Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

Erythrokinetic mechanism(s) causing the “late anemia” of hemolytic disease of the fetus and newborn

Abstract

A transfusion-requiring “late anemia” can complicate the management of neonates convalescing from hemolytic disease of the fetus and newborn (HDFN). This anemia can occur in any neonate after HDFN but is particularly prominent in those who received intrauterine transfusions and/or double-volume exchange transfusions. Various reports describe this condition as occurring based on ongoing hemolysis, either due to passive transfer of alloantibody through breast milk or persistence of antibody not removed by exchange transfusion. However, other reports describe this condition as the result of inadequate erythrocyte production. Both hypotheses might have merit, because perhaps; (1) some cases are primarily due to continued hemolysis, (2) others are primarily hypoproductive, and (3) yet others result from a mixture of these two mechanisms. We propose prospective collaborative studies that will resolve this issue by serially quantifying end-tidal carbon monoxide. Doing this will better inform the assessment and treatment of neonates recovering from HDFN.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Moise KJ. Hemolytic disease of the fetus and newborn. Clin Adv Hematol Oncol. 2013;11:664–6.

    PubMed  Google Scholar 

  2. De Winter DP, Hulzebos C, Van ‘t Oever RM, De Haas M, Verweij EJ, Lopriore E. History and current standard of postnatal management in hemolytic disease of the fetus and newborn. Eur J Pediatr. 2023;182:489–500.

    Article  PubMed  Google Scholar 

  3. Yu D, Ling LE, Krumme AA, Tjoa ML, Moise KJ Jr. Live birth prevalence of hemolytic disease of the fetus and newborn in the United States from 1996 to 2010. AJOG Glob Rep. 2023;3:100203.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Koenig JM, Ashton RD, De Vore GR, Christensen RD. Late hyporegenerative anemia in Rh hemolytic disease. J Pediatr. 1989;115:315–8.

    Article  CAS  PubMed  Google Scholar 

  5. Ohls RK, Wirkus PE, Christensen RD. Recombinant erythropoietin as treatment for the late hyporegenerative anemia of Rh hemolytic disease. Pediatrics. 1992;90:678–80.

    Article  CAS  PubMed  Google Scholar 

  6. Rath ME, Smits-Wintjens VE, Lindenburg I, Brand A, Oepkes D, Walther FJ, et al. Top-up transfusions in neonates with Rh hemolytic disease in relation to exchange transfusions. Vox Sang. 2010;99:65–70.

    Article  CAS  PubMed  Google Scholar 

  7. Rath ME, Smits-Wintjens VE, Lindenburg IT, Brand A, van Kamp IL, Oepkes D, et al. Exchange transfusions and top-up transfusions in neonates with Kell haemolytic disease compared to Rh D haemolytic disease. Vox Sang. 2011;100:312–6.

    Article  CAS  PubMed  Google Scholar 

  8. Christensen RD, Bahr TM, Ilstrup SI, Dizon-Townson DS. Alloimmune hemolytic disease of the fetus and newborn: genetics, structure, and function of the commonly involved erythrocyte antigens. J Perinatol. 2023;43:1459–67.

  9. Vaughan JI, Manning M, Warwick RM, Letsky EA, Murray NA, Roberts IA. Inhibition of erythroid progenitor cells by anti-Kell antibodies in fetal alloimmune anemia. N Engl J Med. 1998;338:798–803.

    Article  CAS  PubMed  Google Scholar 

  10. Moise KJ. Fetal anemia due to non-Rhesus-D red-cell alloimmunization. Semin Fetal Neonatal Med. 2008;13:207–14.

    Article  PubMed  Google Scholar 

  11. Van ‘t Oever RM, Zwiers C, de Winter D, de Haas M, Oepkes D, Lopriore E, et al. Identification and management of fetal anemia due to hemolytic disease. Expert Rev Hematol. 2022;15(Nov):987–98.

    Article  PubMed  Google Scholar 

  12. Ree IMC, Lopriore E, Zwiers C, Böhringer S, Janssen MWM, Oepkes D, et al. Suppression of compensatory erythropoiesis in hemolytic disease of the fetus and newborn due to intrauterine transfusions. Am J Obstet Gynecol. 2020;223:119.e1–119.e10.

    Article  PubMed  Google Scholar 

  13. Ree IMC, Smits-Wintjens VEHJ, van der Bom JG, van Klink JMM, Oepkes D, Lopriore E. Neonatal management, and outcome in alloimmune hemolytic disease. Expert Rev Hematol. 2017l;10:607–16.

    Article  CAS  PubMed  Google Scholar 

  14. Ree IMC, de Haas M, Middelburg RA, Zwiers C, Oepkes D, van der Bom JG, et al. Predicting anaemia and transfusion dependency in severe alloimmune haemolytic disease of the fetus and newborn in the first 3 months after birth. Br J Haematol. 2019;186:565–73.

    Article  CAS  PubMed  Google Scholar 

  15. Ree IMC, Besuden CFJ, Wintjens VEHJ, Verweij JEJT, Oepkes D, de Haas M, et al. Exchange transfusions in severe Rh-mediated alloimmune haemolytic disease of the foetus and newborn: a 20-year overview on the incidence, associated risks, and outcome. Vox Sang. 2021;116:990–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Shah U, Dickinson BL, Blumberg RS, Simister NE, Lencer WI, Walker WA. Distribution of the IgG Fc receptor, FcRn, in the human fetal intestine. Pediatr Res. 2003;53:295–301.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Santhanakrishnan M, Tormey CA, Natarajan P, Liu J, Hendrickson JE. Clinically significant anti-KEL RBC alloantibodies are transferred by breast milk in a murine model. Vox Sang. 2016;111:79–87.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Li M, Blaustein JC. Persistent hemolytic disease of the fetus and newborn (HDFN) associated with passive acquisition of anti-D in maternal breast milk. Transfusion. 2017;57:2121–4.

    Article  PubMed  Google Scholar 

  19. DeMoss P, Asfour M, Hershey K. Anti-Ki (Kell) antibody expressed in maternal breast milk: a case report of a neonate with multiple intrauterine transfusions and postnatal exposure to Kell antibody in maternal breastmilk. Case Pre Pediatr. 2017;2017:6927813.

    Google Scholar 

  20. Leonard A, Hittson Boal K, Pary P, Mo YD, Jacquot C, Luban NL, et al. Identification of red blood cell antibodies in maternal breast milk implicated in prolonged hemolytic disease of the fetus and newborn. Transfusions. 2019;59:1183–9.

    Article  CAS  Google Scholar 

  21. Kaya A, Yasar Y, Goral S, Tokgoz A, Muluk C, Sever T. Hemolysis in two newborns due to isohemagglutinins passively transferred from maternal breast milk. Indian J Hematol Blood Transfus. 2020;36:580–1.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Rasalam JE, Kumar S, Amalraj P, Bal HS, Mathai J, Kumar M, et al. Do red cell alloantibodies continue to challenge breast fed babies? Transfus Med. 2020;30:281–6.

    Article  PubMed  Google Scholar 

  23. Abels E, Jacobs JW, Prior D, Willets LC, Sostin N, Tormey CA, et al. Passive transfer of alloantibodies through breast milk as a mediator of hemolytic anemia. Transfusion. 2023;63:2188–96.

  24. Hauschner H, Rosenberg N, Seligsohn U, Mendelsohn R, Simmonds A, Shiff Y, et al. Persistent neonatal thrombocytopenia can be caused by IgA antiplatelet antibodies in breast milk of immune thrombocytopenic mothers. Blood. 2015;126:661–4.

    Article  CAS  PubMed  Google Scholar 

  25. Dorn I, Schlenke P, Härtel C. Prolonged anemia in an intrauterine-transfused neonate with Rh-hemolytic disease: no evidence for anti-D-related suppression of erythropoiesis in vitro. Transfusion. 2010;50:1064–70.

    Article  PubMed  Google Scholar 

  26. Bianchi M, Papacci P, Valentini CG, Barbagallo O, Vento G, Teofili L. Umbilical cord blood as a source for red-blood-cell transfusion in neonatology: a systematic review. Vox Sang. 2018;113:713–25.

    Article  PubMed  Google Scholar 

  27. Moise KJ Jr. The history of fetal therapy. Am J Perinatol. 2014;31:557–66.

    Article  PubMed  Google Scholar 

  28. Kragesteen BK, Giladi A, David E, Halevi S, Geirsdóttir L, Lempke OM, et al. The transcriptional and regulatory identity of erythropoietin producing cells. Nat Med. 2023;29:1191–1200.

    Article  CAS  PubMed  Google Scholar 

  29. Millard DD, Gidding SS, Socol ML, MacGregor SN, Dooley SL, Ney JA, et al. Effects of intravascular, intrauterine transfusion on prenatal and postnatal hemolysis and erythropoiesis in severe fetal isoimmunization. J Pediatr. 1990;117:447–54.

    Article  CAS  PubMed  Google Scholar 

  30. Sayar EH, Orhaner BB, Sayar E, NesrinTuran F, Küçük M. The frequency of vitamin B12, iron, and folic acid deficiency in the neonatal period and infancy, and the relationship with maternal levels. Turk Pediatr Ars. 2020;55:139–48.

    Google Scholar 

  31. Yalaz M, Bilgin BS, Köroğlu OA, Ay Y, Arıkan C, Sagol S, et al. Desferrioxamine treatment of iron overload secondary to RH isoimmunization and intrauterine transfusion in a newborn infant. Eur J Pediatr. 2011;170:1457–60.

    Article  PubMed  Google Scholar 

  32. Scaradavou A, Inglis S, Peterson P, Dunne J, Chervenak F, Bussel J. Suppression of erythropoiesis by intrauterine transfusions in hemolytic disease of the newborn: use of erythropoietin to treat the late anemia. J Pediatr. 1993;123:279–84.

    Article  CAS  PubMed  Google Scholar 

  33. Ovali F, Samanci N, Dagoglu T. Management of late anemia in Rhesus hemolytic disease: use of recombinant human erythropoietin (a pilot study). Pediatr Res. 1996;39:831–4.

    Article  CAS  PubMed  Google Scholar 

  34. Zuppa AA, Maragliano G, Scapillati ME, Florio MG, Girlando P, Noia G, et al. Recombinant erythropoietin in the prevention of late anaemia in intrauterine transfused neonates with Rh-haemolytic disease. Fetal Diagn Ther. 1999;14:270–4.

    Article  CAS  PubMed  Google Scholar 

  35. Nicaise C, Gire C, Casha P, d’Ercole C, Chau C, Palix C. Erythropoietin as treatment for late hyporegenerative anemia in neonates with Rh hemolytic disease after in utero exchange transfusion. Fetal Diagn Ther. 2002;17:22–4.

    Article  PubMed  Google Scholar 

  36. Zuppa AA, Alighieri G, Calabrese V, Visintini F, Cota F, Carducci C, et al. Recombinant human erythropoietin in the prevention of late anemia in intrauterine transfused neonates with Rh-isoimmunization. J Pediatr Hematol Oncol. 2010;32:e95–101.

    Article  CAS  PubMed  Google Scholar 

  37. Ree IMC, deHass M, van Geloven N, Juul SE, de Winter D, Verweij EJT, et al. Randomized controlled trial on the use of darbepoetin to reduce transfusion episodes in infants with erythrocyte alloimmunization treated with intrauterine transfusions. Lancet Hematol. 2023. in press.

  38. Christensen RD, Bahr TM, Wong RJ, Vreman HJ, Bhutani VK, Stevenson DK. A “gold standard” test for diagnosing and quantifying hemolysis in neonates and infants. J Perinatol. 2023;43:1541–7.

  39. Bhutani VK, Maisels MJ, Schutzman DL, Castillo Cuadrado ME, Aby JL, Bogen DL, et al. Identification of risk for neonatal haemolysis. Acta Paediatr. 2018;107:1350–6.

    Article  CAS  PubMed  Google Scholar 

  40. Bhatia A, Chua MC, Dela Puerta R, Rajadurai VS. Noninvasive detection of hemolysis with ETCOc measurement in neonates at risk for significant hyperbilirubinemia. Neonatology. 2020;117:612–8.

    Article  CAS  PubMed  Google Scholar 

  41. Du L, Ma X, Shen X, Bao Y, Chen L, Bhutani VK. Neonatal hyperbilirubinemia management: clinical assessment of bilirubin production. Semin Perinatol. 2021;45:151351.

    Article  PubMed  Google Scholar 

  42. Bao Y, Zhu J, Ma L, Zhang H, Sun L, Xu C, et al. An end-tidal carbon monoxide nomogram for term and late-preterm Chinese newborns. J Pediatr. 2022;250:16–21.e3

    Article  PubMed  Google Scholar 

  43. Pakdeeto S, Christensen TR, Bahr TM, Gerday E, Sheffield MJ, Christensen KS, et al. Reference intervals for end-tidal carbon monoxide of preterm neonates. J Perinatol. 2022;42:116–20.

    Article  PubMed  Google Scholar 

  44. Christensen RD, Bahr TM, Pakdeeto S, Supapannachart S, Zhang H. Perinatal hemolytic disorders, and identification using end tidal breath carbon monoxide. Curr Pediatr Rev. 2023;19:376–87.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: RDC, TMB, KJM, and EL. Formal analysis: RDC, TMB, RKO, KJM, EL, SJI and JAM. Writing of the original manuscript draft: RDC. Writing – review and editing: RDC, TMB, RKO, KJM, EL, SJL and JAM. All authors have read and agreed to the published version of the manuscript.

Corresponding author

Correspondence to Robert D. Christensen.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Christensen, R.D., Bahr, T.M., Ohls, R.K. et al. Erythrokinetic mechanism(s) causing the “late anemia” of hemolytic disease of the fetus and newborn. J Perinatol (2024). https://doi.org/10.1038/s41372-024-01872-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41372-024-01872-z

Search

Quick links