter-cellular con-
duction, heightening the probability of micro re-entry circuit
formation and VAs. In a separate rat model, reduction in
Cx43 gap junction density was associated with increased
susceptibility to sustained VAs in the context of low
extracellular potassium [13]. This notion is supported by a
double-transgenic rat model, in which re-institution of
normal channel localisation and upregulation of Cx43 gap
junction expression, through use of n-3 polyunsaturated
fatty acid (PUFA) ethyl-esters, reduced QRS and QTc
intervals and increased the threshold required to induce VAs
by programmed electrical stimulation [14].

Microvasculature

Murine models have shown that the cardiac micro-
vasculature cannot sustain metabolic demands associated
with hypertrophy [15]. This may result in deleterious effects
on cellular vascular endothelial growth factor signalling due
to attenuation of the transcription factor HIF-1α [16, 17].
This mismatch between cellular demand and vascular sup-
ply can lead to micro-ischaemic areas even in the absence of
epicardial CAD. However, these pathological perturbations
are driven primarily by chronic ischaemia from under-
perfusion rather than hypertension per se. These chronic
changes may produce a more arrhythmogenic milieu if
epicardial CAD does develop. For example, dogs with
hypertensive LVH undergoing left coronary artery occlu-
sion had higher propensity for sustained monomorphic VT
(41% vs. 6%; p < 0.05) and reperfusion-associated VF (88%
vs. 0%; p < 0.05) compared to those that were normoten-
sive; this disparity occurred despite infarct size being
comparable across groups [18, 19].

Clinical data

It is challenging to dissect the relative contributions of
hypertensive LVH and concurrent ischaemia on

susceptibility to VAs. In humans, significant epicardial
CAD, defined as coronary stenosis >50% on invasive cor-
onary angiography, is present in up to 40% of asymptomatic
hypertensive patients with LVH and recorded non-sustained
VT [11]. Ischaemia arising from macrovascular disease is
an established trigger for VAs even when asymptomatic, as
demonstrated by one study observing higher burden of non-
sustained VAs in those with co-existent thallium-201 per-
fusion defects (14% vs. 4%; p < 0.05) [20]. In hypertensive
patients without manifest CAD, a close temporal relation-
ship has been shown between the occurrence of VAs and
episodes of transient ST depression, which were predictive
for future cardiac events including SCD [21]. However, it
remains unclear whether these two risk factors precipitate
each other or are instead covariate responses to an increased
sympathetic drive.

Pertinently, although ventricular ectopy is of common
prevalence in the general population, it does not necessarily
translate to progression into sustained VAs and heightened
risk of SCD. Furthermore the extent of fibrosis in subjects
with hypertensive LVH also does not match that occurring
in other specific cohorts. For instance, in autopsies of
those suffering SCD, ventricular myocardium from patients
with hypertrophic cardioymyopathy (HCM) had threefold
higher deposition of matrix collagens than
hypertensive comparators and exhibited a more dis-
organised pattern [22].

Data from clinical studies broadly suggest that the degree
of hypertrophy must be marked to increase susceptibility to
VAs. In two studies, where CAD had been excluded by
invasive angiography, there was no increase in frequency of
VAs at mild to moderate levels of LVH [23, 24]. Another
study utilised endocardial catheter mapping and observed
higher prevalence of left ventricular late potentials in
patients with hypertensive LVH, which correlated with
detection of VAs on ambulatory monitoring [25]. However,
this trend was observed almost exclusively in those with
decompensated hypertensive heart disease, i.e. with con-
current CHF, rather than those with isolated systemic
hypertension.

The observed QTc prolongation that arises in hyperten-
sive LVH through changes in expression and distribution of
ion channels does, however, appear to have clear correla-
tions with arrythmogenesis. QTc duration appears to be
related to left ventricular mass index and the most pro-
longed QTc intervals were detected in those with LVH and
complex VAs [26]. Another study found that prolonged
QTc duration predicted mortality risk in patients with ECG
criteria for LVH, being highest in those with QTc > 500 ms
[27]. Beyond prolongation, associated dispersion of the
QTc interval is an index of inhomogeneity of repolarisation
and has been strongly linked with vulnerability to sustained
VAs [28].
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Data from observational studies does not show a con-
vincing link between hypertensive LVH and SCD second-
ary to sustained VAs. One study in the Framingham
population showed that the presence of an echocardio-
graphic diagnosis of LVH in hypertensive patients was
associated with an increased risk of SCD (hazard ratio 2.16,
95% CI 1.22–3.81, p= 0.008) [29]. However it is unclear
from this data what proportion of excess events were related
to sustained VAs, and during the follow-up period 28% of
those with LVH were diagnosed with MI prior to SCD
suggesting that ischaemia could have contributed to the
adverse prognosis [30]. Furthermore a separate study from
the Framingham population showed that in hypertensive
patients with an echocardiographic diagnosis of LVH the
presence of complex or frequent ventricular ectopy (≥class 2
on Lown grading system) on 1 h ECG recordings was
associated with a marginally significant increase in all-cause
mortality (hazard ratio 1.62). However it is not commented
what proportion of these excess events were SCD or if any
of them related to sustained VAs. Furthermore again these
patients were had a higher incidence of myocardial infarc-
tion during follow-up, whilst at the start of follow-up, CAD
had only been ruled out by lack of symptoms, rather than
invasive coronary angiogram. Finally a meta-analysis of
LVH and VAs has been conducted that incorporates five
studies and 5659 patients [31]. Results were suggestive of a
2.8 fold greater risk of VT or VF in the presence of
hypertensive LVH, and without significant inter-study het-
erogeneity (I2= 9%). However, all included studies were
observational with varying study designs and patient char-
acteristics (Table 1). Two studies were confounded by co-
existent CAD [32, 33], and three other studies only
demonstrated non-sustained VAs [34–36].

Trials that have looked at the benefit of LVH regression
by pharmacotherapy have not shown a causal link to sus-
tained VAs. Meta-analysis has shown that angiotensin II
receptor antagonists, angiotensin-converting enzyme inhi-
bitors, calcium antagonists, diuretics and beta blockers can
induce regression of LVH to varying degrees [37]. The
HOPE (Heart Outcomes Prevention Evaluation) trial
showed that prevention/regression of ECG-diagnosed LVH
was associated with a reduction in cardiovascular death,
cardiac arrest myocardial infarction and stroke. However
these effects were seen in all sub-groups, including without
hypertension, and hint that some of this effect may be
related to renin–angiotensin–aldosterone inhibition rather
than blood pressure modification [38]. In addition the LIFE
(Losartan Intervention For Endpoint Reduction in Hyper-
tension) trial showed that angiotensin II blockade was
superior compared to atenolol at reducing morbidity and
mortality in hypertensive patients alongside reduction in
LVH [39]. However this was primarily driven by a 25%
relative risk reduction in stroke with no difference in Ta
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cardiovascular death. Furthermore one trial showed that
treatment with ramipril ± felodipine would reduce left ven-
tricular mass index but not produce a sustained reduction in
ventricular ectopic beats. Thus pharmacotherapy can
improve outcomes in hypertensive patients but this does not
appear to be by prevention of sustained VAs [40].

Overall, there appears to be a dearth of trials confirming
association between hypertensive LVH and progression to
sustained VAs and SCD. By contrast, there are several other
pathological conditions either associated with systemic
hypertension or resulting in increased LV mass index that
have been validated to increase dysrhythmic risk (Table 2)
[41]. The reason for the disparity for sustained VAs
between animal models and human clinical data, as well as
between hypertensive LVH and other conditions resulting
in increased LV mass such as HCM, may be due to the
homogenous distribution of changes seen in hypertensive
LVH. Late gadolinium enhancement on cardiac magnetic
resonance imaging has shown that fibrosis in hypertensive
LVH patients is predominantly non-subendocardial. In
patients with HCM, it is primarily non-subendocardial and
typically distributed anteroseptally, inferoseptally and at
right ventricular insertion points with these focal changes
linked to increased prevalence and complexity of VAs on
ambulatory monitoring [42, 43]. Another study has shown
that focal asymmetrical hypertrophy in HCM, compared to
the more diffuse distribution seen in hypertensive LVH, was
inversely correlated with QTc dispersion time in V1–V4
and these patients had a higher risk of sustained VT on
subsequent implantable cardioverter-defibrillator interroga-
tions [44]. The combination of structural and electrical
remodelling (involving gap junctions and ion channels)
alongside focal fibrosis appears to result in increased
transmural dispersion of repolarisation and secondary pre-
ponderance to sustained VAs.

Conclusion

The pathophysiological changes found in animal models of
hypertensive LVH, including cellular changes (ion channels)

and abnormalities in inter-cellular conduction (fibrosis and
gap junction re-distribution), provide a putative basis for
ventricular arrhythmogenesis in this population. Clinical
data in humans has shown an increased prevalence and
complexity of VAs in hypertensive LVH patients but there is
a lack of confirmatory trial data suggestive of progression to
sustained VAs that can cause SCD. This may be due to the
more homogenous distribution of pathophysiological chan-
ges seen in hypertensive LVH when compared with known
pro-arrhythmic disorders such as HCM and myocardial
infarction where there is myocardial disarray and/or fibrosis.
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