Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Preterm lung and brain responses to mechanical ventilation and corticosteroids

Abstract

Mechanical ventilation is necessary to maintain oxygenation and ventilation in many preterm infants. Unfortunately, even short periods of mechanical ventilation can cause lung and airway injury, and initiate the lung inflammation that contributes to the development of bronchopulmonary dysplasia (BPD). The mechanical stretch leads to airway cell differentiation and simplification of the alveoli, and releases cytokines that cause systemic response in other organs. Mechanical ventilation also leads to brain injury (IVH, white and gray matter) and neuronal inflammation that can affect the neurodevelopment of preterm infants. In efforts to decrease BPD, corticosteroids have been used for both prevention and treatment of lung inflammation. Corticosteroids have also been demonstrated to cause neuronal injury, so the clinician must balance the negative effects of both mechanical ventilation and steroids on the brain and lungs. Predictive models for BPD can help assess the infants who will benefit most from corticosteroid exposure. This review describes the lung and brain injury from mechanical ventilation in the delivery room and chronic mechanical ventilation in animal models. It provides updates on the current guidelines for use of postnatal corticosteroids (dexamethasone, hydrocortisone, budesonide, budesonide with surfactant) for the prevention and treatment of BPD, and the effects the timing of each steroid regimen has on neurodevelopment.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Effects of mechanical ventilation on lung and brain in preterm animals.

Similar content being viewed by others

References

  1. Horbar JD, Edwards EM, Greenberg LT, Morrow KA, Soll RF, Buus-Frank ME, et al. Variation in performance of neonatal intensive care units in the United States. JAMA Pediatr. 2017;171:e164396.

    PubMed  Google Scholar 

  2. Jensen EA, Edwards EM, Greenberg LT, Soll RF, Ehret DEY, Horbar JD. Severity of bronchopulmonary dysplasia among very preterm infants in the United States. Pediatrics. 2021;148:e2020030007.

    PubMed  Google Scholar 

  3. Hillman NH, Moss TJ, Kallapur SG, Bachurski C, Pillow JJ, Polglase GR, et al. Brief, large tidal volume ventilation initiates lung injury and a systemic response in fetal sheep. Am J Respir Crit Care Med. 2007;176:575–81.

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Hillman NH, Moss TJ, Nitsos I, Jobe AH. Moderate tidal volumes and oxygen exposure during initiation of ventilation in preterm fetal sheep. Pediatr Res. 2012;72:593–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Hillman NH, Polglase GR, Pillow JJ, Saito M, Kallapur SG, Jobe AH. Inflammation and lung maturation from stretch injury in preterm fetal sheep. Am J Physiol Lung Cell Mol Physiol. 2011;300:L232–241.

    CAS  PubMed  Google Scholar 

  6. Thebaud B, Goss KN, Laughon M, Whitsett JA, Abman SH, Steinhorn RH, et al. Bronchopulmonary dysplasia. Nat Rev Dis Prim. 2019;5:78.

    PubMed  Google Scholar 

  7. Isayama T, Iwami H, McDonald S, Beyene J. Association of noninvasive ventilation strategies with mortality and bronchopulmonary dysplasia among preterm infants: a systematic review and meta-analysis. JAMA. 2016;316:611–24.

    PubMed  Google Scholar 

  8. Polglase GR, Miller SL, Barton SK, Baburamani AA, Wong FY, Aridas JD, et al. Initiation of resuscitation with high tidal volumes causes cerebral hemodynamic disturbance, brain inflammation and injury in preterm lambs. PLoS One. 2012;7:e39535.

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Cheong JLY, Doyle LW. An update on pulmonary and neurodevelopmental outcomes of bronchopulmonary dysplasia. Semin Perinatol. 2018;42:478–84.

    PubMed  Google Scholar 

  10. Doyle LW, Halliday HL, Ehrenkranz RA, Davis PG, Sinclair JC. An update on the impact of postnatal systemic corticosteroids on mortality and cerebral palsy in preterm infants: effect modification by risk of bronchopulmonary dysplasia. J Pediatr. 2014;165:1258–60.

    CAS  PubMed  Google Scholar 

  11. Jobe AH, Hillman N, Polglase G, Kramer BW, Kallapur S, Pillow J. Injury and inflammation from resuscitation of the preterm infant. Neonatology. 2008;94:190–6.

    PubMed  Google Scholar 

  12. Deptula N, Royse E, Kemp MW, Miura Y, Kallapur SG, Jobe AH, et al. Brief mechanical ventilation causes differential epithelial repair along the airways of fetal, preterm lambs. Am J Physiol Lung Cell Mol Physiol. 2016;311:L412–420.

    PubMed  PubMed Central  Google Scholar 

  13. Resende JG, Menezes CG, Paula AM, Ferreira AC, Zaconeta CA, Silva CA, et al. Evaluation of peak inspiratory pressure and respiratory rate during ventilation of an infant lung model with a self-inflating bag. J Pediatr (Rio J). 2006;82:359–64.

    PubMed  Google Scholar 

  14. Bjorland PA, Ersdal HL, Haynes J, Ushakova A, Oymar K, Rettedal SI. Tidal volumes and pressures delivered by the NeoPuff T-piece resuscitator during resuscitation of term newborns. Resuscitation. 2022;170:222–9.

    PubMed  Google Scholar 

  15. Tingay DG, Pereira-Fantini PM, Oakley R, McCall KE, Perkins EJ, Miedema M, et al. Gradual aeration at birth is more lung protective than a sustained inflation in preterm lambs. Am J Respir Crit Care Med. 2019;200:608–16.

    CAS  PubMed  Google Scholar 

  16. Hillman NH, Nitsos I, Berry C, Pillow JJ, Kallapur SG, Jobe AH. Positive end-expiratory pressure and surfactant decrease lung injury during initiation of ventilation in fetal sheep. Am J Physiol Lung Cell Mol Physiol. 2011;301:L712–720.

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Hooper SB, Te Pas AB, Kitchen MJ. Respiratory transition in the newborn: a three-phase process. Arch Dis Child Fetal Neonatal Ed. 2016;101:F266–271.

    PubMed  Google Scholar 

  18. Barton SK, Moss TJ, Hooper SB, Crossley KJ, Gill AW, Kluckow M, et al. Protective ventilation of preterm lambs exposed to acute chorioamnionitis does not reduce ventilation-induced lung or brain injury. PLoS One. 2014;9:e112402.

    PubMed  PubMed Central  Google Scholar 

  19. Dreyfuss D, Soler P, Basset G, Saumon G. High inflation pressure pulmonary edema. Respective effects of high airway pressure, high tidal volume, and positive end-expiratory pressure. Am Rev Respir Dis. 1988;137:1159–64.

    CAS  PubMed  Google Scholar 

  20. Hernandez LA, Peevy KJ, Moise AA, Parker JC. Chest wall restriction limits high airway pressure-induced lung injury in young rabbits. J Appl Physiol. 1989;66:2364–8.

    CAS  PubMed  Google Scholar 

  21. Taskar V, John J, Evander E, Robertson B, Jonson B. Surfactant dysfunction makes lungs vulnerable to repetitive collapse and reexpansion. Am J Respir Crit Care Med. 1997;155:313–20.

    CAS  PubMed  Google Scholar 

  22. Keszler M. Mechanical ventilation strategies. Semin Fetal Neonatal Med. 2017;22:267–74.

    PubMed  Google Scholar 

  23. Hillman NH, Kemp MW, Miura Y, Kallapur SG, Jobe AH. Sustained inflation at birth did not alter lung injury from mechanical ventilation in surfactant-treated fetal lambs. PLoS One. 2014;9:e113473.

    PubMed  PubMed Central  Google Scholar 

  24. Kapadia VS, Urlesberger B, Soraisham A, Liley HG, Schmolzer GM, Rabi Y, et al. Sustained lung inflations during neonatal resuscitation at birth: a meta-analysis. Pediatrics. 2021;147:e2020021204.

    PubMed  Google Scholar 

  25. Bamat N, Fierro J, Wang Y, Millar D, Kirpalani H. Positive end-expiratory pressure for preterm infants requiring conventional mechanical ventilation for respiratory distress syndrome or bronchopulmonary dysplasia. Cochrane Database Syst Rev. 2019;2:CD004500.

    PubMed  Google Scholar 

  26. Sandhar BK, Niblett DJ, Argiras EP, Dunnill MS, Sykes MK. Effects of positive end-expiratory pressure on hyaline membrane formation in a rabbit model of the neonatal respiratory distress syndrome. Intensive Care Med. 1988;14:538–46.

    CAS  PubMed  Google Scholar 

  27. Robertson B, Berry D, Curstedt T, Grossmann G, Ikegami M, Jacobs H, et al. Leakage of protein in the immature rabbit lung; effect of surfactant replacement. Respir Physiol. 1985;61:265–76.

    CAS  PubMed  Google Scholar 

  28. Matute-Bello G, Downey G, Moore BB, Groshong SD, Matthay MA, Slutsky AS, et al. An official American Thoracic Society workshop report: features and measurements of experimental acute lung injury in animals. Am J Respir Cell Mol Biol. 2011;44:725–38.

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Hughes KT, Beasley MB. Pulmonary manifestations of acute lung injury: more than just diffuse alveolar damage. Arch Pathol Lab Med. 2017;141:916–22.

    PubMed  Google Scholar 

  30. Hillman NH, Kallapur SG, Pillow JJ, Moss TJ, Polglase GR, Nitsos I, et al. Airway injury from initiating ventilation in preterm sheep. Pediatr Res. 2010;67:60–65.

    PubMed  PubMed Central  Google Scholar 

  31. Abugisisa L, Royse EX, Kemp MW, Jobe AH, Hillman NH. Preterm ovine respiratory epithelial cell responses to mechanical ventilation, lipopolysaccharide, and interleukin 13. Am J Physiol Lung Cell Mol Physiol. 2023. https://doi.org/10.1152/ajplung.00355.2022. Online ahead of print.

  32. Dai H, Pan L, Lin F, Ge W, Li W, He S. Mechanical ventilation modulates Toll-like receptors 2, 4, and 9 on alveolar macrophages in a ventilator-induced lung injury model. J Thorac Dis. 2015;7:616–24.

    PubMed  PubMed Central  Google Scholar 

  33. Jobe AH, Ikegami M. Lung development and function in preterm infants in the surfactant treatment era. Annu Rev Physiol. 2000;62:825–46.

    CAS  PubMed  Google Scholar 

  34. Hennessy EM, Bracewell M, Wood N, Wolke D, Costeloe KL, Gibson AT, et al. Respiratory health in pre-school and school age children following extremely preterm birth. Arch Dis Child. 2008;93:1037–43.

  35. Polglase GR, Hillman NH, Ball MK, Kramer BW, Kallapur SG, Jobe AH, et al. Title: lung and systemic inflammation in preterm lambs on CPAP or conventional ventilation. Pediatr Res. 2009;65:67–71.

  36. Schmolzer GM, Kumar M, Pichler G, Aziz K, O’Reilly M, Cheung PY. Non-invasive versus invasive respiratory support in preterm infants at birth: systematic review and meta-analysis. BMJ-Brit Med J. 2013;347:f5980.

    Google Scholar 

  37. Mayer CA, Ganguly A, Mayer A, Pabelick CM, Prakash YS, Hascall VC, et al. CPAP-induced airway hyper-reactivity in mice is modulated by hyaluronan synthase-3. Pediatr Res. 2022;92:685–93.

    CAS  PubMed  Google Scholar 

  38. Albertine KH. Progress in understanding the pathogenesis of BPD using the baboon and sheep models. Semin Perinatol. 2013;37:60–68.

    PubMed  PubMed Central  Google Scholar 

  39. Surate Solaligue DE, Rodriguez-Castillo JA, Ahlbrecht K, Morty RE. Recent advances in our understanding of the mechanisms of late lung development and bronchopulmonary dysplasia. Am J Physiol Lung Cell Mol Physiol. 2017;313:L1101–L1153.

    PubMed  Google Scholar 

  40. Brew N, Hooper SB, Zahra V, Wallace M, Harding R. Mechanical ventilation injury and repair in extremely and very preterm lungs. PLoS One. 2013;8:e63905.

    PubMed  PubMed Central  Google Scholar 

  41. Narayanan M, Beardsmore CS, Owers-Bradley J, Dogaru CM, Mada M, Ball I, et al. Catch-up alveolarization in ex-preterm children: evidence from (3)He magnetic resonance. Am J Respir Crit Care Med. 2013;187:1104–9.

    PubMed  PubMed Central  Google Scholar 

  42. Cannavo L, Perrone S, Viola V, Marseglia L, Di Rosa G, Gitto E. Oxidative stress and respiratory diseases in preterm newborns. Int J Mol Sci. 2021;22:12504.

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Kalikkot Thekkeveedu R, El-Saie A, Prakash V, Katakam L, Shivanna B. Ventilation-induced lung injury (VILI) in neonates: evidence-based concepts and lung-protective strategies. J Clin Med. 2022;11:557.

    PubMed  PubMed Central  Google Scholar 

  44. Hillman NH, Kallapur SG, Pillow JJ, Nitsos I, Polglase GR, Ikegami M, et al. Inhibitors of inflammation and endogenous surfactant pool size as modulators of lung injury with initiation of ventilation in preterm sheep. Respir Res. 2010;11:151.

    PubMed  PubMed Central  Google Scholar 

  45. Ball MK, Jobe AH, Polglase GR, Kallapur SG, Cheah FC, Hillman NH, et al. High and low body temperature during the initiation of ventilation for near-term lambs. Resuscitation. 2009;80:133–7.

    PubMed  Google Scholar 

  46. Mulrooney N, Champion Z, Moss TJ, Nitsos I, Ikegami M, Jobe AH. Surfactant and physiological responses of preterm lambs to continuous positive airway pressure. Am J Respir Crit Care Med. 2005;171:1–6.

    Google Scholar 

  47. Brumley GW, Hodson WA, Avery ME. Lung phospholipids and surface tension correlations in infants with and without hyaline membrane disease and in adults. Pediatr. 1967;40:13–19.

    CAS  Google Scholar 

  48. McGoldrick E, Stewart F, Parker R, Dalziel SR. Antenatal corticosteroids for accelerating fetal lung maturation for women at risk of preterm birth. Cochrane Database Syst Rev. 2020;12:CD004454.

    PubMed  Google Scholar 

  49. Hillman NH, Pillow JJ, Ball MK, Polglase GR, Kallapur SG, Jobe AH. Antenatal and postnatal corticosteroid and resuscitation induced lung injury in preterm sheep. Respir Res. 2009;10:124.

    PubMed  PubMed Central  Google Scholar 

  50. Abiramalatha T, Ramaswamy VV, Bandyopadhyay T, Somanath SH, Shaik NB, Pullattayil AK, et al. Interventions to prevent bronchopulmonary dysplasia in preterm neonates: an umbrella review of systematic reviews and meta-analyses. JAMA Pediatr. 2022;176:502–16.

    PubMed  Google Scholar 

  51. Abdel-Latif ME, Davis PG, Wheeler KI, De Paoli AG, Dargaville PA. Surfactant therapy via thin catheter in preterm infants with or at risk of respiratory distress syndrome. Cochrane Database Syst Rev. 2021;5:CD011672.

    PubMed  Google Scholar 

  52. Devi U, Roberts KD, Pandita A. A systematic review of surfactant delivery via laryngeal mask airway, pharyngeal instillation, and aerosolization: methods, limitations, and outcomes. Pediatr Pulmonol. 2022;57:9–19.

    PubMed  Google Scholar 

  53. Ng EH, Shah V. Guidelines for surfactant replacement therapy in neonates. Paediatr Child Health. 2021;26:35–49.

    PubMed  PubMed Central  Google Scholar 

  54. Peng W, Zhu H, Shi H, Liu E. Volume-targeted ventilation is more suitable than pressure-limited ventilation for preterm infants: a systematic review and meta-analysis. Arch Dis Child Fetal Neonatal Ed. 2014;99:F158–165.

    PubMed  Google Scholar 

  55. Ackermann BW, Klotz D, Hentschel R, Thome UH, van Kaam AH. High-frequency ventilation in preterm infants and neonates. Pediatr Res. 2022. https://doi.org/10.1038/s41390-021-01639-8. Online ahead of print.

  56. Albertine KH. Brain injury in chronically ventilated preterm neonates: collateral damage related to ventilation strategy. Clin Perinatol. 2012;39:727–40.

    PubMed  PubMed Central  Google Scholar 

  57. Chan KYY, Miller SL, Schmolzer GM, Stojanovska V, Polglase GR. Respiratory support of the preterm neonate: lessons about ventilation-induced brain injury from large animal models. Front Neurol. 2020;11:862.

    PubMed  PubMed Central  Google Scholar 

  58. Mian Q, Cheung PY, O’Reilly M, Barton SK, Polglase GR, Schmolzer GM. Impact of delivered tidal volume on the occurrence of intraventricular haemorrhage in preterm infants during positive pressure ventilation in the delivery room. Arch Dis Child Fetal Neonatal Ed. 2019;104:F57–F62.

    PubMed  Google Scholar 

  59. Alahmari DM, Chan KYY, Stojanovska V, LaRosa D, Barton SK, Nitsos I, et al. Diffusion tensor imaging detects ventilation-induced brain injury in preterm lambs. PLoS One. 2017;12:e0188737.

    PubMed  PubMed Central  Google Scholar 

  60. Hillman NH, Kothe TB, Schmidt AF, Kemp MW, Royse E, Fee E, et al. Surfactant plus budesonide decreases lung and systemic responses to injurious ventilation in preterm sheep. Am J Physiol Lung Cell Mol Physiol. 2020;318:L41–8.

    CAS  PubMed  Google Scholar 

  61. Loeliger M, Inder T, Cain S, Ramesh RC, Camm E, Thomson MA, et al. Cerebral outcomes in a preterm baboon model of early versus delayed nasal continuous positive airway pressure. Pediatrics. 2006;118:1640–53.

    PubMed  Google Scholar 

  62. Patra A, Huang H, Bauer JA, Giannone PJ. Neurological consequences of systemic inflammation in the premature neonate. Neural Regen Res. 2017;12:890–6.

    PubMed  PubMed Central  Google Scholar 

  63. Brouwer MJ, Kersbergen KJ, van Kooij BJM, Benders M, van Haastert IC, Koopman-Esseboom C, et al. Preterm brain injury on term-equivalent age MRI in relation to perinatal factors and neurodevelopmental outcome at two years. PLoS One. 2017;12:e0177128.

    PubMed  PubMed Central  Google Scholar 

  64. Khwaja O, Volpe JJ. Pathogenesis of cerebral white matter injury of prematurity. Arch Dis Child Fetal Neonatal Ed. 2008;93:F153–161.

    CAS  PubMed  Google Scholar 

  65. Leviton A, Kuban K, O’Shea TM, Paneth N, Fichorova R, Allred EN, et al. The relationship between early concentrations of 25 blood proteins and cerebral white matter injury in preterm newborns: the ELGAN study. J Pediatr. 2011;158:897–903.

    CAS  PubMed  Google Scholar 

  66. Malaeb SN, Stonestreet BS. Steroids and injury to the developing brain: net harm or net benefit? Clin Perinatol. 2014;41:191–208.

    PubMed  PubMed Central  Google Scholar 

  67. Htun ZT, Schulz EV, Desai RK, Marasch JL, McPherson CC, Mastrandrea LD, et al. Postnatal steroid management in preterm infants with evolving bronchopulmonary dysplasia. J Perinatol. 2021;41:1783–96.

    PubMed  PubMed Central  Google Scholar 

  68. Vinukonda G, Dummula K, Malik S, Hu F, Thompson CI, Csiszar A, et al. Effect of prenatal glucocorticoids on cerebral vasculature of the developing brain. Stroke. 2010;41:1766–73.

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Meijer OC, de Lange EC, Breimer DD, de Boer AG, Workel JO, de Kloet ER. Penetration of dexamethasone into brain glucocorticoid targets is enhanced in mdr1A P-glycoprotein knockout mice. Endocrinology. 1998;139:1789–93.

    CAS  PubMed  Google Scholar 

  70. Crochemore C, Lu J, Wu Y, Liposits Z, Sousa N, Holsboer F, et al. Direct targeting of hippocampal neurons for apoptosis by glucocorticoids is reversible by mineralocorticoid receptor activation. Mol Psychiatry. 2005;10:790–8.

    CAS  PubMed  Google Scholar 

  71. Grossmann C, Scholz T, Rochel M, Bumke-Vogt C, Oelkers W, Pfeiffer AF, et al. Transactivation via the human glucocorticoid and mineralocorticoid receptor by therapeutically used steroids in CV-1 cells: a comparison of their glucocorticoid and mineralocorticoid properties. Eur J Endocrinol. 2004;151:397–406.

    CAS  PubMed  Google Scholar 

  72. Doyle LW. Postnatal corticosteroids to prevent or treat bronchopulmonary dysplasia. Neonatology. 2021;118:244–51.

    CAS  PubMed  Google Scholar 

  73. Cummings JJ. PAACOFAN. Postnatal corticosteroids to prevent or treat chronic lung disease following preterm birth. Pediatrics. 2022;149:e2022057530.

    Google Scholar 

  74. Doyle LW, Cheong JL, Hay S, Manley BJ, Halliday HL. Late (>/= 7 days) systemic postnatal corticosteroids for prevention of bronchopulmonary dysplasia in preterm infants. Cochrane Database Syst Rev. 2021;11:CD001145.

    PubMed  Google Scholar 

  75. Doyle LW, Cheong JL, Hay S, Manley BJ, Halliday HL. Early (<7 days) systemic postnatal corticosteroids for prevention of bronchopulmonary dysplasia in preterm infants. Cochrane Database Syst Rev. 2021;10:CD001146.

    PubMed  Google Scholar 

  76. Parikh NA, Lasky RE, Kennedy KA, Moya FR, Hochhauser L, Romo S, et al. Postnatal dexamethasone therapy and cerebral tissue volumes in extremely low birth weight infants. Pediatrics. 2007;119:265–72.

    PubMed  Google Scholar 

  77. Murphy BP, Inder TE, Huppi PS, Warfield S, Zientara GP, Kikinis R, et al. Impaired cerebral cortical gray matter growth after treatment with dexamethasone for neonatal chronic lung disease. Pediatrics. 2001;107:217–21.

    CAS  PubMed  Google Scholar 

  78. Ramaswamy VV, Bandyopadhyay T, Nanda D, Bandiya P, Ahmed J, Garg A, et al. Assessment of postnatal corticosteroids for the prevention of bronchopulmonary dysplasia in preterm neonates: a systematic review and network meta-analysis. JAMA Pediatr. 2021;175:e206826.

    PubMed  PubMed Central  Google Scholar 

  79. Puia-Dumitrescu M, Wood TR, Comstock BA, Law JB, German K, Perez KM, et al. Dexamethasone, prednisolone, and methylprednisolone use and 2-year neurodevelopmental outcomes in extremely preterm infants. JAMA Netw Open. 2022;5:e221947.

    PubMed  PubMed Central  Google Scholar 

  80. Scott SM, Watterberg KL. Effect of gestational age, postnatal age, and illness on plasma cortisol concentrations in premature infants. Pediatr Res. 1995;37:112–6.

    CAS  PubMed  Google Scholar 

  81. Baud O, Watterberg KL. Prophylactic postnatal corticosteroids: early hydrocortisone. Semin Fetal Neonatal Med. 2019;24:202–6.

    PubMed  Google Scholar 

  82. Shaffer ML, Baud O, Lacaze-Masmonteil T, Peltoniemi OM, Bonsante F, Watterberg KL. Effect of prophylaxis for early adrenal insufficiency using low-dose hydrocortisone in very preterm infants: an individual patient data meta-analysis. J Pediatr. 2019;207:136–42.

    CAS  PubMed  Google Scholar 

  83. Kersbergen KJ, de Vries LS, van Kooij BJ, Isgum I, Rademaker KJ, van Bel F, et al. Hydrocortisone treatment for bronchopulmonary dysplasia and brain volumes in preterm infants. J Pediatr. 2013;163:666–71.

    CAS  PubMed  Google Scholar 

  84. Alison M, Tilea B, Toumazi A, Biran V, Mohamed D, Alberti C, et al. Prophylactic hydrocortisone in extremely preterm infants and brain MRI abnormality. Arch Dis Child Fetal Neonatal Ed. 2020;105:520–5.

  85. Onland W, Cools F, Kroon A, Rademaker K, Merkus MP, Dijk PH, et al. Effect of hydrocortisone therapy initiated 7 to 14 days after birth on mortality or bronchopulmonary dysplasia among very preterm infants receiving mechanical ventilation: a randomized clinical trial. JAMA. 2019;321:354–63.

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Watterberg KL, Walsh MC, Li L, Chawla S, D’Angio CT, Goldberg RN, et al. Hydrocortisone to improve survival without bronchopulmonary dysplasia. N. Engl J Med. 2022;386:1121–31.

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Halbmeijer NM, Onland W, Cools F, Swarte R, van der Heide-Jalving M, Merkus MP, et al. Effect of systemic hydrocortisone initiated 7 to 14 days after birth in ventilated preterm infants on mortality and neurodevelopment at 2 years’ corrected age: follow-up of a randomized clinical trial. JAMA. 2021;326:355–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Zeng L, Tian J, Song F, Li W, Jiang L, Gui G, et al. Corticosteroids for the prevention of bronchopulmonary dysplasia in preterm infants: a network meta-analysis. Arch Dis Child Fetal Neonatal Ed. 2018;103:F506–F511.

    PubMed  Google Scholar 

  89. Bhandari A, Schramm CM, Kimble C, Pappagallo M, Hussain N. Effect of a short course of prednisolone in infants with oxygen-dependent bronchopulmonary dysplasia. Pediatrics. 2008;121:e344–9.

    PubMed  Google Scholar 

  90. Linafelter A, Cuna A, Liu C, Quigley A, Truog WE, Sampath V, et al. Extended course of prednisolone in infants with severe bronchopulmonary dysplasia. Early Hum Dev. 2019;136:1–6.

    CAS  PubMed  Google Scholar 

  91. Allen DB. Inhaled corticosteroids and endocrine effects in childhood. Endocrinol Metab Clin North Am. 2020;49:651–65.

    PubMed  Google Scholar 

  92. Moore CD, Roberts JK, Orton CR, Murai T, Fidler TP, Reilly CA, et al. Metabolic pathways of inhaled glucocorticoids by the CYP3A enzymes. Drug Metab Dispos. 2013;41:379–89.

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Bassler D, Shinwell ES, Hallman M, Jarreau PH, Plavka R, Carnielli V, et al. Long-term effects of inhaled budesonide for bronchopulmonary dysplasia. N. Engl J Med. 2018;378:148–57.

    CAS  PubMed  Google Scholar 

  94. Onland W, Offringa M, van Kaam A. Late (>/= 7 days) inhalation corticosteroids to reduce bronchopulmonary dysplasia in preterm infants. Cochrane Database Syst Rev. 2017;8:CD002311.

    PubMed  Google Scholar 

  95. Chen CM, Chang CH, Chao CH, Wang MH, Yeh TF. Biophysical and chemical stability of surfactant/budesonide and the pulmonary distribution following intra-tracheal administration. Drug Deliv. 2019;26:604–11.

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Kothe TB, Kemp MW, Schmidt AF, Royse E, Salomone F, Clarke MW, et al. Surfactant plus budesonide decreases lung and systemic inflammation in mechanically ventilated preterm sheep. Am J Physiol Lung Cell Mol Physiol. 2019;316:L888–L893.

    CAS  PubMed  PubMed Central  Google Scholar 

  97. Yeh TF, Chen CM, Wu SY, Husan Z, Li TC, Hsieh WS, et al. Intratracheal administration of budesonide/surfactant to prevent bronchopulmonary dysplasia. Am J Respir Crit Care Med. 2016;193:86–95.

    CAS  PubMed  Google Scholar 

  98. Yeh TF, Lin HC, Chang CH, Wu TS, Su BH, Li TC, et al. Early intratracheal instillation of budesonide using surfactant as a vehicle to prevent chronic lung disease in preterm infants: a pilot study. Pediatrics. 2008;121:e1310–1318.

    PubMed  Google Scholar 

  99. Kothe TB, Sadiq FH, Burleyson N, Williams HL, Anderson C, Hillman NH. Surfactant and budesonide for respiratory distress syndrome: an observational study. Pediatr Res. 2020;87:940–5.

    CAS  PubMed  Google Scholar 

  100. Hillman NH, Abugisisa L, Royse E, Fee E, Kemp MW, Kramer BW, et al. Dose of budesonide with surfactant affects lung and systemic inflammation after normal and injurious ventilation in preterm lambs. Pediatr Res. 2020;88:726–32.

  101. Becker SA, Kothe TB, Josephsen JB, Jackson K, Williams HL, Hillman NH. Early physiological and adrenal effects of budesonide mixed with surfactant in large observational preterm cohort study. Neonatology. 2022;119:474–82.

    CAS  PubMed  Google Scholar 

  102. Anderson CD, Kothe TB, Josephsen JB, Sadiq FH, Burleyson N, Williams HL, et al. Budesonide mixed with surfactant did not affect neurodevelopmental outcomes at 6 or 18 months corrected age in observational cohorts. J Perinatol. 2021;41:1681–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  103. Kuo HT, Lin HC, Tsai CH, Chouc IC, Yeh TF. A follow-up study of preterm infants given budesonide using surfactant as a vehicle to prevent chronic lung disease in preterm infants. J Pediatr. 2010;156:537–41.

    CAS  PubMed  Google Scholar 

  104. McEvoy CT, Ballard PL, Ward RM, Rower JE, Wadhawan R, Hudak ML, et al. Dose-escalation trial of budesonide in surfactant for prevention of bronchopulmonary dysplasia in extremely low gestational age high-risk newborns (SASSIE). Pediatr Res. 2020;88:629–36.

    CAS  PubMed  PubMed Central  Google Scholar 

  105. Ballard PL, Torgerson D, Wadhawan R, Hudak ML, Weitkamp JH, Harris J, et al. Blood metabolomics in infants enrolled in a dose escalation pilot trial of budesonide in surfactant. Pediatr Res. 2021;90:784–94.

    CAS  PubMed  PubMed Central  Google Scholar 

  106. Hillman NH, Kemp MW, Fee E, Rittenschober-Bohm J, Royse E, Abugisisa L, et al. Budesonide with surfactant decreases systemic responses in mechanically ventilated preterm lambs exposed to fetal intra-amniotic lipopolysaccharide. Pediatr Res. 2021;90:328–34.

    CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by NIH grants R21- HD100721-01 (NHH).

Author information

Authors and Affiliations

Authors

Contributions

NHH drafted, revised, and approved the manuscript. AJH revised and approved the manuscript.

Corresponding author

Correspondence to Noah H. Hillman.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hillman, N.H., Jobe, A.H. Preterm lung and brain responses to mechanical ventilation and corticosteroids. J Perinatol 43, 1222–1229 (2023). https://doi.org/10.1038/s41372-023-01692-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41372-023-01692-7

Search

Quick links