Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

The use of clinical examination and cranial ultrasound in the diagnosis and management of post-hemorrhagic ventricular dilation in extremely premature infants

Abstract

Objectives

The objective of this study is to describe clinical and ultrasound changes in a cohort of premature newborns with post-hemorrhagic ventricular dilation (PHVD), and to correlate these changes with outcome.

Study Design

Premature newborns <29 weeks gestational age (GA) and ≤ 1,500 g birth weight with intraventricular hemorrhage were retrospectively reviewed. Clinical signs and cranial ultrasound (CUS) findings between time after birth and time before first cerebrospinal fluid temporizing intervention were compared with GA-equivalent newborns without interventions. White matter injury was assessed on brain magnetic resonance imaging.

Results

Between 2011 and 2014, 64 newborns met inclusion criteria; 23% had PHVD. The growth rates of the ventricles on CUS and the head circumference (HC) were higher in newborns with PHVD (p < 0.01 and p = 0.04, respectively) and correlated inversely with white matter injury (p = 0.006 and p < 0.001, respectively).

Conclusion

Progression of PHVD in premature newborns as demonstrated by CUS and the HC correlated with outcome. Consistent measurement of these simple parameters will allow for much needed treatment comparisons, to define optimal protocols that decrease the risk of cerebral palsy in extremely preterm populations.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Winter S, Autry A, Boyle C, Yeargin-Allsopp M. Trends in the prevalence of cerebral palsy in a population-based study. Pediatrics. 2002;110(6):1220–5.

    Article  PubMed  Google Scholar 

  2. Pakula AT, Van Naarden Braun K, Yeargin-Allsopp M. Cerebral palsy: classification and epidemiology. Phys Med Rehabil Clin N Am. 2009;20(3):425–52.

    Article  PubMed  Google Scholar 

  3. Dyet LE, Kennea N, Counsell SJ, Maalouf EF, Ajayi-Obe M, Duggan PJ, et al. Natural history of brain lesions in extremely preterm infants studied with serial magnetic resonance imaging from birth and neurodevelopmental assessment. Pediatrics. 2006;118(2):536–48.

    Article  PubMed  Google Scholar 

  4. Fletcher JM, Landry SH, Bohan TP, Davidson KC, Brookshire BL, Lachar D, et al. Effects of intraventricular hemorrhage and hydrocephalus on the long-term neurobehavioral development of preterm very-low-birthweight infants. Dev Med Child Neurol. 1997;39(9):596–606.

    Article  PubMed  CAS  Google Scholar 

  5. Brouwer A, Groenendaal F, van Haastert IL, Rademaker K, Hanlo P, de Vries L. Neurodevelopmental outcome of preterm infants with severe intraventricular hemorrhage and therapy for post-hemorrhagic ventricular dilatation. J Pediatr. 2008;152(5):648–54.

    Article  PubMed  Google Scholar 

  6. Shankaran S, Koepke T, Woldt E, Bedard MP, Dajani R, Eisenbrey AB, et al. Outcome after posthemorrhagic ventriculomegaly in comparison with mild hemorrhage without ventriculomegaly. J Pediatr. 1989;114(1):109–14.

    Article  PubMed  CAS  Google Scholar 

  7. Klebermass-Schrehof K, Rona Z, Waldhor T, Czaba C, Beke A, Weninger M, et al. Can neurophysiological assessment improve timing of intervention in posthaemorrhagic ventricular dilatation? Arch Dis Child Fetal Neonatal Ed. 2013;98(4):2012–302323.

    Article  Google Scholar 

  8. Olischar M, Klebermass K, Hengl B, Hunt RW, Waldhoer T, Pollak A, et al. Cerebrospinal fluid drainage in posthaemorrhagic ventricular dilatation leads to improvement in amplitude-integrated electroencephalographic activity. Acta Paediatr. 2009;98(6):1002–9.

    Article  PubMed  Google Scholar 

  9. Riva-Cambrin J, Shannon CN, Holubkov R, Whitehead WE, Kulkarni AV, Drake J, et al. Center effect and other factors influencing temporization and shunting of cerebrospinal fluid in preterm infants with intraventricular hemorrhage. J Neurosurg Pediatr. 2012;9(5):473–81.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Brouwer MJ, de Vries LS, Groenendaal F, Koopman C, Pistorius LR, Mulder EJ, et al. New reference values for the neonatal cerebral ventricles. Radiology. 2012;262(1):224–33.

    Article  PubMed  Google Scholar 

  11. Davies MW, Swaminathan M, Chuang SL, Betheras FR. Reference ranges for the linear dimensions of the intracranial ventricles in preterm neonates. Arch Dis Child Fetal Neonatal Ed. 2000;82(3):F218–23.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Levene MI. Measurement of the growth of the lateral ventricles in preterm infants with real-time ultrasound. Arch Dis Child. 1981;56(12):900–4.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Zamora C, Tekes A, Alqahtani E, Kalayci OT, Northington F, Huisman TA. Variability of resistive indices in the anterior cerebral artery during fontanel compression in preterm and term neonates measured by transcranial duplex sonography. J Perinatol. 2014;34(4):306–10.

    Article  PubMed  CAS  Google Scholar 

  14. Hill A, Volpe JJ. Decrease in pulsatile flow in the anterior cerebral arteries in infantile hydrocephalus. Pediatrics. 1982;69(1):4–7.

    PubMed  CAS  Google Scholar 

  15. Papile LA, Burstein J, Burstein R, Koffler H, Koops BL, Johnson JD. Posthemorrhagic hydrocephalus in low-birth-weight infants: treatment by serial lumbar punctures. J Pediatr. 1980;97(2):273–7.

    Article  PubMed  CAS  Google Scholar 

  16. Harris PA, Taylor R, Thielke R, Payne J, Gonzalez N, Conde JG. Research electronic data capture (REDCap)--a metadata-driven methodology and workflow process for providing translational research informatics support. J Biomed Inform. 2009;42(2):377–81.

    Article  PubMed  Google Scholar 

  17. Ment LR, Bada HS, Barnes P, Grant PE, Hirtz D, Papile LA, et al. Practice parameter: neuroimaging of the neonate: report of the Quality Standards Subcommittee of the American Academy of Neurology and the Practice Committee of the Child Neurology Society. Neurology. 2002;58(12):1726–38.

    Article  PubMed  CAS  Google Scholar 

  18. Inder TE, Wells SJ, Mogridge NB, Spencer C, Volpe JJ. Defining the nature of the cerebral abnormalities in the premature infant: a qualitative magnetic resonance imaging study. J Pediatr. 2003;143(2):171–9.

    Article  PubMed  Google Scholar 

  19. Palisano RJ, Copeland WP, Galuppi BE. Performance of physical activities by adolescents with cerebral palsy. Phys Ther. 2007;87(1):77–87.

    Article  PubMed  Google Scholar 

  20. Fenton TR. A new growth chart for preterm babies: Babson and Benda’s chart updated with recent data and a new format. BMC Pediatr. 2003;3:13.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Limbrick DD Jr., Mathur A, Johnston JM, Munro R, Sagar J, Inder T, et al. Neurosurgical treatment of progressive posthemorrhagic ventricular dilation in preterm infants: a 10-year single-institution study. J Neurosurg Pediatr. 2010;6(3):224–30.

    Article  PubMed  Google Scholar 

  22. Bassan H, Eshel R, Golan I, Kohelet D, Ben Sira L, Mandel D, et al. Timing of external ventricular drainage and neurodevelopmental outcome in preterm infants with posthemorrhagic hydrocephalus. Eur J Paediatr Neurol. 2012;16(6):662–70.

    Article  PubMed  Google Scholar 

  23. Willis B, Javalkar V, Vannemreddy P, Caldito G, Matsuyama J, Guthikonda B, et al. Ventricular reservoirs and ventriculoperitoneal shunts for premature infants with posthemorrhagic hydrocephalus: an institutional experience. J Neurosurg Pediatr. 2009;3(2):94–100.

    Article  PubMed  Google Scholar 

  24. Ellenbogen JR, Waqar M, Pettorini B. Management of post-haemorrhagic hydrocephalus in premature infants. J Clin Neurosci. 2016;31:30–4.

    Article  PubMed  Google Scholar 

  25. Del Bigio MR, Kanfer JN, Zhang YW. Myelination delay in the cerebral white matter of immature rats with kaolin-induced hydrocephalus is reversible. J Neuropathol Exp Neurol. 1997;56(9):1053–66.

    Article  PubMed  Google Scholar 

  26. Del Bigio MR, Wilson MJ, Enno T. Chronic hydrocephalus in rats and humans: white matter loss and behavior changes. Ann Neurol. 2003;53(3):337–46.

    Article  PubMed  Google Scholar 

  27. de Vries LS, Liem KD, van Dijk K, Smit BJ, Sie L, Rademaker KJ, et al. Early versus late treatment of posthaemorrhagic ventricular dilatation: results of a retrospective study from five neonatal intensive care units in The Netherlands. Acta Paediatr. 2002;91(2):212–7.

    Article  PubMed  Google Scholar 

  28. Srinivasakumar P, Limbrick D, Munro R, Mercer D, Rao R, Inder T, et al. Posthemorrhagic ventricular dilatation-impact on early neurodevelopmental outcome. Am J Perinatol. 2013;30(3):207–14.

    PubMed  Google Scholar 

  29. Muller WD, Urlesberger B. Correlation of ventricular size and head circumference after severe intra-periventricular haemorrhage in preterm infants. Childs Nerv Syst. 1992;8(1):33–5.

    Article  PubMed  CAS  Google Scholar 

  30. Ingram MC, Huguenard AL, Miller BA, Chern JJ. Poor correlation between head circumference and cranial ultrasound findings in premature infants with intraventricular hemorrhage. J Neurosurg Pediatr. 2014;14(2):184–9.

    Article  PubMed  Google Scholar 

  31. Volpe JJ, Pasternak JF, Allan WC. Ventricular dilation preceding rapid head growth following neonatal intracranial hemorrhage. Am J Dis Child. 1977;131(11):1212–5.

    PubMed  CAS  Google Scholar 

  32. Traylor KS, Daugherty R. Patent ductus arteriosus incidentally suspected on a routine intracranial ultrasound for prematurity; confirmed on echocardiogram. Del Med J. 2015;87(1):17–9.

    PubMed  Google Scholar 

  33. Mazzola CA, Choudhri AF, Auguste KI, Limbrick DD Jr., Rogido M, Mitchell L, et al. Pediatric hydrocephalus: systematic literature review and evidence-based guidelines. Part 2: management of posthemorrhagic hydrocephalus in premature infants. J Neurosurg Pediatr. 2014;1:8–23.

    Article  Google Scholar 

  34. Anwar M, Kadam S, Hiatt IM, Hegyi T. Serial lumbar punctures in prevention of post-hemorrhagic hydrocephalus in preterm infants. J Pediatr. 1985;107(3):446–50.

    Article  PubMed  CAS  Google Scholar 

  35. Tian AG, Hintz SR, Cohen RS, Edwards MS. Ventricular access devices are safe and effective in the treatment of posthemorrhagic ventricular dilatation prior to shunt placement. Pediatr Neurosurg. 2012;48(1):13–20.

    Article  PubMed  Google Scholar 

  36. Wellons JC 3rd, Shannon CN, Holubkov R, Riva-Cambrin J, Kulkarni AV, Limbrick DD Jr., et al. Shunting outcomes in posthemorrhagic hydrocephalus: results of a Hydrocephalus Clinical Research Network prospective cohort study. J Neurosurg Pediatr. 2017;20(1):19–29.

    Article  PubMed  Google Scholar 

  37. Nagy A, Bognar L, Pataki I, Barta Z, Novak L. Ventriculosubgaleal shunt in the treatment of posthemorrhagic and postinfectious hydrocephalus of premature infants. Childs Nerv Syst. 2013;29(3):413–8.

    Article  PubMed  Google Scholar 

Download references

Funding

Funding

This work was supported by a grant from the Board of Visitors of Children’s National for the establishment of a Cerebral Palsy Prevention Program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rawad Obeid.

Additional information

Disclosures: The authors declare no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Obeid, R., Chang, T., Bluth, E. et al. The use of clinical examination and cranial ultrasound in the diagnosis and management of post-hemorrhagic ventricular dilation in extremely premature infants. J Perinatol 38, 374–380 (2018). https://doi.org/10.1038/s41372-017-0017-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41372-017-0017-3

This article is cited by

Search

Quick links