Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Chronic lymphocytic leukemia

Creating novel translation inhibitors to target pro-survival proteins in chronic lymphocytic leukemia

Abstract

The viability of chronic lymphocytic leukemia (CLL) is critically dependent upon staving off death by apoptosis, a hallmark of CLL pathophysiology. The recognition that Mcl-1, a major component of the anti-apoptotic response, is intrinsically short-lived and must be continually resynthesized suggested a novel therapeutic approach. Pateamine A (PatA), a macrolide marine natural product, inhibits cap-dependent translation by binding to the initiation factor eIF4A. In this study, we demonstrated that a synthetic derivative of PatA, des-methyl des-amino PatA (DMDAPatA), blocked mRNA translation, reduced Mcl-1 protein and initiated apoptosis in CLL cells. This action was synergistic with the Bcl-2 antagonist ABT-199. However, avid binding to human plasma proteins limited DMDAPatA potency, precluding further development. To address this, we synthesized a new series of PatA analogs and identified three new leads with potent inhibition of translation. They exhibited less plasma protein binding and increased cytotoxic potency toward CLL cells than DMDAPatA, with greater selectivity towards CLL cells over normal lymphocytes. Computer modeling analysis correlated their structure–activity relationships and suggested that these compounds may act by stabilizing the closed conformation of eIF4A. Thus, these novel PatA analogs hold promise for application to cancers within the appropriate biological context, such as CLL.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Silvera D, Formenti SC, Schneider RJ. Translational control in cancer. Nat Rev Cancer. 2010;10:254–66.

    Article  CAS  Google Scholar 

  2. Gandhi V, Plunkett W, Cortes JE. Omacetaxine: a protein translation inhibitor for treatment of chronic myelogenous leukemia. Clin Cancer Res. 2014;20:1735–40.

    Article  CAS  Google Scholar 

  3. Guertin DA, Sabatini DM. Defining the role of mTOR in cancer. Cancer Cell. 2007;12:9–22.

    Article  CAS  Google Scholar 

  4. Ma XM, Blenis J. Molecular mechanisms of mTOR-mediated translational control. Nat Rev Mol Cell Biol. 2009;10:307–18.

    Article  Google Scholar 

  5. Fasolo A, Sessa C. Current and future directions in mammalian target of rapamycin inhibitors development. Expert Opin Investig Drugs. 2011;20:381–94.

    Article  CAS  Google Scholar 

  6. Chu J, Pelletier J. Targeting the eIF4A RNA helicase as an anti-neoplastic approach. Biochim Biophys Acta—Gene Regul Mech. 2015;1849:781–91.

    Article  CAS  Google Scholar 

  7. Bordeleau ME, Mori A, Oberer M, Lindqvist L, Chard LS, Higa T, et al. Functional characterization of IRESes by an inhibitor of the RNA helicase eIF4A. Nat Chem Biol. 2006;2:213–20.

    Article  CAS  Google Scholar 

  8. Bordeleau ME, Robert F, Gerard B, Lindqvist L, Chen SM, Wendel HG, et al. Therapeutic suppression of translation initiation modulates chemosensitivity in a mouse lymphoma model. J Clin Invest. 2008;118:2651–60.

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Northcote PT, Blunt JW, Munro MHG. Pateamine: a potent cytotoxin from the New Zealand Marine sponge, mycale sp. Tetrahedron Lett. 1991;32:6411–4. 10/28/

    Article  CAS  Google Scholar 

  10. Romo D, Rzasa RM, Shea HA, Park K, Langenhan JM, Sun L, et al. Total synthesis and immunosuppressive activity of (-)-pateamine A and related compounds: implementation of beta-lactam-based macrocyclization. J Am Chem Soc. 1998;120:12237–54.

    Article  CAS  Google Scholar 

  11. Hood KA, West LM, Northcote PT, Berridge MV, Miller JH. Induction of apoptosis by the marine sponge (Mycale) metabolites, mycalamide A and pateamine. Apoptosis: Int J Program Cell Death. 2001;6:207–19.

    Article  CAS  Google Scholar 

  12. Bordeleau ME, Matthews J, Wojnar JM, Lindqvist L, Novac O, Jankowsky E, et al. Stimulation of mammalian translation initiation factor eIF4A activity by a small molecule inhibitor of eukaryotic translation. Proc Natl Acad Sci USA. 2005;102:10460–5.

    Article  CAS  Google Scholar 

  13. Low WK, Dang Y, Schneider-Poetsch T, Shi Z, Choi NS, Merrick WC, et al. Inhibition of eukaryotic translation initiation by the marine natural product pateamine A. Mol Cell. 2005;20:709–22.

    Article  CAS  Google Scholar 

  14. Low WK, Dang Y, Bhat S, Romo D, Liu JO. Substrate-dependent targeting of eukaryotic translation initiation factor 4A by pateamine A: negation of domain-linker regulation of activity. Chem Biol. 2007;14:715–27.

    Article  CAS  Google Scholar 

  15. Low WK, Dang Y, Schneider-Poetsch T, Shi Z, Choi NS, Rzasa RM, et al. Isolation and identification of eukaryotic initiation factor 4A as a molecular target for the marine natural product Pateamine A. Methods Enzymol. 2007;431:303–24.

    Article  CAS  Google Scholar 

  16. Bordeleau ME, Cencic R, Lindqvist L, Oberer M, Northcote P, Wagner G, et al. RNA-mediated sequestration of the RNA helicase eIF4A by Pateamine A inhibits translation initiation. Chem Biol. 2006;13:1287–95.

    Article  CAS  Google Scholar 

  17. Evans FJ. Natural products as probes for new drug target identification. J Ethnopharmacol. 1991;32:91–101.

    Article  CAS  Google Scholar 

  18. Carlson EE. Natural products as chemical probes. ACS Chem Biol. 2010;5:639–53.

    Article  CAS  Google Scholar 

  19. Newman DJ, Cragg GM. Natural products as sources of new drugs over the 30 years from 1981 to 2010. J Nat Prod. 2012;75:311–35.

    Article  CAS  Google Scholar 

  20. Robles O, Romo D. Chemo- and site-selective derivatizations of natural products enabling biological studies. Nat Prod Rep. 2014;31:318–34.

    Article  CAS  Google Scholar 

  21. Romo D, Liu JO. Editorial: Strategies for cellular target identification of natural products. Nat Prod Rep. 2016;33:592–4.

    Article  CAS  Google Scholar 

  22. Romo D, Choi NS, Li S, Buchler I, Shi Z, Liu JO. Evidence for separate binding and scaffolding domains in the immunosuppressive and antitumor marine natural product, pateamine a: design, synthesis, and activity studies leading to a potent simplified derivative. J Am Chem Soc. 2004;126:10582–8.

    Article  CAS  Google Scholar 

  23. Low W-K, Li J, Zhu M, Kommaraju SS, Shah-Mittal J, Hull K, et al. Second-generation derivatives of the eukaryotic translation initiation inhibitor pateamine A targeting eIF4A as potential anticancer agents. Bioorg Med Chem. 2014;22:116–25.

    Article  CAS  Google Scholar 

  24. Kuznetsov G, Xu Q, Rudolph-Owen L, Tendyke K, Liu J, Towle M, et al. Potent in vitro and in vivo anticancer activities of des-methyl, des-amino pateamine A, a synthetic analogue of marine natural product pateamine A. Mol Cancer Ther. 2009;8:1250–60.

    Article  CAS  Google Scholar 

  25. Gupta SV, Sass EJ, Davis ME, Edwards RB, Lozanski G, Heerema NA, et al. Resistance to the translation initiation inhibitor silvestrol is mediated by ABCB1/P-glycoprotein overexpression in acute lymphoblastic leukemia cells. AAPS J. 2011;13:357–64.

    Article  CAS  Google Scholar 

  26. Parikh D, Dougan J, Li J, Romo D, Moorman NJ, Graves LM, et al. Des-methyl, des-amino pateamine A, a synthetic analogue of marine natural product pateamine A, sensitizes non-small cell lung cancer cells to radiation and enhances BAX expression. Int J Radiat Oncol. 2012;84:S701–S702.

    Article  Google Scholar 

  27. Letai AG. Diagnosing and exploiting cancer’s addiction to blocks in apoptosis. Nat Rev Cancer. 2008;8:121–32.

    Article  CAS  Google Scholar 

  28. Chen R, Plunkett W. Strategy to induce apoptosis and circumvent resistance in chronic lymphocytic leukaemia. Best Pract Res Clin Haematol. 2010;23:155–66.

    Article  CAS  Google Scholar 

  29. Chen R, Keating MJ, Gandhi V, Plunkett W. Transcription inhibition by flavopiridol: mechanism of chronic lymphocytic leukemia cell death. Blood. 2005;106:2513–9.

    Article  CAS  Google Scholar 

  30. Chen R, Wierda WG, Chubb S, Hawtin RE, Fox JA, Keating MJ, et al. Mechanism of action of SNS-032, a novel cyclin-dependent kinase inhibitor, in chronic lymphocytic leukemia. Blood. 2009;113:4637–45.

    Article  CAS  Google Scholar 

  31. Chen R, Guo L, Chen Y, Jiang Y, Wierda WG, Plunkett W. Homoharringtonine reduced Mcl-1 expression and induced apoptosis in chronic lymphocytic leukemia. Blood. 2011;117:156–64.

    Article  CAS  Google Scholar 

  32. Chou TC, Talalay P. Quantitative analysis of dose-effect relationships: the combined effects of multiple drugs or enzyme inhibitors. Adv Enzym Regul. 1984;22:27–55.

    Article  CAS  Google Scholar 

  33. Chou TC. Drug combination studies and their synergy quantification using the Chou-Talalay method. Cancer Res. 2010;70:440–6.

    Article  CAS  Google Scholar 

  34. Andersen CB, Ballut L, Johansen JS, Chamieh H, Nielsen KH, Oliveira CL, et al. Structure of the exon junction core complex with a trapped DEAD-box ATPase bound to RNA. Science. 2006;313:1968–72.

    Article  CAS  Google Scholar 

  35. Iwatani-Yoshihara M, Ito M, Ishibashi Y, Oki H, Tanaka T, Morishita D, et al. Discovery and characterization of a eukaryotic initiation factor 4A-3-selective inhibitor that suppresses nonsense-mediated mRNA decay. ACS Chem Biol. 2017;12:1760–8.

    Article  CAS  Google Scholar 

  36. Blagosklonny MV, Alvarez M, Fojo A, Neckers LM. bcl-2 protein downregulation is not required for differentiation of multidrug resistant HL60 leukemia cells. Leuk Res. 1996;20:101–7.

    Article  CAS  Google Scholar 

  37. Konopleva M, Contractor R, Tsao T, Samudio I, Ruvolo PP, Kitada S, et al. Mechanisms of apoptosis sensitivity and resistance to the BH3 mimetic ABT-737 in acute myeloid leukemia. Cancer Cell. 2006;10:375–88.

    Article  CAS  Google Scholar 

  38. Yecies D, Carlson NE, Deng J, Letai A. Acquired resistance to ABT-737 in lymphoma cells that up-regulate MCL-1 and BFL-1. Blood. 2010;115:3304–13.

    Article  CAS  Google Scholar 

  39. Bojarczuk K, Sasi BK, Gobessi S, Innocenti I, Pozzato G, Laurenti L, et al. BCR signaling inhibitors differ in their ability to overcome Mcl-1-mediated resistance of CLL B cells to ABT-199. Blood. 2016;127:3192–201.

    Article  CAS  Google Scholar 

  40. Di L, Umland JP, Trapa PE, Maurer TS. Impact of recovery on fraction unbound using equilibrium dialysis. J Pharm Sci. 2012;101:1327–35.

    Article  CAS  Google Scholar 

  41. Rowley M, Kulagowski JJ, Watt AP, Rathbone D, Stevenson GI, Carling RW, et al. Effect of plasma protein binding on in vivo activity and brain penetration of glycine/NMDA receptor antagonists. J Med Chem. 1997;40:4053–68.

    Article  CAS  Google Scholar 

  42. Lázníček M, Lázníčková A. The effect of lipophilicity on the protein binding and blood cell uptake of some acidic drugs. J Pharm Biomed Anal. 1995 ;13:823–8. 1995/06/01

    Article  Google Scholar 

  43. Smith DA, Di L, Kerns EH. The effect of plasma protein binding on in vivo efficacy: misconceptions in drug discovery. Nat Rev Drug Discov. 2010;9:929–39.

    Article  CAS  Google Scholar 

  44. Chan CC, Dostie J, Diem MD, Feng W, Mann M, Rappsilber J, et al. eIF4A3 is a novel component of the exon junction complex. RNA. 2004;10:200–9.

    Article  CAS  Google Scholar 

  45. Matthews JH. The molecular pharmacology of pateamine A. Doctor of Philosophy thesis, Victoria University of Wellington, http://researcharchive.vuw.ac.nz/xmlui/bitstream/handle/10063/1883/thesis.pdf?sequence=1, 2010.

  46. Meng H, Li C, Wang Y, Chen G. Molecular dynamics simulation of the allosteric regulation of eIF4A protein from the open to closed state, induced by ATP and RNA substrates. PLoS One. 2014;9:e86104.

    Article  Google Scholar 

  47. Rubio CA, Weisburd B, Holderfield M, Arias C, Fang E, DeRisi JL, et al. Transcriptome-wide characterization of the eIF4A signature highlights plasticity in translation regulation. Genome Biol. 2014;15:476.

    Article  Google Scholar 

  48. Wolfe AL, Singh K, Zhong Y, Drewe P, Rajasekhar VK, Sanghvi VR, et al. RNA G-quadruplexes cause eIF4A-dependent oncogene translation in cancer. Nature. 2014;513:65–70.

    Article  CAS  Google Scholar 

  49. Lam LT, Pickeral OK, Peng AC, Rosenwald A, Hurt EM, Giltnane JM, et al. Genomic-scale measurement of mRNA turnover and the mechanisms of action of the anti-cancer drug flavopiridol. Genome Biol. 2001;2:RESEARCH0041.

    Article  CAS  Google Scholar 

  50. Kozopas KM, Yang T, Buchan HL, Zhou P, Craig RW. MCL1, a gene expressed in programmed myeloid cell differentiation, has sequence similarity to BCL2. Proc Natl Acad Sci USA. 1993;90:3516–20.

    Article  CAS  Google Scholar 

  51. Rogers S, Wells R, Rechsteiner M. Amino acid sequences common to rapidly degraded proteins: the PEST hypothesis. Science. 1986;234:364–8.

    Article  CAS  Google Scholar 

  52. Jain N, Thompson PA, Ferrajoli A, Burger JA, Borthakur G, Takahashi K, et al. Combined venetoclax and ibrutinib for patients with previously untreated high-risk CLL, and relapsed/refractory CLL: A Phase II Trial. Blood. 2017;130(Suppl. 1):429–429.

    Google Scholar 

  53. Cervantes-Gomez F, Lamothe B, Woyach JA, Wierda WG, Keating MJ, Balakrishnan K, et al. Pharmacological and protein profiling suggests venetoclax (ABT-199) as optimal partner with ibrutinib in chronic lymphocytic leukemia. Clin Cancer Res. 2015;21:3705–15.

    Article  CAS  Google Scholar 

  54. Modi P, Balakrishnan K, Yang Q, Wierda WG, Keating MJ, Gandhi V. Idelalisib and bendamustine combination is synergistic and increases DNA damage response in chronic lymphocytic leukemia cells. Oncotarget. 2017;8:16259–74.

    Article  Google Scholar 

Download references

Acknowledgements

This study was supported in part by research funding to DR and WP from a High-Impact/High-Risk Research Award from The Cancer Prevention and Research Institute of Texas, RP130660, by the CLL Global Research Foundation and the M.D. Anderson Cancer Center Moon Shots Program and cancer center support grant P30CA16622.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Daniel Romo or William Plunkett.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, R., Zhu, M., Chaudhari, R.R. et al. Creating novel translation inhibitors to target pro-survival proteins in chronic lymphocytic leukemia. Leukemia 33, 1663–1674 (2019). https://doi.org/10.1038/s41375-018-0364-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41375-018-0364-x

This article is cited by

Search

Quick links