Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Chronic lymphocytic leukemia

Mitochondrial apoptosis is induced by Alkoxy phenyl-1-propanone derivatives through PP2A-mediated dephosphorylation of Bad and Foxo3A in CLL

Abstract

Protein phosphatase 2 A (PP2A) is a tumour suppressor whose strong inhibition underlies the phosphorylation-dependent, anti-apoptotic mechanisms in Chronic Lymphocytic Leukemia (CLL). Inactivation of PP2A is due to the cooperative action of the phosphorylation of Y307 of its catalytic subunit by the aberrant cytosolic pool of the Src Family Kinase Lyn and the interaction with its protein inhibitor SET, which is overexpressed in CLL. In this study, we developed a library of compounds, the most potent being the one named CC11, which restores PP2A activity by disrupting the PP2A/SET complex, thereby triggering the mitochondrial pathway of apoptosis. This process involves the recruitment of the pro-apoptotic BH3-only proteins Bad and Bim to mitochondria, the former upon direct dephosphorylation and the latter being newly expressed upon dephosphorylation and activation of its transcription factor FoxO3a. These findings highlight that PP2A antagonizes the prosurvival pathways controlled by Akt, which phosphorylates and thereby suppresses a variety of pro-apoptotic factors and tumour suppressors including Bad and FoxO3a. Furthermore, the PP2A-mediated pro-apoptotic effect of CC11 is synergistically potentiated by the abrogation of Lyn’s activity. Our results show that CC11 represents a promising lead compound for a new therapeutic rationale aimed at abrogating the aberrant oncogenic signals in CLL.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Chiorazzi N, Rai KR, Ferrarini M. Chronic lymphocytic leukemia. N Engl J Med. 2005;352:804–15.

    Article  CAS  Google Scholar 

  2. Kipps TJ, Stevenson FK, Wu CJ, Croce CM, Packham G, Wierda WG, et al. Chronic lymphocytic leukaemia. Nat Rev Dis Prim. 2017;3:16096.

    Article  Google Scholar 

  3. Stevenson FK, Krysov S, Davies AJ, Steele AJ, Packham G. B-cell receptor signaling in chronic lymphocytic leukemia. Blood. 2011;118:4313–20.

    Article  CAS  Google Scholar 

  4. Jeyakumar D, O’Brien S. B cell receptor inhibition as a target for CLL therapy. Best Pract Res Clin Haematol. 2016;29:2–14.

    Article  Google Scholar 

  5. Burger JA, Tedeschi A, Barr PM, Robak T, Owen C, Ghia P, et al. Ibrutinib as initial therapy for patients with chronic lymphocytic leukemia. N Engl J Med. 2015;373:2425–37.

    Article  CAS  Google Scholar 

  6. Wu J, Liu C, Tsui ST, Liu D. Second-generation inhibitors of Bruton tyrosine kinase. J Hematol Oncol. 2016;9:80.

    Article  Google Scholar 

  7. Furman RR, Sharman JP, Coutre SE, Cheson BD, Pagel JM, Hillmen P, et al. Idelalisib and rituximab in relapsed chronic lymphocytic leukemia. N Engl J Med. 2014;370:997–1007.

    Article  CAS  Google Scholar 

  8. Byrd JC, Harrington B, O’Brien S, Jones JA, Schuh A, Devereux S, et al. Acalabrutinib (ACP-196) in relapsed chronic lymphocytic leukemia. N Engl J Med. 2016;374:323–32.

    Article  CAS  Google Scholar 

  9. Kater AP, Tonino SH, Kersten MJ, Hagenbeek A, Spiering M, van Oers MH, et al. Interim analysis of dose-escalation stage of a phase 1b study evaluating safety and pharmacology of gs-9820, a second-generation, selective, pi3kd-inhibitor in recurrent lymphoid malignancies. Blood. 2013;122:2881.

    Google Scholar 

  10. Contri A, Brunati AM, Trentin L, Cabrelle A, Miorin M, Cesaro L, et al. Chronic lymphocytic leukemia B cells contain anomalous Lyn tyrosine kinase, a putative contribution to defective apoptosis. J Clin Invest. 2005;115:369–78.

    Article  CAS  Google Scholar 

  11. Zonta F, Pagano MA, Trentin L, Tibaldi E, Frezzato F, Trimarco V, et al. Lyn sustains oncogenic signalling in chronic lymphocytic leukemia by strengthening SET-mediated inhibition of PP2A. Blood. 2015;125:3747–55.

    Article  CAS  Google Scholar 

  12. Trentin L, Frasson M, Donella-Deana A, Frezzato F, Pagano MA, Tibaldi E, et al. Geldanamycin-induced Lyn dissociation from aberrant Hsp90-stabilized cytosolic complex is an early event in apoptotic mechanisms in B-chronic lymphocytic leukemia. Blood. 2008;112:4665–74.

    Article  CAS  Google Scholar 

  13. Zonta F, Pagano MA, Trentin L, Tibaldi E, Frezzato F, Gattazzo C, et al. Lyn-mediated procaspase 8 dimerization blocks apoptotic signalling in B-cell chronic lymphocytic leukemia. Blood. 2014;123:875–83.

    Article  CAS  Google Scholar 

  14. Christensen DJ, Chen Y, Oddo J, Matta KM, Neil J, Davis ED, et al. SET oncoprotein overexpression in B-cell chronic lymphocytic leukemia and non-Hodgkin lymphoma: a predictor of aggressive disease and a new treatment target. Blood. 2011;118:4150–8.

    Article  CAS  Google Scholar 

  15. Oaks J, Ogretmen B. Regulation of PP2A by sphingolipid metabolism and signalling. Front Oncol. 2015;4:388.

    Article  Google Scholar 

  16. Saddoughi SA, Gencer S, Peterson YK, Ward KE, Mukhopadhyay A, Oaks J, et al. Sphingosine analogue drug FTY720 targets I2PP2A/SET and mediates lung tumour suppression via activation of PP2A-RIPK1-dependent necroptosis. EMBO Mol Med. 2013;5:105–21.

    Article  CAS  Google Scholar 

  17. Tibaldi E, Pagano MA, Frezzato F, Trimarco V, Facco M, Zagotto G, et al. Targeted activation of the SHP-1/PP2A signalling axis elicits apoptosis of chronic lymphocytic leukemia cells. Haematologica. 2017;102:1401–12.

    Article  CAS  Google Scholar 

  18. Kollek M, Müller A, Egle A, Erlacher M. Bcl-2 proteins in development, health, and disease of the hematopoietic system. FEBS J. 2016;283:2779–810.

    Article  CAS  Google Scholar 

  19. Gibson CJ, Davids MS. BCL-2 antagonism to target the intrinsic mitochondrial pathway of apoptosis. Clin Cancer Res. 2015;21:5021–9.

    Article  CAS  Google Scholar 

  20. Happo L, Strasser A, Cory S. BH3-only proteins in apoptosis at a glance. J Cell Sci. 2012;125(Pt 5):1081–7.

    Article  CAS  Google Scholar 

  21. Botta A, Malena A, Tibaldi E, Rocchi L, Loro E, Pena E, et al. MBNL142 and MBNL143 gene isoforms, overexpressed in DM1-patient muscle, encode for nuclear proteins interacting with Src family kinases. Cell Death Dis. 2013;4:e770.

    Article  CAS  Google Scholar 

  22. Gutierrez A, Pan L, Groen RW, Baleydier F, Kentsis A, Marineau J, et al. Phenothiazines induce PP2A-mediated apoptosis in T cell acute lymphoblastic leukemia. J Clin Invest. 2014;124:644–55.

    Article  CAS  Google Scholar 

  23. Chen YY, Hsieh CY, Jayakumar T, Lin KH, Chou DS, Lu WJ, et al. Andrographolide induces vascular smooth muscle cell apoptosis through a SHP-1-PP2A-p38MAPK-p53 cascade. Sci Rep. 2014;4:5651.

    Article  CAS  Google Scholar 

  24. Burger JA, Kipps TJ. Chemokine receptors and stromal cells in the homing and homeostasis of chronic lymphocytic leukemia B cells. Leuk Lymphoma. 2002;43:461–6.

    Article  CAS  Google Scholar 

  25. Ugarte-Uribe B, García-Sáez AJ. Apoptotic foci at mitochondria: in and around Bax pores. Philos Trans R Soc Lond B Biol Sci. 2017;372:1726.

    Article  Google Scholar 

  26. Brenner D, Mak TW. Mitochondrial cell death effectors. Curr Opin Cell Biol. 2009;21:871–7.

    Article  CAS  Google Scholar 

  27. Gillies LA, Kuwana T. Apoptosis regulation at the mitochondrial outer membrane. J Cell Biochem. 2014;115:632–40.

    Article  CAS  Google Scholar 

  28. Kaczara P, Motterlini R, Rosen GM, Augustynek B, Bednarczyk P, Szewczyk A, et al. Carbon monoxide released by CORM-401 uncouples mitochondrial respiration and inhibits glycolysis in endothelial cells: a role for mitoBKCa channels. Biochim Biophys Acta. 2015;1847:1297–309.

    Article  CAS  Google Scholar 

  29. Tzivion G, Dobson M, Ramakrishnan G. FoxO transcription factors; regulation by AKT and 14-3-3 proteins. Biochim Biophys Acta. 2011;1813:1938–45.

    Article  CAS  Google Scholar 

  30. Gogvadze V, Orrenius S, Zhivotovsky B. Multiple pathways of cytochrome c release from mitochondria in apoptosis. Biochim Biophys Acta. 2006;1757:639–47.

    Article  CAS  Google Scholar 

  31. Peña-Blanco A, García-Sáez AJ. Bax, Bak and beyond - mitochondrial performance in apoptosis. FEBS J. 2018;285:416–31.

    Article  Google Scholar 

  32. Shamas-Din A, Brahmbhatt H, Leber B, Andrews DW. BH3-only proteins: orchestrators of apoptosis. Biochim Biophys Acta. 2011;1813:508–20.

    Article  CAS  Google Scholar 

  33. Sakamaki J, Daitoku H, Ueno K, Hagiwara A, Yamagata K, Fukamizu A. Arginine methylation of BCL2 antagonist of cell death (BAD) counteracts its phosphorylation and inactivation by Akt. Proc Natl Acad Sci USA. 2011;108:6085–90.

    Article  CAS  Google Scholar 

  34. Zhang X, Tang N, Hadden TJ, Rishi AK. Akt, FoxO and regulation of apoptosis. Biochim Biophys Acta. 2011;1813:1978–86.

    Article  CAS  Google Scholar 

  35. Datta SR, Katsov A, Hu L, Petros A, Fesik SW, Yaffe MB, et al. 14-3-3 proteins and survival kinases cooperate to inactivate BAD by BH3 domain phosphorylation. Mol Cell. 2000;6:41–51.

    Article  CAS  Google Scholar 

  36. Wang J, Liu S, Yin Y, Li M, Wang B, Yang L, et al. FOXO3-mediated up-regulation of Bim contributes to rhein-induced cancer cell apoptosis. Apoptosis. 2015;20:399–409.

    Article  Google Scholar 

  37. Balakrishnan K, Peluso M, Fu M, Rosin NY, Burger JA, Wierda WG, et al. The phosphoinositide-3-kinase (PI3K)-delta and gamma inhibitor, IPI-145 (Duvelisib), overcomes signals from the PI3K/AKT/S6 pathway and promotes apoptosis in CLL. Leukemia. 2015;29:1811–22.

    Article  CAS  Google Scholar 

  38. Fornecker LM, Mauvieux L, Herbrecht R, Schini-Kerth VB. Bilberry extract (Antho 50) selectively induces redox-sensitive caspase 3-related apoptosis in chronic lymphocytic leukemia cells by targeting the Bcl-2/Bad pathway. Sci Rep. 2015;5:8996.

    Article  Google Scholar 

  39. Ticchioni M, Essafi M, Jeandel PY, Davi F, Cassuto JP, Deckert M, et al. Homeostatic chemokines increase survival of B-chronic lymphocytic leukemia cells through inactivation of transcription factor FOXO3a. Oncogene. 2007;26:7081–91.

    Article  CAS  Google Scholar 

  40. Zhuang J, Hawkins SF, Glenn MA, Lin K, Johnson GG, Carter A, et al. Akt Is activated in chronic lymphocytic leukemia cells and delivers a pro-survival signal: the therapeutic potential Of Akt inhibition. Haematologica. 2010;95:110–8.

    Article  CAS  Google Scholar 

  41. Swingle M, Ni L, Honkanen R. Small-molecule inhibitors of ser/thr protein phosphatases: specificity, use and common forms of abuse. Methods Mol Biol. 2007;365:23–38.

    PubMed  PubMed Central  Google Scholar 

  42. Sionov RV, Vlahopoulos SA, Granot Z. Regulation of Bim in health and disease. Oncotarget. 2015;6:23058–134.

    Article  Google Scholar 

  43. Nordigården A, Kraft M, Eliasson P, Labi V, Lam EW, Villunger A, et al. BH3-only protein Bim more critical than Puma in tyrosine kinase inhibitor-induced apoptosis of human leukemic cells and transduced hematopoietic progenitors carrying oncogenic FLT3. Blood. 2009;113:2302–11.

    Article  Google Scholar 

  44. Zhang LN, Li JY, Xu W. A review of the role of Puma, Noxa and Bim in the tumorigenesis, therapy and drug resistance of chronic lymphocytic leukemia. Cancer Gene Ther. 2013;20:1–7.

    Article  Google Scholar 

  45. Barreyro FJ, Kobayashi S, Bronk SF, Werneburg NW, Malhi H, Gores GJ. Transcriptional regulation of Bim by FoxO3A mediates hepatocyte lipoapoptosis. J Biol Chem. 2007;282:27141–54.

    Article  CAS  Google Scholar 

  46. Del Gaizo Moore V, Brown JR, Certo M, Love TM, Novina CD, Letai A. Chronic lymphocytic leukemia requires BCL2 to sequester prodeath BIM, explaining sensitivity to BCL2 antagonist ABT-737. J Clin Invest. 2007;117:112–21.

    Article  Google Scholar 

  47. Ashkenazi A, Fairbrother WJ, Leverson JD, Souers AJ. From basic apoptosis discoveries to advanced selective BCL-2 family inhibitors. Nat Rev Drug Discov. 2017;16:273–84.

    Article  CAS  Google Scholar 

  48. Itchaki G, Brown JR. The potential of venetoclax (ABT-199) in chronic lymphocytic leukemia. Ther Adv Hematol. 2016;7:270–87.

    Article  CAS  Google Scholar 

  49. Olin JL, Griffiths CL, Smith MB. Venetoclax: a novel B-cell lymphoma-2 inhibitor for chronic lymphocytic leukemia and other hematologic malignancies. J Oncol Pharm Pract. 2018;24:517–524. https://doi.org/10.1177/1078155217718383

    Article  Google Scholar 

  50. Deng J, Isik E, Fernandes SM, Brown JR, Letai A, Davids MS. Bruton’s tyrosine kinase inhibition increases BCL-2 dependence and enhances sensitivity to venetoclax in chronic lymphocytic leukemia. Leukemia. 2017;31:2075–84.

    Article  CAS  Google Scholar 

  51. Holzbeierlein JM, Windsperger A, Vielhauer G. Hsp90: a drug target? Curr Oncol Rep. 2010;12:95–101.

    Article  CAS  Google Scholar 

  52. Barrott JJ, Haystead TA. Hsp90, an unlikely ally in the war on cancer. FEBS J. 2013;280:1381–96.

    Article  CAS  Google Scholar 

  53. Chou TC, Martin N. CompuSyn for drug combinations: PC software and user’s guide: a computer program for quantitation of synergism and antagonism in drug combinations, and the determination of IC50and ED50 and LD50 values. Paramus, NJ: ComboSyn; 2005.

  54. Bojarczuk K, Sasi BK, Gobessi S, Innocenti I, Pozzato G, Laurenti L, Efremov DG. BCR signaling inhibitors differ in their ability to overcome Mcl-1-mediated resistance of CLL B cells to ABT-199. Blood. 2016;127:3192–201.

    Article  CAS  Google Scholar 

  55. Al-Sawaf O, Fischer K, Eichhorst B, Hallek M. Targeted therapy of CLL. Oncol Res Treat. 2016;39:768–78.

    Article  CAS  Google Scholar 

  56. Cramer P, Langerbeins P, Hallek M. Combination of targeted drugs to control chronic lymphocytic leukemia: harnessing the power of new monoclonal antibodies in combination with ibrutinib. Cancer J. 2016;22:62–66.

    Article  CAS  Google Scholar 

  57. Boddy CS, Ma S. Frontline therapy of CLL: evolving treatment paradigm. Curr Hematol Malig Rep. 2018;13:69–77.

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by funds from Ministero dell’Istruzione dell’Università e della Ricerca (PRIN 2010-2011 to L.T.), Associazione Italiana per la Ricerca sul Cancro AIRC (Milan) (AIRC project 15397), AIRC Regional Project with Fondazione CARIPARO and CARIVERONA, Regione Veneto on chronic lymphocytic leukaemia. V.T. is a fellowship from AIRC (Milan) (AIRC project 14972).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Elena Tibaldi or Livio Trentin.

Ethics declarations

Conflict of interest

A patent application related to the use of the alkoxy phenyl-1-propanone derivatives described in the present work has been filed on behalf of the University of Padua, Italy.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pagano, M.A., Tibaldi, E., Molino, P. et al. Mitochondrial apoptosis is induced by Alkoxy phenyl-1-propanone derivatives through PP2A-mediated dephosphorylation of Bad and Foxo3A in CLL. Leukemia 33, 1148–1160 (2019). https://doi.org/10.1038/s41375-018-0288-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41375-018-0288-5

This article is cited by

Search

Quick links