Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Blood potassium and urine aldosterone after doxapram therapy for preterm infants

Abstract

Objective:

We often encounter infants who developed hypokalaemia following low-dose doxapram for apnea of prematurity (AOP).

Aims:

To determine changes in blood potassium (K+) levels after doxapram administration.

Study design:

We studied infants born before 30 weeks gestation. Doxapram (0.1–0.3 mg/kg/h) in addition to methylxanthines was used to treat AOP refractory to methylxanthines.

Results:

Twenty-five infants received doxapram were studied. Fifty-two percent developed hypokalemia (<3.0 mEq/L) during doxapram administration. Time after starting doxapram to nadir blood K+ (<3.0 mEq/L) level was 11 days. Blood K+ levels normalized after 5 days of stopping doxapram administration. Data at 10 days before and after and at the time of doxapram administration were, respectively: lowest blood K+ level: 3.9, 3.0, and 3.6 mEq/L; urine aldosterone: 90, 206, and 146 pg/μg creatinine. Blood pH, blood pressure and urine volume were similar.

Conclusions:

Doxapram-induced hypokalemia may be due to an inappropriate increase in aldosterone levels.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Henderson-Smart DJ, De Paoli AG. Methylxanthine treatment for apnoea in preterm infants. Cochrane Database Syst Rev. 2010;CD000140.

  2. Henderson-Smart DJ, Steer PA. Caffeine versus theophylline for apnea in preterm infants. Cochrane Database Syst Rev. 2010;CD000273.

  3. Vliegenthart RJ, Ten Hove CH, Onland W, van Kaam AH. Doxapram treatment for apnea of prematurity: a systematic review. Neonatology. 2017;111:162–71.

    Article  PubMed  Google Scholar 

  4. Henderson-Smart D, Steer P. Doxapram treatment for apnea in preterm infants. Cochrane Database Syst Rev. 2004;CD000074.

  5. Yamazaki T, Kajiwara M, Itahashi K, Fujimura M. Low-dose doxapram therapy for idiopathic apnea of prematurity. Pediatr Int. 2001;43:124–7.

    Article  PubMed  CAS  Google Scholar 

  6. Fischer C, Ferdynus C, Gouyon JB, Semama DS. Doxapram and hypokalaemia in very preterm infants. Arch Dis Child Fetal Neonatal Ed. 2013;98:F416–8.

    Article  PubMed  Google Scholar 

  7. Bockenhauer D, Zieg J. Electrolyte disorders. Clin Perinatol. 2014;41:575–90.

    Article  PubMed  Google Scholar 

  8. Passmore AP, Kondowe GB, Johnston GD. Caffeine and hypokalemia. Ann Intern Med. 1986;105:468.

    Article  PubMed  CAS  Google Scholar 

  9. Amitai Y, Lovejoy FH Jr.. Hypokalemia in acute theophylline poisoning. Am J Emerg Med. 1988;6:214–8.

    Article  PubMed  CAS  Google Scholar 

  10. Wong CS, Pavord ID, Williams J, Tattersfield AE. Bronchodilator, cardiovascular, and hypokalaemic effects of fenoterol, salbutamol, and terbutaline in asthma. Lancet. 1990;336:1396–9.

    Article  PubMed  CAS  Google Scholar 

  11. Braden GL, von Oeyen PT, Germain MJ, Watson DJ, Haag BL. Ritodrine- and terbutaline-induced hypokalemia in preterm labor: mechanisms and consequences. Kidney Int. 1997;51:1867–75.

    Article  PubMed  CAS  Google Scholar 

  12. Segar JL. Neonatal diuretic therapy: furosemide, thiazides, and spironolactone. Clin Perinatol. 2012;39:209–20.

    Article  PubMed  Google Scholar 

  13. Tsai WS, Wu CP, Hsu YJ, Lin SH. Life-threatening hypokalemia in an asthmatic patient treated with high-dose hydrocortisone. Am J Med Sci. 2004;327:152–5.

    Article  PubMed  Google Scholar 

  14. Lucas da Silva PS, Iglesias SB, Waisberg J. Hypokalemic rhabdomyolysis in a child due to amphotericin B therapy. Eur J Pediatr. 2007;166:169–71.

    Article  PubMed  Google Scholar 

  15. Laragh JH. Atrial natriuretic hormone, the renin-aldosterone axis, and blood pressure-electrolyte homeostasis. N Engl J Med. 1985;313:1330–40.

    Article  PubMed  CAS  Google Scholar 

  16. Himathongkam T, Dluhy RG, Williams GH. Potassium-aldosterone-renin interrelationships. J Clin Endocrinol Metab. 1975;41:153–9.

    Article  PubMed  CAS  Google Scholar 

  17. Yost CS. A new look at the respiratory stimulant doxapram. CNS Drug Rev. 2006;12:236–49.

    Article  PubMed  CAS  Google Scholar 

  18. Davies LA, Hu C, Guagliardo NA, Sen N, Chen X, Talley EM, et al. TASK channel deletion in mice causes primary hyperaldosteronism. Proc Natl Acad Sci USA. 2008;105:2203–8.

    Article  PubMed  Google Scholar 

  19. Batlle DC, Arruda JA, Kurtzman NA. Hyperkalemic distal renal tubular acidosis associated with obstructive uropathy. N Engl J Med. 1981;304:373–80.

    Article  PubMed  CAS  Google Scholar 

  20. Wilkins BH. The glomerular filterability of polyfructosan-S in immature infants. Pediatr Nephrol. 1992;6:319–22.

    Article  PubMed  CAS  Google Scholar 

  21. Vieux R, Hascoet JM, Merdariu D, Fresson J, Guillemin F. Glomerular filtration rate reference values in very preterm infants. Pediatrics. 2010;125:e1186–92.

    Article  PubMed  Google Scholar 

  22. Burnell JM, Villamil MF, Uyeno BT, Villamil MF. The effect in humans of extracellular pH change on the relationship between serum potassium concentration and intracellular potassium. J Clin Invest. 1956;35:935–9.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Kobrin SM, Goldfarb S. Magnesium deficiency. Semin Nephrol. 1990;10:525–35.

    PubMed  CAS  Google Scholar 

  24. Kim DW, Joo JD, In JH, Jeon YS, Jung HS, Jeon KB, et al. Comparison of the recovery and respiratory effects of aminophylline and doxapram following total intravenous anesthesia with propofol and remifentanil. J Clin Anesth. 2013;25:173–6.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tomoyuki Shimokaze.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethics approval

Ethical approval was obtained by Institutional Review Board of Kanagawa Children’s Medical Center.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shimokaze, T., Toyoshima, K., Shibasaki, J. et al. Blood potassium and urine aldosterone after doxapram therapy for preterm infants. J Perinatol 38, 702–707 (2018). https://doi.org/10.1038/s41372-018-0087-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41372-018-0087-x

This article is cited by

Search

Quick links