Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Stem cell biology

Kdm6b regulates context-dependent hematopoietic stem cell self-renewal and leukemogenesis

Abstract

The histone demethylase KDM6B (JMJD3) is upregulated in blood disorders, suggesting that it may have important pathogenic functions. Here we examined the function of Kdm6b in hematopoietic stem cells (HSC) to evaluate its potential as a therapeutic target. Loss of Kdm6b lead to depletion of phenotypic and functional HSCs in adult mice, and Kdm6b is necessary for HSC self-renewal in response to inflammatory and proliferative stress. Loss of Kdm6b leads to a pro-differentiation poised state in HSCs due to the increased expression of the AP-1 transcription factor complex (Fos and Jun) and immediate early response (IER) genes. These gene expression changes occurred independently of chromatin modifications. Targeting AP-1 restored function of Kdm6b-deficient HSCs, suggesting that Kdm6b regulates this complex during HSC stress response. We also show Kdm6b supports developmental context-dependent leukemogenesis for T-cell acute lymphoblastic leukemia (T-ALL) and M5 acute myeloid leukemia (AML). Kdm6b is required for effective fetal-derived T-ALL and adult-derived AML, but not vice versa. These studies identify a crucial role for Kdm6b in regulating HSC self-renewal in different contexts, and highlight the potential of KDM6B as a therapeutic target in different hematopoietic malignancies.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Hong S, Cho YW, Yu LR, Yu H, Veenstra TD, Ge K. Identification of JmjC domain-containing UTX and JMJD3 as histone H3 lysine 27 demethylases. Proc Natl Acad Sci USA. 2007;104:18439–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Bannister AJ, Kouzarides T. Regulation of chromatin by histone modifications. Cell Res. 2011;21:381–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Lan F, Bayliss PE, Rinn JL, Whetstine JR, Wang JK, Chen S, et al. A histone H3 lysine 27 demethylase regulates animal posterior development. Nature. 2007;449:689–94.

    Article  CAS  PubMed  Google Scholar 

  4. Sen GL, Webster DE, Barragan DI, Chang HY, Khavari PA. Control of differentiation in a self-renewing mammalian tissue by the histone demethylase JMJD3. Genes Dev. 2008;22:1865–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Burgold T, Voituron N, Caganova M, Tripathi PP, Menuet C, Tusi BK, et al. The H3K27 demethylase JMJD3 is required for maintenance of the embryonic respiratory neuronal network, neonatal breathing, and survival. Cell Rep. 2012;2:1244–58.

    Article  CAS  PubMed  Google Scholar 

  6. Agger K, Cloos PA, Christensen J, Pasini D, Rose S, Rappsilber J, et al. UTX and JMJD3 are histone H3K27 demethylases involved in HOX gene regulation and development. Nature. 2007;449:731–4.

    Article  CAS  PubMed  Google Scholar 

  7. De Santa F, Narang V, Yap ZH, Tusi BK, Burgold T, Austenaa L, et al. Jmjd3 contributes to the control of gene expression in LPS-activated macrophages. Embo J. 2009;28:3341–52.

    Article  PubMed  PubMed Central  Google Scholar 

  8. De Santa F, Totaro MG, Prosperini E, Notarbartolo S, Testa G, Natoli G. The histone H3 lysine-27 demethylase Jmjd3 links inflammation to inhibition of polycomb-mediated gene silencing. Cell. 2007;130:1083–94.

    Article  PubMed  Google Scholar 

  9. Kruidenier L, Chung CW, Cheng Z, Liddle J, Che K, Joberty G, et al. A selective jumonji H3K27 demethylase inhibitor modulates the proinflammatory macrophage response. Nature. 2012;488:404–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Wijayatunge R, Chen LF, Cha YM, Zannas AS, Frank CL, West AE. The histone lysine demethylase Kdm6b is required for activity-dependent preconditioning of hippocampal neuronal survival. Mol Cell Neurosci. 2014;61:187–200.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Agger K, Cloos PA, Rudkjaer L, Williams K, Andersen G, Christensen J, et al. The H3K27me3 demethylase JMJD3 contributes to the activation of the INK4A-ARF locus in response to oncogene- and stress-induced senescence. Genes Dev. 2009;23:1171–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Barradas M, Anderton E, Acosta JC, Li S, Banito A, Rodriguez-Niedenfuhr M, et al. Histone demethylase JMJD3 contributes to epigenetic control of INK4a/ARF by oncogenic RAS. Genes Dev. 2009;23:1177–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Ohguchi H, Harada T, Sagawa M, Kikuchi S, Tai YT, Richardson PG, et al. KDM6B modulates MAPK pathway mediating multiple myeloma cell growth and survival. Leukemia. 2017;31:2661–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Greenblatt SM, Nimer SD. Chromatin modifiers and the promise of epigenetic therapy in acute leukemia. Leukemia. 2014;28:1396–406.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Abdel-Wahab O, Levine RL. Mutations in epigenetic modifiers in the pathogenesis and therapy of acute myeloid leukemia. Blood. 2013;121:3563–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Cancer Genome Atlas Research Network. Genomic and epigenomic landscapes of adult de novo acute myeloid leukemia. N Engl J Med. 2013;368:2059–74.

    Article  Google Scholar 

  17. Mar BG, Bullinger L, Basu E, Schlis K, Silverman LB, Dohner K, et al. Sequencing histone-modifying enzymes identifies UTX mutations in acute lymphoblastic leukemia. Leukemia. 2012;26:1881–3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Kiel MJ, Sahasrabuddhe AA, Rolland DC, Velusamy T, Chung F, Schaller M, et al. Genomic analyses reveal recurrent mutations in epigenetic modifiers and the JAK-STAT pathway in Sezary syndrome. Nat Commun. 2015;6:8470.

    Article  CAS  PubMed  Google Scholar 

  19. Wei Y, Chen R, Dimicoli S, Bueso-Ramos C, Neuberg D, Pierce S, et al. Global H3K4me3 genome mapping reveals alterations of innate immunity signaling and overexpression of JMJD3 in human myelodysplastic syndrome CD34+ cells. Leukemia. 2013;27:2177–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Anderton JA, Bose S, Vockerodt M, Vrzalikova K, Wei W, Kuo M, et al. The H3K27me3 demethylase, KDM6B, is induced by Epstein-Barr virus and over-expressed in Hodgkin’s Lymphoma. Oncogene. 2011;30:2037–43.

    Article  CAS  PubMed  Google Scholar 

  21. Ntziachristos P, Tsirigos A, Welstead GG, Trimarchi T, Bakogianni S, Xu L, et al. Contrasting roles of histone 3 lysine 27 demethylases in acute lymphoblastic leukaemia. Nature. 2014;514:513–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Yu SH, Zhu KY, Chen J, Liu XZ, Xu PF, Zhang W, et al. JMJD3 facilitates C/EBPbeta-centered transcriptional program to exert oncorepressor activity in AML. Nat Commun. 2018;9:3369.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Wei Y, Zheng H, Bao N, Jiang S, Bueso-Ramos CE, Khoury J, et al. KDM6B overexpression activates innate immune signaling and impairs hematopoiesis in mice. Blood Adv. 2018;2:2491–504.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Iwamori N, Iwamori T, Matzuk MM. H3K27 demethylase, JMJD3, regulates fragmentation of spermatogonial cysts. PLoS ONE. 2013;8:e72689.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Wang C, Lee JE, Cho YW, Xiao Y, Jin Q, Liu C, et al. UTX regulates mesoderm differentiation of embryonic stem cells independent of H3K27 demethylase activity. Proc Natl Acad Sci USA. 2012;109:15324–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Georgiades P, Ogilvy S, Duval H, Licence DR, Charnock-Jones DS, Smith SK, et al. VavCre transgenic mice: a tool for mutagenesis in hematopoietic and endothelial lineages. Genesis. 2002;34:251–6.

    Article  CAS  PubMed  Google Scholar 

  27. Kuhn R, Schwenk F, Aguet M, Rajewsky K. Inducible gene targeting in mice. Science. 1995;269:1427–9.

    Article  CAS  PubMed  Google Scholar 

  28. Hayashi S, McMahon AP. Efficient recombination in diverse tissues by a tamoxifen-inducible form of Cre: a tool for temporally regulated gene activation/inactivation in the mouse. Dev Biol. 2002;244:305–18.

    Article  CAS  PubMed  Google Scholar 

  29. Dobin A, Davis CA, Schlesinger F, Drenkow J, Zaleski C, Jha S, et al. STAR: ultrafast universal RNA-seq aligner. Bioinformatics. 2013;29:15–21.

    Article  CAS  PubMed  Google Scholar 

  30. Liao Y, Smyth GK, Shi W. featureCounts: an efficient general purpose program for assigning sequence reads to genomic features. Bioinformatics. 2014;30:923–30.

    Article  CAS  PubMed  Google Scholar 

  31. Liao Y, Smyth GK, Shi W. The Subread aligner: fast, accurate and scalable read mapping by seed-and-vote. Nucleic Acids Res. 2013;41:e108.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Patro R, Mount SM, Kingsford C. Sailfish enables alignment-free isoform quantification from RNA-seq reads using lightweight algorithms. Nat Biotechnol. 2014;32:462–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Subramanian A, Tamayo P, Mootha VK, Mukherjee S, Ebert BL, Gillette MA, et al. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci USA. 2005;102:15545–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Schmidl C, Rendeiro AF, Sheffield NC, Bock C. ChIPmentation: fast, robust, low-input ChIP-seq for histones and transcription factors. Nat Methods. 2015;12:963–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Langmead B, Salzberg SL. Fast gapped-read alignment with Bowtie 2. Nat Methods. 2012;9:357–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Starmer J, Magnuson T. Detecting broad domains and narrow peaks in ChIP-seq data with hiddenDomains. BMC Bioinformatics. 2016;17:144.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Carroll TS, Liang Z, Salama R, Stark R, de Santiago I. Impact of artifact removal on ChIP quality metrics in ChIP-seq and ChIP-exo data. Front Genet. 2014;5:75.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Ramirez F, Ryan DP, Gruning B, Bhardwaj V, Kilpert F, Richter AS, et al. deepTools2: a next generation web server for deep-sequencing data analysis. Nucleic Acids Res. 2016;44:W160–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Neph S, Kuehn MS, Reynolds AP, Haugen E, Thurman RE, Johnson AK, et al. BEDOPS: high-performance genomic feature operations. Bioinformatics. 2012;28:1919–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Corces MR, Trevino AE, Hamilton EG, Greenside PG, Sinnott-Armstrong NA, Vesuna S, et al. An improved ATAC-seq protocol reduces background and enables interrogation of frozen tissues. Nat Methods. 2017;14:959–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Li Q, Zou J, Wang M, Ding X, Chepelev I, Zhou X, et al. Critical role of histone demethylase Jmjd3 in the regulation of CD4+ T-cell differentiation. Nat Commun. 2014;5:5780.

    Article  CAS  PubMed  Google Scholar 

  42. Hu Y, Smyth GK. ELDA: extreme limiting dilution analysis for comparing depleted and enriched populations in stem cell and other assays. J Immunol Methods. 2009;347:70–8.

    Article  CAS  PubMed  Google Scholar 

  43. Kirschner K, Chandra T, Kiselev V, Flores-Santa Cruz D, Macaulay IC, Park HJ, et al. Proliferation drives aging-related functional decline in a subpopulation of the hematopoietic stem cell compartment. Cell Rep. 2017;19:1503–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Tullai JW, Schaffer ME, Mullenbrock S, Sholder G, Kasif S, Cooper GM. Immediate-early and delayed primary response genes are distinct in function and genomic architecture. J Biol Chem. 2007;282:23981–95.

    Article  CAS  PubMed  Google Scholar 

  45. Venezia TA, Merchant AA, Ramos CA, Whitehouse NL, Young AS, Shaw CA, et al. Molecular signatures of proliferation and quiescence in hematopoietic stem cells. PLoS Biol. 2004;2:e301.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Fortier ME, Kent S, Ashdown H, Poole S, Boksa P, Luheshi GN. The viral mimic, polyinosinic:polycytidylic acid, induces fever in rats via an interleukin-1-dependent mechanism. Am J Physiol Regul Integr Comp Physiol. 2004;287:R759–66.

    Article  CAS  PubMed  Google Scholar 

  47. Yamazaki S, Tanaka Y, Araki H, Kohda A, Sanematsu F, Arasaki T, et al. The AP-1 transcription factor JunB is required for Th17 cell differentiation. Sci Rep. 2017;7:17402.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Leppa S, Eriksson M, Saffrich R, Ansorge W, Bohmann D. Complex functions of AP-1 transcription factors in differentiation and survival of PC12 cells. Mol Cell Biol. 2001;21:4369–78.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Han B, Rorke EA, Adhikary G, Chew YC, Xu W, Eckert RL. Suppression of AP1 transcription factor function in keratinocyte suppresses differentiation. PLoS ONE. 2012;7:e36941.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Krivtsov AV, Twomey D, Feng Z, Stubbs MC, Wang Y, Faber J, et al. Transformation from committed progenitor to leukaemia stem cell initiated by MLL-AF9. Nature. 2006;442:818–22.

    Article  CAS  PubMed  Google Scholar 

  51. Xiang Y, Zhu Z, Han G, Lin H, Xu L, Chen CD. JMJD3 is a histone H3K27 demethylase. Cell Res. 2007;17:850–7.

    Article  CAS  PubMed  Google Scholar 

  52. Pear WS, Aster JC, Scott ML, Hasserjian RP, Soffer B, Sklar J, et al. Exclusive development of T cell neoplasms in mice transplanted with bone marrow expressing activated Notch alleles. J Exp Med. 1996;183:2283–91.

    Article  CAS  PubMed  Google Scholar 

  53. Lord KA, Abdollahi A, Hoffman-Liebermann B, Liebermann DA. Proto-oncogenes of the fos/jun family of transcription factors are positive regulators of myeloid differentiation. Mol Cell Biol. 1993;13:841–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Okada S, Fukuda T, Inada K, Tokuhisa T. Prolonged expression of c-fos suppresses cell cycle entry of dormant hematopoietic stem cells. Blood. 1999;93:816–25.

    CAS  PubMed  Google Scholar 

  55. Li Y, Zhang M, Sheng M, Zhang P, Chen Z, Xing W, et al. Therapeutic potential of GSK-J4, a histone demethylase KDM6B/JMJD3 inhibitor, for acute myeloid leukemia. J Cancer Res Clin Oncol. 2018;144:1065–77.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Van der Meulen J, Sanghvi V, Mavrakis K, Durinck K, Fang F, Matthijssens F, et al. The H3K27me3 demethylase UTX is a gender-specific tumor suppressor in T-cell acute lymphoblastic leukemia. Blood. 2015;125:13–21.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

We thank Dr. Martin Matzuk (Baylor College of Medicine) for providing Kdm6bfl/fl mice, Dr. Lukas Wartman (Washington University) for providing Utx1fl/fl mice, and Dr. Jeff Magee (Washington University) for providing MLL-AF9 retroviral plasmid. We thank the Alvin J. Siteman Cancer Center at Washington University for use of the Siteman Flow Cytometry Core, supported in part by NCI Grant CA91842. We thank the Genome Technology Access Center at Washington University for genomic analysis, partially supported by NCI Grant CA91842 and by ICTS/CTSA Grant UL1TR000448 NIH. This work was supported by the National Institutes of Health (R01DK102428), the Edward Mallinckrodt Jr. Foundation, the American Society of Hematology, the V Foundation, Gabrielle’s Angel Foundation, and the Sidney Kimmel Foundation (all to GAC). Bioinformatics analysis was supported by the Washington University Center for Regenerative Medicine. CM was supported by NIH T32HL007088, and NIH DK111058-01. ELO was supported by NIH 5T32CA113275-10 and NIH F31DK114951. HC was supported by a post-doctoral scholar award from the American Society of Hematology and an Edward P. Evans Foundation Young Investigator Award. GAC is a Leukemia and Lymphoma Society scholar.

Author contirbutions

Project conceptualization and experimental design: GAC. Performed experiments: CM, ELO, HC, ACK, AM, AK, WKK, EH, GAC. Provided critical reagents: NI. Data analysis: CM, ELO, PG, BZ, GAC. Writing—original draft preparation: CM. Writing—review and editing: GAC. Project administration and funding acquisition: GAC.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Grant A. Challen.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mallaney, C., Ostrander, E.L., Celik, H. et al. Kdm6b regulates context-dependent hematopoietic stem cell self-renewal and leukemogenesis. Leukemia 33, 2506–2521 (2019). https://doi.org/10.1038/s41375-019-0462-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41375-019-0462-4

This article is cited by

Search

Quick links