Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Estimation of the causal effect of sex on neonatal intensive care unit outcomes among very low birth weight infants

Abstract

Objective

Estimate the causal effect of sex on outcomes in the neonatal intensive care unit (NICU) among very low birth weight (VLBW) infants.

Study design

Retrospective cohort study using Vermont Oxford Network data to compare NICU outcomes for VLBW males versus females. Odds ratios (OR) for outcomes that differed significantly by sex were computed using standard unweighted analysis and inverse probability weighted (IPW) analysis to correct for selection bias.

Results

Using standard analysis, males were significantly more likely to die before discharge and experience six other adverse outcomes. From IPW analysis, male sex caused a 56% increase in the odds of death before discharge (OR = 1.56, 95% confidence interval: 1.18–1.94). Standard unweighted results were significantly biased towards increased risk of adverse outcomes for males (p = 0.005) compared to IPW results for which three outcomes were no longer significantly associated with male sex.

Conclusion

Standard statistical methods generally overestimate the casual effect of sex among VLBW infants.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Scatterplot of GA versus BW.
Fig. 2: DAGs depicting assumed casual relationships between sex, BW, GA, unmeasured covariates and outcomes.

Similar content being viewed by others

Data availability

Study data was obtained from, and all data definitions were governed by the Vermont Oxford Network (VON). The dataset analyzed for the current study is not publicly available due to IRB and VON policies that strictly protect the data as privileged and confidential, but the corresponding author will make every effort to accommodate reasonable requests for information about the study data.

References

  1. Wyllie J. Sex differences in infant mortality. Can Public Health J. 1933;24:177–85.

    Google Scholar 

  2. Naeye RL, Burt LS, Wright DL, Blanc WA, Tatter D. Neonatal mortality, the male disadvantage. Pediatrics. 1971;48:902–6.

    Article  CAS  PubMed  Google Scholar 

  3. Kent AL, Wright IM, Abdel-Latif ME, New South Wales and Australian Capital Territory Neonatal Intensive Care Units Audit Group. Mortality and adverse neurologic outcomes are greater in preterm male infants. Pediatrics. 2012;129:124–31.

    Article  PubMed  Google Scholar 

  4. Jones HP, Karuri S, Cronin CMG, Ohlsson A, Pelioski A, Synnes A, et al. Actuarial survival of a large Canadian cohort of preterm infants. BMC Pediatr. 2005;5:40.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Serenius F, Ewald U, Farooqi A, Holmgren PÅ, Håkansson S, Sedin G. Short-term outcome after active perinatal management at 23-25 weeks of gestation. A study from two Swedish tertiary care centres. Part 2: infant survival. Acta Paediatr. 2004;93:1081–9.

    Article  CAS  PubMed  Google Scholar 

  6. Brothwood M, Wolke D, Gamsu H, Benson J, Cooper D. Prognosis of the very low birth weight baby in relation to gender. Arch Dis Child. 1986;61:559–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Vu HD, Dickinson C, Kandasamy Y. Sex differences in mortality for premature and low birth weight neonates: a systematic review. Am J Perinatol. 2018;35:707–15.

    Article  PubMed  Google Scholar 

  8. Binet ME, Bujold E, Lefebvre F, Tremblay Y, Piedboeuf B, for the Canadian Neonatal Network. Role of gender in morbidity and mortality of extremely premature neonates. Am J Perinatol. 2012;29:159–66.

    Article  PubMed  Google Scholar 

  9. Cuestas E, Bas J, Pautasso J. Sex differences in intraventricular hemorrhage rates among very low birth weight newborns. Gend Med. 2009;6:376–82.

    Article  PubMed  Google Scholar 

  10. Deulofeut R, Dudell G, Sola A. Treatment-by-gender effect when aiming to avoid hyperoxia in preterm infants in the NICU. Acta Paediatr. 2007;96:990–4.

    Article  PubMed  Google Scholar 

  11. Peelen MJ, Kazemier BM, Ravelli AC, De Groot CJM, Van Der Post JAM, Mol BWJ, et al. Impact of fetal gender on the risk of preterm birth, a national cohort study. Acta Obstet Gynecol Scand. 2016;95:1034–41.

    Article  PubMed  Google Scholar 

  12. O’Driscoll D, McGovern M, Greene CM, Molloy EJ. Gender disparities in neonatal outcomes. Acta Paediatr. 2018;107:1494–9.

    Article  Google Scholar 

  13. Stevenson DK, Verter J, Fanaro AA, Oh W, Ehrenkranz RA, Shankaran S, et al. Sex differences in outcomes of very low birth weight infants: the newborn male disadvantage. Arch Dis Child Fetal Neonatal Ed. 2000;83:F182–185.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Garfinkle J, Yoon EW, Alvaro R, Nwaesei C, Claveau M, Lee SK. Trends in sex-specific differences in outcomes in extreme preterms: progress or natural barriers? Arch Dis Child Fetal Neonatal Ed. 2020;105:158–63.

    Article  PubMed  Google Scholar 

  15. Hernán MA, Robins JM. Causal Inference: What If. Chapman & Hall/CRC: Boca Raton, 2020.

  16. Seri I, Evans J. Limits of viability: definition of the gray zone. J Perinatol. 2008;28:S4–S8.

    Article  PubMed  Google Scholar 

  17. Spiegler J, Schlaud M, König I, Teig N, Hubert M, Herting E, Göpel W, and the German Neonatal Network. Very low birth weight infants after discharge: what do parents describe? Early Hum Dev. 2013;89:343–7.

    Article  PubMed  Google Scholar 

  18. Baron RM, Kenny DA. The moderator-mediator variable distinction in social psychological research: conceptual, strategic, and statistical considerations. J Pers Soc Psychol. 1986;51:1173–82.

    Article  CAS  PubMed  Google Scholar 

  19. Yu Q, Li B, Statistical Methods for Mediation, Confounding, and Moderation Analysis using R and SAS. Chapman & Hall/CRC: Boca Raton, 2022.

  20. Campbell DM, MacGillivray I, Carr-Hill R, Samphier M. Fetal sex and pre-eclampsia in primigravidae. Br J Obstet Gynaecol. 1983;90:26–27.

    Article  CAS  PubMed  Google Scholar 

  21. McGregor JA, Leff M, Orleans M, Baron A. Fetal gender differences in preterm birth: findings in a North American cohort. Am J Perinatol 1992;9:43–48.

    Article  CAS  PubMed  Google Scholar 

  22. Cooperstock M, Campbell J. Excess males in preterm birth: interactions with GA, race, and multiple birth. Obstet Gynecol. 1996;88:189–93.

    Article  CAS  PubMed  Google Scholar 

  23. Astolfi P, Zonta LA. Risks of preterm delivery and association with maternal age, birth order, and fetal gender. Hum Reprod. 1999;14:2891–4.

    Article  CAS  PubMed  Google Scholar 

  24. Zeitlin J, Saurel-Cubizolles MJ, De Mouzon J, Rivera L, Ancel PY, Blondle B, et al. Fetal sex and preterm birth: are males at greater risk? Hum Reprod. 2002;17:2762–8.

    Article  PubMed  Google Scholar 

  25. Ingemarsson I. Gender aspects of preterm birth. Br J Obstet Gynaecol. 2003;110:34e8.

    Article  Google Scholar 

  26. Di Renzo GC, Rosati A, Sarti RD, Cruciani L, Cutuli AM. Does fetal sex affect pregnancy outcome? Gend Med. 2007;4:19–30.

    Article  PubMed  Google Scholar 

  27. Cooper R, Power C. Sex differences in the associations between birthweight and lipid levels in middle-age: findings from the 1958 British birth cohort. Atherosclerosis. 2008;200:141–9.

    Article  CAS  PubMed  Google Scholar 

  28. Lao TT, Sahota DS, Suen SS, Law LW, Law TY. The impact of fetal gender on preterm birth in a southern Chinese population. J Matern Fetal Neonatal Med. 2011;24:1440–3.

    Article  PubMed  Google Scholar 

  29. Aibar L, Puertas A, Valverde M, Carrillo MP, Montoya F. Fetal sex and perinatal outcomes. J Perinat Med. 2012;40:271–6.

    Article  PubMed  Google Scholar 

  30. Yamakita M, Sato M, Suzuki K, Ando D, Yamagata Z. Sex differences in birthweight and physical activity in Japanese schoolchildren. J Epidemiol. 2018;28:331–5.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Stark MJ, Clifton VL, Wright IM. Sex-specific differences in peripheral microvascular blood flow in preterm infants. Pediatr Res. 2008;63:415–9.

    Article  PubMed  Google Scholar 

  32. Townsel CD, Emmer SF, Campbell WA, Hussain N. Gender differences in respiratory morbidity and mortality of preterm neonates. Front Pediatr. 2017;5:6.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Meakin AS, Cuffe J, Darby J, Morrison JL, Clifton VL. Let’s talk about placental sex, baby: understanding mechanisms that drive female- and male-specific fetal growth and developmental outcomes. Int J Mol Sci. 2021;22:6386.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Inkster AM, Fernández-Boyano I, Robinson WP. Sex differences are here to stay: relevance to prenatal care. J Clin Med. 2021;10:3000.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Bhaumik U, Aitken I, Kawachi I, Ringer S, Orav J, Lieberman E. Narrowing of sex differences in infant mortality in Massachusetts. J Perinatol. 2004;24:94–99.

    Article  PubMed  Google Scholar 

  36. Boghossian NS, Geraci M, Edwards EM, Horbar JD. Sex differences in mortality and morbidity of infants born at less than 30 weeks’ gestation. J Pediatr. 2018;142:e20182352.

    Article  Google Scholar 

  37. Fröhlich M, Tissen-Diabaté T, Bührer C, Roll S. Sex-specific long-term trends in length of hospital stay, postmenstrual age at discharge, and survival in very low birthweight infants. Neonatology. 2021;118:416–24.

    Article  PubMed  Google Scholar 

  38. Lingappan K, Jiang W, Wang L, Moorthy B. Sex-specific differences in neonatal hyperoxic lung injury. Am J Physiol Lung Cell Mol Physiol. 2014;311:L481–493.

    Article  Google Scholar 

  39. Namba F, Ogawa R, Ito M, Watanabe T, Dennery PA, Tamura M. Sex-related differences in long-term pulmonary outcomes of neonatal hyperoxia in mice. Exp Lung Res. 2016;42:57–65.

    Article  CAS  PubMed  Google Scholar 

  40. Bennet L, Galinsky R, Draghi V, Lear CA, Davidson JO, Unsworth CP, et al. Time and sex dependent effects of magnesium sulphate on post-asphyxial seizures in preterm fetal sheep. J Physiol. 2018;596:6079–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Tyson JE, Parikh NA, Langer J, Green C, Higgins RD. National Institute of Child Health and Human Development Neonatal Research Network. intensive care for extreme prematurity–moving beyond GA. N Engl J Med. 2008;358:1672–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Ohlsson A, Roberts RS, Schmidt B, Davis P, Moddeman D, Saigal S. Male/female differences in indomethacin effects in preterm infants. J Pediatr. 2005;147:860–2.

    Article  CAS  PubMed  Google Scholar 

  43. Baud O, Maury L, Lebail F, Ramful D, El Moussawi F, Nicaise C, et al. Effect of early low-dose hydrocortisone on survival without bronchopulmonary dysplasia in extremely preterm infants (PREMILOC): a double-blind, placebo-controlled, multicentre, randomised trial. Lancet. 2016;387:1827–36.

    Article  CAS  PubMed  Google Scholar 

  44. Tottman AC, Oliver CJ, Alsweiler JM, Cormack BE. Do preterm girls need different nutrition to preterm boys? Sex-specific nutrition for the preterm infant. Pediatr Res. 2021;89:313–7.

    Article  PubMed  Google Scholar 

  45. Bren L. Does sex make a difference? FDA Consum. 2005;39:10–15.

    PubMed  Google Scholar 

  46. Clayton JA, Collins FS. Policy: NIH to balance sex in cell and animal studies. Nature. 2014;509:282–3.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Rosenbaum PR, Rubin DB. The bias due to incomplete matching. Biometrics. 1985;41:103–16.

    Article  CAS  PubMed  Google Scholar 

  48. Schuster NA, Twisk JWR, ter Riet G, Heymans MW, Rijnhart JJM. Noncollapsibility and its role in quantifying confounding bias in logistic regression. BMC Med Res Methodol. 2021;21:136.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Hernan MA, Clayton D, Keiding N. The Simpson’s paradox unraveled. Int J Epidemiol. 2011;40:780–5.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Daniel R, Zhang J, Farewell D. Making apples from oranges: comparing noncollapsible effect estimators and their standard errors after adjustment for different covariate sets. Biomet J. 2020;63:528–57.

    Article  Google Scholar 

  51. Pang M, Kaufman JS, Platt RW. Studying noncollapsibility of the odds ratio with marginal structural and logistic regression models. Stat Methods Med Res. 2016;25:1925–37.

    Article  PubMed  Google Scholar 

  52. Janes H, Dominici F, Zeger S. On quantifying the magnitude of confounding. Biostatistics. 2010;11:572–82.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Funding

Funding

No funding was received to conduct this study.

Author information

Authors and Affiliations

Authors

Contributions

The study was conceived of and conducted solely by JH.

Corresponding author

Correspondence to Joseph L. Hagan.

Ethics declarations

Competing interests

The author declares no competing interests.

Ethics approval and consent to participate

This study was approved by the Baylor College of Medicine Institutional Review Board (IRB, protocol H-51590) with a waiver of consent to participate due to the retrospective design posing minimal risks to subjects. This study was performed in accordance with the Declaration of Helsinki.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hagan, J.L. Estimation of the causal effect of sex on neonatal intensive care unit outcomes among very low birth weight infants. J Perinatol (2024). https://doi.org/10.1038/s41372-024-01989-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41372-024-01989-1

Search

Quick links