Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Myelodysplastic syndrome

Biology and prognostic impact of clonal plasmacytoid dendritic cells in chronic myelomonocytic leukemia

Abstract

Islands of CD123high cells have been commonly described in the bone marrow of patients with chronic myelomonocytic leukemia (CMML). Using a multiparameter flow cytometry assay, we detected an excess of CD123+ mononucleated cells that are lineage-negative, CD45+, CD11c, CD33, HLA-DR+, BDCA-2+, BDCA-4+ in the bone marrow of 32/159 (20%) patients. Conventional and electron microscopy, flow cytometry detection of cell surface markers, gene expression analyses, and the ability to synthesize interferon alpha in response to Toll-like receptor agonists identified these cells as bona fide plasmacytoid dendritic cells (pDCs). Whole-exome sequencing of sorted monocytes and pDCs identified somatic mutations in genes of the oncogenic RAS pathway in the two cell types of every patient. CD34+ cells could generate high amount of pDCs in the absence of FMS-like tyrosine kinase 3-ligand (FLT3L). Finally, an excess of pDCs correlates with regulatory T cell accumulation and an increased risk of acute leukemia transformation. These results demonstrate the FLT3L-independent accumulation of clonal pDCs in the bone marrow of CMML patients with mutations affecting the RAS pathway, which is associated with a higher risk of disease progression.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Waskow C, Liu K, Darrasse-Jèze G, Guermonprez P, Ginhoux F, Merad M, et al. FMS-like tyrosine kinase 3 is required for dendritic cell development in peripheral lymphoid tissues. Nat Immunol. 2008;9:676.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Cisse B, Caton ML, Lehner M, Maeda T, Scheu S, Locksley R, et al. Transcription factor E2-2 is an essential and specific regulator of plasmacytoid dendritic cell development. Cell. 2008;135:37–48.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Guilliams M, Ginhoux F, Jakubzick C, Naik SH, Onai N, Schraml BU, et al. Dendritic cells, monocytes and macrophages: a unified nomenclature based on ontogeny. Nat Rev Immunol. 2014;14:571–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Siegal FP, Kadowaki N, Shodell M, Fitzgerald-Bocarsly PA, Shah K, Ho S, et al. The nature of the principal type 1 interferon-producing cells in human blood. Science. 1999;284:1835–7.

    Article  CAS  PubMed  Google Scholar 

  5. Villadangos JA, Young L. Antigen-presentation properties of plasmacytoid dendritic cells. Immunity. 2008;29:352–61.

    Article  CAS  PubMed  Google Scholar 

  6. Kadowaki N, Antonenko S, Lau JY, Liu YJ. Natural interferon alpha/beta-producing cells link innate and adaptive immunity. J Exp Med. 2000;192:219–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Vermi W, Soncini M, Melocchi L, Sozzani S, Facchetti F. Plasmacytoid dendritic cells and cancer. J Leukoc Biol. 2011;90:681–90.

    Article  CAS  PubMed  Google Scholar 

  8. Zou W, Machelon V, Coulomb-L’Hermin A, Borvak J, Nome F, Isaeva T, et al. Stromal-derived factor-1 in human tumors recruits and alters the function of plasmacytoid precursor dendritic cells. Nat Med. 2001;7:1339–46.

    Article  CAS  PubMed  Google Scholar 

  9. Wei S, Kryczek I, Zou L, Daniel B, Cheng P, Mottram P, et al. Plasmacytoid dendritic cells induce CD8+ regulatory T cells in human ovarian carcinoma. Cancer Res. 2005;65:5020–6.

    Article  CAS  PubMed  Google Scholar 

  10. Conrad C, Gregorio J, Wang Y-H, Ito T, Meller S, Hanabuchi S, et al. Plasmacytoid dendritic cells promote immunosuppression in ovarian cancer via ICOS costimulation of Foxp3+ T-tegulatory cells. Cancer Res. 2012;72:5240–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Demoulin S, Herfs M, Delvenne P, Hubert P. Tumor microenvironment converts plasmacytoid dendritic cells into immunosuppressive/tolerogenic cells: insight into the molecular mechanisms. J Leukoc Biol. 2013;93:343–52.

    Article  CAS  PubMed  Google Scholar 

  12. Deininger MWN, Tyner JW, Solary E. Turning the tide in myelodysplastic/myeloproliferative neoplasms. Nat Rev Cancer. 2017;17:425–40.

    Article  CAS  PubMed  Google Scholar 

  13. Arber DA, Orazi A, Hasserjian R, Thiele J, Borowitz MJ, Beau MML, et al. The 2016 revision to the World Health Organization classification of myeloid neoplasms and acute leukemia. Blood. 2016;127:2391–405.

    Article  CAS  PubMed  Google Scholar 

  14. Itzykson R, Kosmider O, Renneville A, Gelsi-Boyer V, Meggendorfer M, Morabito M, et al. Prognostic score including gene mutations in chronic myelomonocytic leukemia. J Clin Oncol. 2013;31:2428–36.

    Article  CAS  PubMed  Google Scholar 

  15. Merlevede J, Droin N, Qin T, Meldi K, Yoshida K, Morabito M, et al. Mutation allele burden remains unchanged in chronic myelomonocytic leukaemia responding to hypomethylating agents. Nat Commun. 2016;7:10767.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Itzykson R, Kosmider O, Renneville A, Morabito M, Preudhomme C, Berthon C, et al. Clonal architecture of chronic myelomonocytic leukemias. Blood. 2013;121:2186–98.

    Article  CAS  PubMed  Google Scholar 

  17. Padron E, Painter JS, Kunigal S, Mailloux AW, McGraw K, McDaniel JM, et al. GM-CSF–dependent pSTAT5 sensitivity is a feature with therapeutic potential in chronic myelomonocytic leukemia. Blood. 2013;121:5068.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Patnaik MM, Tefferi A. Chronic myelomonocytic leukemia: 2016 update on diagnosis, risk stratification, and management. Am J Hematol. 2016;91:631–42.

    Article  CAS  PubMed  Google Scholar 

  19. de Witte T, Bowen D, Robin M, Malcovati L, Niederwieser D, Yakoub-Agha I, et al. Allogeneic hematopoietic stem cell transplantation for MDS and CMML: recommendations from an international expert panel. Blood. 2017;129:1753–62.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Solary E, Itzykson R. How I treat chronic myelomonocytic leukemia. Blood. 2017;130:126–36.

    Article  CAS  PubMed  Google Scholar 

  21. Chen Y-C, Chou J-M, Ketterling RP, Letendre L, Li C-Y. Histologic and immunohistochemical study of bone marrow monocytic nodules in 21 cases with myelodysplasia. Am J Clin Pathol. 2003;120:874–81.

    Article  PubMed  Google Scholar 

  22. Vermi W, Facchetti F, Rosati S, Vergoni F, Rossi E, Festa S, et al. Nodal and extranodal tumor-forming accumulation of plasmacytoid monocytes/interferon-producing cells associated with myeloid disorders. Am J Surg Pathol. 2004;28:585–95.

    Article  PubMed  Google Scholar 

  23. Orazi A, Chiu R, O’Malley DP, Czader M, Allen SL, An C, et al. Chronic myelomonocytic leukemia: the role of bone marrow biopsy immunohistology. Mod Pathol. 2006;19:1536–45.

    Article  CAS  PubMed  Google Scholar 

  24. Harris NL, Demirjian Z. Plasmacytoid T-zone cell proliferation in a patient with chronic myelomonocytic leukemia. Histologic and immunohistologic characterization. Am J Surg Pathol. 1991;15:87–95.

    Article  CAS  PubMed  Google Scholar 

  25. Müller-Hermelink HK, Stein H, Steinmann G, Lennert K. Malignant lymphoma of plasmacytoid T-cells. Morphologic and immunologic studies characterizing a special type of T-cell. Am J Surg Pathol. 1983;7:849–62.

    Article  PubMed  Google Scholar 

  26. Facchetti F, de Wolf-Peeters C, Mason DY, Pulford K, Van den Oord JJ, Desmet VJ. Plasmacytoid T cells. Immunohistochemical evidence for their monocyte/macrophage origin. Am J Pathol. 1988;133:15.

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Villani A-C, Satija R, Reynolds G, Sarkizova S, Shekhar K, Fletcher J, et al. Single-cell RNA-seq reveals new types of human blood dendritic cells, monocytes, and progenitors. Science. 2017;356:eaah4573.

    Article  PubMed  PubMed Central  Google Scholar 

  28. See P, Dutertre C-A, Chen J, Günther P, McGovern N, Irac SE, et al. Mapping the human DC lineage through the integration of high-dimensional techniques. Science. 2017;356:eaag3009.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Such E, Germing U, Malcovati L, Cervera J, Kuendgen A, Porta MGD, et al. Development and validation of a prognostic scoring system for patients with chronic myelomonocytic leukemia. Blood. 2013;121:3005–15.

    Article  CAS  PubMed  Google Scholar 

  30. Patnaik MM, Lasho TL, Vijayvargiya P, Finke CM, Hanson CA, Ketterling RP, et al. Prognostic interaction between ASXL1 and TET2 mutations in chronic myelomonocytic leukemia. Blood Cancer J. 2016;6:e385.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014;15:550.

  32. Boyle EI, Weng S, Gollub J, Jin H, Botstein D, Cherry JM, et al. GO::TermFinder--open source software for accessing Gene Ontology information and finding significantly enriched Gene Ontology terms associated with a list of genes. Bioinformatics. 2004;20:3710–5.

    Article  CAS  PubMed  Google Scholar 

  33. Yu G, Wang L-G, Han Y, He Q-Y. clusterProfiler: an R package for comparing biological themes among gene clusters. OMICS. 2012;16:284–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Lee J, Breton G, Aljoufi A, Zhou YJ, Puhr S, Nussenzweig MC, et al. Clonal analysis of human dendritic cell progenitor using a stromal cell culture. J Immunol Methods. 2015;425:21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Lee J, Breton G, Oliveira TYK, Zhou YJ, Aljoufi A, Puhr S, et al. Restricted dendritic cell and monocyte progenitors in human cord blood and bone marrow. J Exp Med. 2015;212:385–99.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Chen W, Antonenko S, Sederstrom JM, Liang X, Chan ASH, Kanzler H, et al. Thrombopoietin cooperates with FLT3-ligand in the generation of plasmacytoid dendritic cell precursors from human hematopoietic progenitors. Blood. 2004;103:2547–53.

    Article  CAS  PubMed  Google Scholar 

  37. Demoulin S, Roncarati P, Delvenne P, Hubert P. Production of large numbers of plasmacytoid dendritic cells with functional activities from CD34+ hematopoietic progenitor cells: use of interleukin-3. Exp Hematol. 2012;40:268–78.

    Article  CAS  PubMed  Google Scholar 

  38. Pardanani A, Reichard KK, Zblewski D, Abdelrahman RA, Wassie EA, et al. CD123 immunostaining patterns in systemic mastocytosis: differential expression in disease subgroups and potential prognostic value. Leukemia. 2016;30:914–8.

    Article  CAS  PubMed  Google Scholar 

  39. Tzankov A, Hebeda K, Kremer M, Leguit R, Orazi A, van der Walt J, et al. Plasmacytoid dendritic cell proliferations and neoplasms involving the bone marrow: Summary of the workshop cases submitted to the 18th Meeting of the European Association for Haematopathology (EAHP) organized by the European Bone Marrow Working Group, Basel 2016. Ann Hematol. 2017;96:765–77.

    Article  CAS  PubMed  Google Scholar 

  40. Pagano L, Valentini CG, Grammatico S, Pulsoni A. Blastic plasmacytoid dendritic cell neoplasm: diagnostic criteria and therapeutical approaches. Br J Haematol. 2016;174:188–202.

    Article  CAS  PubMed  Google Scholar 

  41. Menezes J, Acquadro F, Wiseman M, Gómez-López G, Salgado RN, Talavera-Casañas JG, et al. Exome sequencing reveals novel and recurrent mutations with clinical impact in blastic plasmacytoid dendritic cell neoplasm. Leukemia. 2014;28:823–9.

    Article  CAS  PubMed  Google Scholar 

  42. Kunimoto H, Meydan C, Nazir A, Whitfield J, Shank K, Rapaport F, et al. Cooperative epigenetic remodeling by TET2 loss and NRAS mutation drives myeloid transformation and MEK inhibitor sensitivity. Cancer Cell. 2018;33:44–59.e8.

    Article  CAS  PubMed  Google Scholar 

  43. Makishima H, Yoshizato T, Yoshida K, Sekeres MA, Radivoyevitch T, Suzuki H, et al. Dynamics of clonal evolution in myelodysplastic syndromes. Nat Genet. 2017;49:204–12.

    Article  CAS  PubMed  Google Scholar 

  44. Kingston D, Schmid MA, Onai N, Obata-Onai A, Baumjohann D, Manz MG. The concerted action of GM-CSF and Flt3-ligand on in vivo dendritic cell homeostasis. Blood. 2009;114:835–43.

    Article  CAS  PubMed  Google Scholar 

  45. Esashi E, Wang Y-H, Perng O, Qin X-F, Liu Y-J, Watowich SS. The signal transducer STAT5 inhibits plasmacytoid dendritic cell development by suppressing transcription factor IRF8. Immunity. 2008;28:509–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Niyongere S, Lucas N, Zhou J-M, Sansil S, Pomicter AD, Balasis ME, et al. Heterogeneous expression of cytokines accounts for clinical diversity and refines prognostication in CMML. Leukemia. 2018. https://doi.org/10.1038/s41375-018-0203-0.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Desterke C, Bilhou-Nabéra C, Guerton B, Martinaud C, Tonetti C, Clay D, et al. FLT3-mediated p38–MAPK activation participates in the control of megakaryopoiesis in primary myelofibrosis. Cancer Res. 2011;71:2901–15.

    Article  CAS  PubMed  Google Scholar 

  48. Zitvogel L, Galluzzi L, Kepp O, Smyth MJ, Kroemer G. Type I interferons in anticancer immunity. Nat Rev Immunol. 2015;15:405–14.

    Article  CAS  PubMed  Google Scholar 

  49. Touzot M, Grandclaudon M, Cappuccio A, Satoh T, Martinez-Cingolani C, Servant N, et al. Combinatorial flexibility of cytokine function during human T helper cell differentiation. Nat Commun. 2014;5:3987.

    Article  CAS  PubMed  Google Scholar 

  50. Kiladjian J-J, Giraudier S, Cassinat B. Interferon-alpha for the therapy of myeloproliferative neoplasms: targeting the malignant clone. Leukemia. 2016;30:776–81.

    Article  CAS  PubMed  Google Scholar 

  51. Achard C, Guillerme J-B, Bruni D, Boisgerault N, Combredet C, Tangy F, et al. Oncolytic measles virus induces tumor necrosis factor-related apoptosis-inducing ligand (TRAIL)-mediated cytotoxicity by human myeloid and plasmacytoid dendritic cells. Oncoimmunology. 2016;6:e1261240.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Sisirak V, Faget J, Gobert M, Goutagny N, Vey N, Treilleux I, et al. Impaired IFN-α production by plasmacytoid dendritic cells favors regulatory T-cell expansion that may contribute to breast cancer progression. Cancer Res. 2012;72:5188–97.

    Article  CAS  PubMed  Google Scholar 

  53. Kordasti SY, Ingram W, Hayden J, Darling D, Barber L, Afzali B, et al. CD4+CD25 high Foxp3+ regulatory T cells in myelodysplastic syndrome (MDS). Blood. 2007;110:847–50.

    Article  CAS  PubMed  Google Scholar 

  54. Kotsianidis I, Bouchliou I, Nakou E, Spanoudakis E, Margaritis D, Christophoridou AV, et al. Kinetics, function and bone marrow trafficking of CD4+CD25+FOXP3+ regulatory T cells in myelodysplastic syndromes (MDS). Leukemia. 2008;23:510–8.

    Article  PubMed  Google Scholar 

  55. Kittang AO, Kordasti S, Sand KE, Costantini B, Kramer AM, Perezabellan P, et al. Expansion of myeloid derived suppressor cells correlates with number of T regulatory cells and disease progression in myelodysplastic syndrome. Oncoimmunology. 2016;5:e1062208.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Patnaik MM, Gupta V, Schiller G, Lee S, Yacoub A. Results From ongoing phase 1/2 trial of SL-401 in patnient with relapsed/refractroy CMML. 2018. European Hematology Association Meeting, Stockholm.

  57. Ray A, Das DS, Song Y, Macri V, Richardson P, Brooks CL, et al. A novel agent SL-401 induces anti-myeloma activity by targeting plasmacytoid dendritic cells, osteoclastogenesis and cancer stem-like cells. Leukemia. 2017;31:2652–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Cytlak U, Resteu A, Bogaert D, Kuehn HS, Altmann T, Gennery A, et al. Ikaros family zinc finger 1 regulates dendritic cell development and function in humans. Nat Commun. 2018;9. https://doi.org/10.1038/s41467-018-02977-8.

Download references

Acknowledgements

This work was supported by grants from the Ligue Nationale Contre le Cancer (Equipe Labellisée), the National Cancer Institute (INCa PL-BIO and PRT-K calls), the Molecular Medicine in Oncology program supported by the Agence Nationale de la Recherche, and the SIRIC SOCRATE program. NL was supported by a grant from the Ligue Nationale Contre le Cancer, MD by the ITMO Cancer (Plan cancer 2014–2019). Part of high-throughput sequencing was performed by the genomic platform of the Institut Curie, which is supported by grants ANR-10-EQPX-03 and ANR10-INBS-09-08 from the Agence Nationale de la Recherche (Investissements d’Avenir) and by Cancéropole Ile de France. We are grateful to Sylvain Baulande and Patricia Legoix-Ne from the genomic platform of Curie Institute and Karine Bailly from the Cochin Institute cytometry and immunobiology facility for their technical support, and to Abdelkrim Achibet from the orthopedic surgery department from the hospital of Le Mans for providing us with bone marrow controls.

Author information

Authors and Affiliations

Authors

Contributions

NL and MD collected the samples and performed the experiments, PR set up and performed flow analyses, FN and PM analyzed the RNA sequencing data, VS and OK performed conventional microscopy, GP the electron microcopy analysis, MEFZ, MTH and RLK the immunohistochemistry, SN and EP measured FLT3L in bone marrow plasma, MKD analyzed the whole-exome sequencing data, PF, RI, CW, VR and MF provided patient samples, ND supervised the genomic analyses, MD performed the statistical analyses, ES wrote the manuscript, MF, VS and MMP corrected the manuscript, MMP and ES supervised the whole project.

Corresponding authors

Correspondence to Mrinal M Patnaik or Eric Solary.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lucas, N., Duchmann, M., Rameau, P. et al. Biology and prognostic impact of clonal plasmacytoid dendritic cells in chronic myelomonocytic leukemia. Leukemia 33, 2466–2480 (2019). https://doi.org/10.1038/s41375-019-0447-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41375-019-0447-3

This article is cited by

Search

Quick links