Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Myelodysplastic syndrome

A germline HLTF mutation in familial MDS induces DNA damage accumulation through impaired PCNA polyubiquitination

Abstract

Although several causal genes of familial myelodysplastic syndromes (MDS) have been identified, the genetic landscape and the molecular pathogenesis are not totally understood. To explore novel driver genes and their pathogenetic significance, we performed whole-exome sequence analysis of four individuals from a familial MDS pedigree and 10 candidate single-nucleotide variants (C9orf43, CYP7B1, EFHB, ENTPD7, FAM160B2, HELZ2, HLTF, INPP5J, ITPKB, and RYK) were identified. Knockdown screening revealed that Hltf downregulation enhanced colony-forming capacity of primary murine bone marrow (BM) stem/progenitor cells. γH2AX immunofluorescent staining assay revealed increased DNA damage in a human acute myeloid leukemia (AML) cell line ectopically expressing HLTF E259K, which was not observed in cells expressing wild-type HLTF. Silencing of HLTF in human AML cells also led to DNA damage, indicating that HLTF E259K is a loss-of-function mutation. Molecularly, we found that an E259K mutation reduced the binding capacity of HLTF with ubiquitin-conjugating enzymes, methanesulfonate sensitive 2 and ubiquitin-conjugating enzyme E2N, resulting in impaired polyubiquitination of proliferating cell nuclear antigen (PCNA) in HLTF E259K-transduced cells. In summary, our results indicate that a familial MDS-associated HLTF E259K germline mutation induces accumulation of DNA double-strand breaks, possibly through impaired PCNA polyubiquitination.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Holme H, Hossain U, Kirwan M, Walne A, Vulliamy T, Dokal I. Marked genetic heterogeneity in familial myelodysplasia/acute myeloid leukaemia. Br J Haematol. 2012;158:242–8.

    Article  CAS  Google Scholar 

  2. Hahn CN, Chong C-E, Carmichael CL, Wilkins EJ, Brautigan PJ, Li X-C, et al. Heritable GATA2 mutations associated with familial myelodysplastic syndrome and acute myeloid leukemia. Nat Genet. 2011;43:1012.

    Article  CAS  Google Scholar 

  3. Haferlach T, Nagata Y, Grossmann V, Okuno Y, Bacher U, Nagae G, et al. Landscape of genetic lesions in 944 patients with myelodysplastic syndromes. Leukemia. 2014;28:241.

    Article  CAS  Google Scholar 

  4. Owen C, Barnett M, Fitzgibbon J. Familial myelodysplasia and acute myeloid leukaemia–a review. Br J Haematol. 2008;140:123–32.

    Article  CAS  Google Scholar 

  5. Smith ML, Cavenagh JD, Lister TA, Fitzgibbon J. Mutation of CEBPA in familial acute myeloid leukemia. New Engl J Med. 2004;351:2403–7.

    Article  CAS  Google Scholar 

  6. Nickels EM, Soodalter J, Churpek JE, Godley LA. Recognizing familial myeloid leukemia in adults. Ther Adv Hematol. 2013;4:254–69.

    Article  CAS  Google Scholar 

  7. Vulliamy T, Marrone A, Szydlo R, Walne A, Mason PJ, Dokal I. Disease anticipation is associated with progressive telomere shortening in families with dyskeratosis congenita due to mutations in TERC. Nat Genet. 2004;36:447.

    Article  CAS  Google Scholar 

  8. Kirwan M, Vulliamy T, Marrone A, Walne AJ, Beswick R, Hillmen P, et al. Defining the pathogenic role of telomerase mutations in myelodysplastic syndrome and acute myeloid leukemia. Hum Mutat. 2009;30:1567–73.

    Article  CAS  Google Scholar 

  9. West AH, Godley LA, Churpek JE. Familial myelodysplastic syndrome/acute leukemia syndromes: a review and utility for translational investigations. Ann N Y Acad Sci. 2014;1310:111–8.

    Article  CAS  Google Scholar 

  10. Polprasert C, Schulze I, Sekeres MA, Makishima H, Przychodzen B, Hosono N, et al. Inherited and somatic defects in DDX41 in myeloid neoplasms. Cancer Cell. 2015;27:658–70.

    Article  CAS  Google Scholar 

  11. Zhang MY, Churpek JE, Keel SB, Walsh T, Lee MK, Loeb KR, et al. Germline ETV6 mutations in familial thrombocytopenia and hematologic malignancy. Nat Genet. 2015;47:180.

    Article  CAS  Google Scholar 

  12. Kirwan M, Walne AJ, Plagnol V, Velangi M, Ho A, Hossain U, et al. Exome sequencing identifies autosomal-dominant SRP72 mutations associated with familial aplasia and myelodysplasia. Am J Human Genet. 2012;90:888–92.

    Article  CAS  Google Scholar 

  13. Nagata Y, Przychodzen BP, Hirsch CM, Makishima H, Loyola VP, Jha BK, et al. Germline SAMD9 and SAMD9L alterations in adult myelodysplastic syndromes. Blood. 2017;130:1670.

  14. Untergasser A, Cutcutache I, Koressaar T, Ye J, Faircloth BC, Remm M, et al. Primer3—new capabilities and interfaces. Nucleic Acids Res. 2012;40:e115–e.

    Article  CAS  Google Scholar 

  15. Koressaar T, Remm M. Enhancements and modifications of primer design program Primer3. Bioinformatics. 2007;23:1289–91.

    Article  CAS  Google Scholar 

  16. Consortium GP. A map of human genome variation from population-scale sequencing. Nature . 2010;467:1061.

    Article  Google Scholar 

  17. Higasa K, Miyake N, Yoshimura J, Okamura K, Niihori T, Saitsu H, et al. Human genetic variation database, a reference database of genetic variations in the Japanese population. J Hum Genet. 2016;61:547.

    Article  CAS  Google Scholar 

  18. Kagoya Y, Yoshimi A, Kataoka K, Nakagawa M, Kumano K, Arai S, et al. Positive feedback between NF-κB and TNF-α promotes leukemia-initiating cell capacity. J Clin Invest. 2014;124:528–42.

    Article  CAS  Google Scholar 

  19. Reed SE, Staley EM, Mayginnes JP, Pintel DJ, Tullis GE. Transfection of mammalian cells using linear polyethylenimine is a simple and effective means of producing recombinant adeno-associated virus vectors. J Virol Methods. 2006;138:85–98.

    Article  CAS  Google Scholar 

  20. Unk I, Hajdu I, Fátyol K, Hurwitz J, Yoon J-H, Prakash L, et al. Human HLTF functions as a ubiquitin ligase for proliferating cell nuclear antigen polyubiquitination. Proceedings of the National Academy of Sciences. 2008;105:3768–73.

  21. Motegi A, Liaw H-J, Lee K-Y, Roest HP, Maas A, Wu X, et al. Polyubiquitination of proliferating cell nuclear antigen by HLTF and SHPRH prevents genomic instability from stalled replication forks. Proc Natl Acad Sci. 2008;105:12411–6.

    Article  CAS  Google Scholar 

  22. Turner DL, Weintraub H. Expression of achaete-scute homolog 3 in Xenopus embryos converts ectodermal cells to a neural fate. Genes & Dev. 1994;8:1434–47.

    Article  CAS  Google Scholar 

  23. Kagoya Y, Yoshimi A, Tsuruta-Kishino T, Arai S, Satoh T, Akira S, et al. JAK2V617F + myeloproliferative neoplasm clones evoke paracrine DNA damage to adjacent normal cells through secretion of lipocalin-2. Blood. 2014;124:2996–3006.

    Article  CAS  Google Scholar 

  24. Brummelkamp TR, Bernards R, Agami R. A system for stable expression of short interfering RNAs in mammalian cells. Science. 2002;296:550–3.

    Article  CAS  Google Scholar 

  25. Moran-Crusio K, Reavie L, Shih A, Abdel-Wahab O, Ndiaye-Lobry D, Lobry C, et al. Tet2 loss leads to increased hematopoietic stem cell self-renewal and myeloid transformation. Cancer Cell. 2011;20:11–24.

    Article  CAS  Google Scholar 

  26. Yoshimi A, Goyama S, Watanabe-Okochi N, Yoshiki Y, Nannya Y, Nitta E, et al. Evi1 represses PTEN expression and activates PI3K/AKT/mTOR via interactions with polycomb proteins. Blood. 2011;117:3617–28.

    Article  CAS  Google Scholar 

  27. Motegi A, Sood R, Moinova H, Markowitz SD, Liu PP, Myung K. Human SHPRH suppresses genomic instability through proliferating cell nuclear antigen polyubiquitination. J Cell Biol. 2006;175:703–8.

    Article  CAS  Google Scholar 

  28. Yoshimi A, Toya T, Nannya Y, Takaoka K, Kirito K, Ito E, et al. Spectrum of clinical and genetic features of patients with inherited platelet disorder with suspected predisposition to hematological malignancies: a nationwide survey in Japan. Ann Oncol. 2016;27:887–95.

    Article  CAS  Google Scholar 

  29. InterPro. http://www.ebi.ac.uk/interpro/protein/Q14527.

  30. Zehir A, Benayed R, Shah RH, Syed A, Middha S, Kim HR, et al. Mutational landscape of metastatic cancer revealed from prospective clinical sequencing of 10,000 patients. Nat Med. 2017;23:703.

    Article  CAS  Google Scholar 

  31. Campbell JD, Alexandrov A, Kim J, Wala J, Berger AH, Pedamallu CS, et al. Distinct patterns of somatic genome alterations in lung adenocarcinomas and squamous cell carcinomas. Nat Genet. 2016;48:607.

    Article  CAS  Google Scholar 

  32. Oberg JA, Bender JLG, Sulis ML, Pendrick D, Sireci AN, Hsiao SJ, et al. Implementation of next generation sequencing into pediatric hematology-oncology practice: moving beyond actionable alterations. Genome Med. 2016;8:133.

    Article  Google Scholar 

  33. Marchler-Bauer A, Bo Y, Han L, He J, Lanczycki CJ, Lu S, et al. CDD/SPARCLE: functional classification of proteins via subfamily domain architectures. Nucleic Acids Res. 2016;45(D1):D200–D3.

    Article  Google Scholar 

  34. MacKay C, Toth R, Rouse J. Biochemical characterisation of the SWI/SNF family member HLTF. Biochem Biophys Res Commun. 2009;390:187–91.

    Article  CAS  Google Scholar 

  35. Stirewalt DL, Meshinchi S, Kopecky KJ, Fan W, Pogosova‐Agadjanyan EL, Engel JH, et al. Identification of genes with abnormal expression changes in acute myeloid leukemia. Genes, Chromosomes Cancer. 2008;47:8–20.

    Article  CAS  Google Scholar 

  36. Mailand N, Gibbs-Seymour I, Bekker-Jensen S. Regulation of PCNA–protein interactions for genome stability. Nat Rev Mol Cell Biol. 2013;14:269.

    Article  CAS  Google Scholar 

  37. Kawazu M, Kojima S, Ueno T, Totoki Y, Nakamura H, Kunita A, et al. Integrative analysis of genomic alterations in triple-negative breast cancer in association with homologous recombination deficiency. PLoS Genet. 2017;13:e1006853.

    Article  Google Scholar 

  38. Sato K, Kawazu M, Yamamoto Y, Ueno T, Kojima S, Nagae G, et al. Fusion kinases identified by genomic analyses of sporadic microsatellite instability-high colorectal cancers. Clin Cancer Res. 2019;25:378–89.

  39. Lohr JG, Stojanov P, Carter SL, Cruz-Gordillo P, Lawrence MS, Auclair D, et al. Widespread genetic heterogeneity in multiple myeloma: implications for targeted therapy. Cancer Cell. 2014;25:91–101.

    Article  CAS  Google Scholar 

  40. Landau DA, Carter SL, Stojanov P, McKenna A, Stevenson K, Lawrence MS, et al. Evolution and impact of subclonal mutations in chronic lymphocytic leukemia. Cell . 2013;152:714–26.

    Article  CAS  Google Scholar 

  41. Dhont L, Mascaux C, Belayew A. The helicase-like transcription factor (HLTF) in cancer: loss of function or oncomorphic conversion of a tumor suppressor? Cell Mol Life Sci. 2016;73:129–45.

    Article  CAS  Google Scholar 

  42. Debauve G, Capouillez A, Belayew A, Saussez S. The helicase-like transcription factor and its implication in cancer progression. Cell Mol Life Sci. 2008;65:591.

    Article  CAS  Google Scholar 

  43. Khanna KK, Jackson SP. DNA double-strand breaks: signaling, repair and the cancer connection. Nat Genet. 2001;27:247.

    Article  CAS  Google Scholar 

  44. Shrivastav M, De Haro LP, Nickoloff JA. Regulation of DNA double-strand break repair pathway choice. Cell Res. 2008;18:134.

    Article  CAS  Google Scholar 

  45. Byrne M, Bennett RL, Cheng X, May WS. Progressive genomic instability in the Nup98-HoxD13 model of MDS correlates with loss of the PIG-A gene product. Neoplasia. 2014;16:627–33.

    Article  CAS  Google Scholar 

  46. Visconte V, Tiu RV, Rogers HJ. Pathogenesis of myelodysplastic syndromes: an overview of molecular and non-molecular aspects of the disease. Blood Res. 2014;49:216–27.

    Article  Google Scholar 

  47. Hamai Y, Oue N, Mitani Y, Nakayama H, Ito R, Matsusaki K, et al. DNA hypermethylation and histone hypoacetylation of the HLTF gene are associated with reduced expression in gastric carcinoma. Cancer Sci. 2003;94:692–8.

    Article  CAS  Google Scholar 

  48. Moinova HR, Chen W-D, Shen L, Smiraglia D, Olechnowicz J, Ravi L, et al. HLTF gene silencing in human colon cancer. Proceedings of the National Academy of Sciences. 2002;99:4562-7.

  49. Cheng CK, Chan NP, Wan TS, Ying LL, Cheung CH, Wong TH, et al. Helicase-like transcription factor is a RUNX1 target whose downregulation promotes genomic instability and correlates with complex cytogenetic features in acute myeloid leukemia. Haematologica. 2016;101:448-57.

  50. Varela I, Tarpey P, Raine K, Huang D, Ong CK, Stephens P, et al. Exome sequencing identifies frequent mutation of the SWI/SNF complex gene PBRM1 in renal carcinoma. Nature. 2011;469:539.

    Article  CAS  Google Scholar 

  51. Smart C, Wronski A, French J, Edwards S, Asselin-Labat M, Waddell N, et al. Analysis of Brca1-deficient mouse mammary glands reveals reciprocal regulation of Brca1 and c-kit. Oncogene. 2011;30:1597.

    Article  CAS  Google Scholar 

  52. Wilson BG, Roberts CW. SWI/SNF nucleosome remodellers and cancer. Nat Rev Cancer. 2011;11:481.

    Article  CAS  Google Scholar 

  53. Biegel JA, Zhou J-Y, Rorke LB, Stenstrom C, Wainwright LM, Fogelgren B. Germ-line and acquired mutations of INI1 in atypical teratoid and rhabdoid tumors. Cancer Res. 1999;59:74–9.

    CAS  Google Scholar 

  54. Ho AS, Kannan K, Roy DM, Morris LG, Ganly I, Katabi N, et al. The mutational landscape of adenoid cystic carcinoma. Nat Genet. 2013;45:791.

    Article  CAS  Google Scholar 

  55. Witzel M, Petersheim D, Fan Y, Bahrami E, Racek T, Rohlfs M, et al. Chromatin-remodeling factor SMARCD2 regulates transcriptional networks controlling differentiation of neutrophil granulocytes. Nat Genet. 2017;49:742.

    Article  CAS  Google Scholar 

  56. Sato Y, Yamagata A, Goto-Ito S, Kubota K, Miyamoto R, Nakada S, et al. Molecular basis of Lys-63-linked polyubiquitination inhibition by the interaction between human deubiquitinating enzyme OTUB1 and ubiquitin-conjugating enzyme UBC13. J Biol Chem. 2012;287:25860–8.

    Article  CAS  Google Scholar 

  57. VanDemark AP, Hofmann RM, Tsui C, Pickart CM, Wolberger C. Molecular insights into polyubiquitin chain assembly: crystal structure of the Mms2/Ubc13 heterodimer. Cell . 2001;105:711–20.

    Article  CAS  Google Scholar 

  58. Kinner A, Wu W, Staudt C, Iliakis G. γ-H2AX in recognition and signaling of DNA double-strand breaks in the context of chromatin. Nucleic Acids Res. 2008;36:5678–94.

    Article  CAS  Google Scholar 

  59. Zhao GY, Sonoda E, Barber LJ, Oka H, Murakawa Y, Yamada K, et al. A critical role for the ubiquitin-conjugating enzyme Ubc13 in initiating homologous recombination. Mol Cell. 2007;25:663–75.

    Article  CAS  Google Scholar 

  60. Manvati S, Mangalhara KC, Kalaiarasan P, Srivastava N, Kumar B, Bamezai R. MiR-101 induces senescence and prevents apoptosis in the background of DNA damage in MCF7 cells. PLoS One. 2014;9:e111177.

    Article  Google Scholar 

Download references

Acknowledgements

We would like to express our gratitude to all the patients and family members who participated in the present study. We would like to thank Dr. Masashi Miyauchi, Dr. Sho Yamazaki, Dr. Hideaki Mizuno, Dr. Naoki Nariai, and Dr. Akira Motegi for their great discussion and kind help. We would like to thank Professor Lajos Haracska (Biological Research Centre, Institute of Genetics, Hungary), Professor Kyungjae Myung (School of Life Sciences, Ulsan National Institute of Science and Technology), and Professor David Turner (University of Michigan, Molecular and Behavioral Neuroscience Institute) for their kindness and generosity in providing the plasmids. Finally, we would also like to thank Ms. Keiko Tanaka, Ms. Satomi Muroi, Ms. Kaori Ono, Ms. Fumie Ueki, Ms. Mariko Yamamoto, and Ms. Yoko Hokama for their excellent technical assistance and Ms. Tomoko Aiga for the total support. This work was supported by research funding from JSPS KAKENHI grant numbers JP15J03679 and JP17K16181 to KT, and 2017 Bristol-Myers Squibb KK Research and Medical Education Grants to SA.

Author contributions

KT, M Kawazu, JK, AY, YM, H Maki, SA, H Mano, and M Kurokawa designed the research; KT and M Kawazu performed the experiments; T.U. carried out genomic analysis; H Maki, TT, TK, YN, SA, HH, and AM helped and prepared to collect the samples; HU and KS provided the samples; KT, M Kawazu, JK, AY, YM, and M Kurokawa wrote the paper; and HH, AM, YH, H Mano, and M Kurokawa supervised the research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mineo Kurokawa.

Ethics declarations

Conflict of interest

Research funding: SA (Bristol-Myers Squibb), HH (Celgene, Novartis). Speakers Bureau: JK (Bristol-Myers Squibb), HH (NIPPON SHINYAKU CO., LTD.), M Kurokawa (Bristol-Myers Squibb). The remaining authors declare no competing financial interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Takaoka, K., Kawazu, M., Koya, J. et al. A germline HLTF mutation in familial MDS induces DNA damage accumulation through impaired PCNA polyubiquitination. Leukemia 33, 1773–1782 (2019). https://doi.org/10.1038/s41375-019-0385-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41375-019-0385-0

This article is cited by

Search

Quick links