Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Chronic lymphocytic leukemia

Different time-dependent changes of risk for evolution in chronic lymphocytic leukemia with mutated or unmutated antigen B cell receptors

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2

References

  1. Fabbri G, Dalla-Favera R. The molecular pathogenesis of chronic lymphocytic leukaemia. Nat Rev Cancer. 2016;16:145–62.

    Article  Google Scholar 

  2. Baliakas P, Hadzidimitriou A, Sutton LA, Minga E, Agathangelidis A, Nichelatti M, et al. Clinical effect of stereotyped B-cell receptor immunoglobulins in chronic lymphocytic leukaemia: a retrospective multicentre study. Lancet Haematol. 2014;1:e74–84.

    Article  Google Scholar 

  3. Baliakas P, Hadzidimitriou A, Sutton LA, Rossi D, Minga E, Villamor N, et al. Recurrent mutations refine prognosis in chronic lymphocytic leukemia. Leukemia. 2015;29:329–36.

    Article  CAS  Google Scholar 

  4. Rossi D, Rasi S, Spina V, Bruscaggin A, Monti S, Ciardullo C, et al. Integrated mutational and cytogenetic analysis identifies new prognostic subgroups in chronic lymphocytic leukemia. Blood. 2013;121:1403–12.

    Article  CAS  Google Scholar 

  5. Hallek M, Cheson BD, Catovsky D, Caligaris-Cappio F, Dighiero G, Dohner H, et al. iwCLL guidelines for diagnosis, indications for treatment, response assessment, and supportive management of chronic lymphocytic leukemia. Blood. 2018;131:2745–60.

  6. Ljungstrom V, Cortese D, Young E, Pandzic T, Mansouri L, Plevova K, et al. Whole-exome sequencing in relapsing chronic lymphocytic leukemia: clinical impact of recurrent RPS15 mutations. Blood. 2016;127:1007–16.

    Article  Google Scholar 

  7. Sutton LA, Rosenquist R. The complex interplay between cell-intrinsic and cell-extrinsic factors driving the evolution of chronic lymphocytic leukemia. Semin Cancer Biol. 2015;34:22–35.

    Article  CAS  Google Scholar 

  8. Collett D. Modelling survival data in medical research. 3rd ed. Chapman and Hall/CRC, New York; 2015.

  9. Klein JP, Moeschberger ML. Survival analysis: techniques for censored and truncated data. 2nd ed, Springer-Verlag, New York; 2006.

  10. Hallek M, Cheson BD, Catovsky D, Caligaris-Cappio F, Dighiero G, Dohner H, et al. Guidelines for the diagnosis and treatment of chronic lymphocytic leukemia: a report from the International Workshop on Chronic Lymphocytic Leukemia updating the National Cancer Institute-Working Group 1996 guidelines. Blood. 2008;111:5446–56.

    Article  CAS  Google Scholar 

  11. Dohner H, Stilgenbauer S, Benner A, Leupolt E, Krober A, Bullinger L, et al. Genomic aberrations and survival in chronic lymphocytic leukemia. N Engl J Med. 2000;343:1910–6.

    Article  CAS  Google Scholar 

  12. Baliakas P, Moysiadis T, Hadzidimitriou A, Xochelli A, Jeromin S, Agathangelidis A, et al. Tailored approaches grounded on immunogenetic features for refined prognostication in chronic lymphocytic leukemia. Haematologica. 2018. (Epub ahead of print).

  13. Rebora P, Salim A, Reilly M. bshazard: a flexible tool for nonparametric smoothing of the hazard function. R J. 2014;6:9.

  14. Han G, Schell MJ, Kim J. Improved survival modeling in cancer research using a reduced piecewise exponential approach. Stat Med. 2014;33:59–73.

    Article  Google Scholar 

  15. Pfeilstocker M, Tuechler H, Sanz G, Schanz J, Garcia-Manero G, Sole F, et al. Time-dependent changes in mortality and transformation risk in MDS. Blood. 2016;128:902–10.

    Article  Google Scholar 

Download references

Acknowledgements

This project has received funding from the European Union’s Horizon 2020 (EU H2020) research and innovation programme under the Marie Sklodowska-Curie grant agreement No 702714 CLLassify; the EU H2020 project AEGLE; the EU H2020 project MEDGENET; the Swedish Cancer Society, the Swedish Research Council, Knut and Alice Wallenberg Foundation, Karolinska Institutet, Stockholm, the Lion’s Cancer Research Foundation, Uppsala, the Marcus Borgström Foundation and Selander’s Foundation, Uppsala; CEITEC MEYS CR project LQ1601; EC is supported by grants from Instituto de Salud Carlos III (PMP15/00007, CIBERONC and ERA-NET TRANSCAN initiative (TRS-2015-00000143) AC15/00028.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kostas Stamatopoulos.

Ethics declarations

Conflict of interest

KS and PG received research support from Janssen Pharmaceuticals, Gilead Sciences, Novartis SA, Abbvie and Roche Hellas. The remaining authors declare that they have no conflict of interest.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Moysiadis, T., Baliakas, P., Rossi, D. et al. Different time-dependent changes of risk for evolution in chronic lymphocytic leukemia with mutated or unmutated antigen B cell receptors. Leukemia 33, 1801–1805 (2019). https://doi.org/10.1038/s41375-018-0322-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41375-018-0322-7

Search

Quick links