Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Immunotherapy

CXCR5+CD8+ T cells are a distinct functional subset with an antitumor activity

Abstract

CXCR5 mediates homing of both B and follicular helper T (TFH) cells into follicles of secondary lymphoid organs. We found that CXCR5+CD8+ T cells are present in human tonsils and follicular lymphoma, inhibit TFH-mediated B cell differentiation, and exhibit strong cytotoxic activity. Consistent with these findings, adoptive transfer of CXCR5+CD8+ T cells into an animal model of lymphoma resulted in significantly greater antitumor activity than CXCR5CD8+ T cells. Furthermore, RNA-Seq-based transcriptional profiling revealed 77 differentially expressed genes unique to CXCR5+CD8+ T cells. Among these, a signature comprised of 33 upregulated genes correlated with improved survival in follicular lymphoma patients. We also showed that CXCR5+CD8+ T cells could be induced and expanded ex vivo using IL-23 plus TGF-β, suggesting a possible strategy to generate these cells for clinical application. In summary, our study identified CXCR5+CD8+ T cells as a distinct T cell subset with ability to suppress TFH-mediated B cell differentiation, exert strong antitumor activity, and confer favorable prognosis in follicular lymphoma patients.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Duhen T, Duhen R, Lanzavecchia A, Sallusto F, Campbell DJ. Functionally distinct subsets of human FOXP3+ Treg cells that phenotypically mirror effector Th cells. Blood. 2012;119:4430–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Morita R, Schmitt N, Bentebibel SE, Ranganathan R, Bourdery L, Zurawski G, et al. Human blood CXCR5(+)CD4(+) T cells are counterparts of T follicular cells and contain specific subsets that differentially support antibody secretion. Immunity. 2011;34:108–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Johnston RJ, Poholek AC, DiToro D, Yusuf I, Eto D, Barnett B, et al. Bcl6 and Blimp-1 are reciprocal and antagonistic regulators of T follicular helper cell differentiation. Science. 2009;325:1006–10.

  4. Nurieva RI, Chung Y, Martinez GJ, Yang XO, Tanaka S, Matskevitch TD, et al. Bcl6 mediates the development of T follicular helper cells. Science. 2009;325:1001–5.

  5. Yu D, Rao S, Tsai LM, Lee SK, He Y, Sutcliffe EL, et al. The transcriptional repressor Bcl-6 directs T follicular helper cell lineage commitment. Immunity. 2009;31:457–68.

    Article  CAS  PubMed  Google Scholar 

  6. Hardtke S, Ohl L, Forster R. Balanced expression of CXCR5 and CCR7 on follicular T helper cells determines their transient positioning to lymph node follicles and is essential for efficient b cell help. Blood. 2005;106:1924–31.

    Article  CAS  PubMed  Google Scholar 

  7. Liu D, Xu H, Shih C, Wan Z, Ma X, Ma W, et al. T–b cell entanglement and ICOSL-driven feed-forward regulation of germinal centre reaction. Nature. 2014;517:214.

    Article  CAS  PubMed  Google Scholar 

  8. Akiba H, Takeda K, Kojima Y, Usui Y, Harada N, Yamazaki T, et al. The role of ICOS in the CXCR5+ follicular B helper T cell maintenance in vivo. J Immunol. 2005;175:2340–8.

    Article  CAS  PubMed  Google Scholar 

  9. Vinuesa CG, Linterman MA, Yu D, MacLennan IC. Follicular helper T cells. Annu Rev Immunol. 2016;34:335–68.

    Article  CAS  PubMed  Google Scholar 

  10. Bajenoff M, Egen JG, Koo LY, Laugier JP, Brau F, Glaichenhaus N, et al. Stromal cell networks regulate lymphocyte entry, migration, and territoriality in lymph nodes. Immunity. 2006;25:989–1001.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Gunn MD, Ngo VN, Ansel KM, Ekland EH, Cyster JG, Williams LT. A b cell-homing chemokine made in lymphoid follicles activates Burkitt's lymphoma receptor-1. Nature. 1998;391:799.

    Article  CAS  PubMed  Google Scholar 

  12. Cyster JG, Ansel KM, Reif K, Ekland EH, Hyman PL, Tang HL, et al. Follicular stromal cells and lymphocyte homing to follicles. Immunol Rev. 2000;176:181–93.

    Article  CAS  PubMed  Google Scholar 

  13. Quigley MF, Gonzalez VD, Granath A, Andersson J, Sandberg JK. CXCR5+ CCR7- CD8 T cells are early effector memory cells that infiltrate tonsil B cell follicles. Eur J Immunol. 2007;37:3352–62.

    Article  CAS  PubMed  Google Scholar 

  14. Im SJ, Hashimoto M, Gerner MY, Lee J, Kissick HT, Burger MC, et al. Defining CD8+ T cells that provide the proliferative burst after PD-1 therapy. Nature. 2016;537:417–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Leong YA, Chen Y, Ong HS, Wu D, Man K, Deleage C, et al. CXCR5+ follicular cytotoxic T cells control viral infection in B cell follicles. Nat Immunol. 2016;17:1187–96.

    Article  CAS  PubMed  Google Scholar 

  16. He R, Hou S, Liu C, Zhang A, Bai Q, Han M, et al. Follicular CXCR5-expressing CD8+ T cells curtail chronic viral infection. Nature. 2016;537:412–28.

    Article  CAS  PubMed  Google Scholar 

  17. Wu T, Ji Y, Moseman EA, Xu HC, Manglani M, Kirby M, et al. The TCF1-Bcl6 axis counteracts type I interferon to repress exhaustion and maintain T cell stemness. Sci Immunol. 2016;6:eaai8593.

  18. Kim HJ, Verbinnen B, Tang X, Lu L, Cantor H. Inhibition of follicular T-helper cells by CD8(+) regulatory T cells is essential for self tolerance. Nature. 2010;467:328–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Kridel R, Sehn LH, Gascoyne RD. Pathogenesis of follicular lymphoma. J Clin Investig. 2012;122:3424–31.

    Article  CAS  PubMed  Google Scholar 

  20. Ame-Thomas P, Le Priol J, Yssel H, Caron G, Pangault C, Jean R, et al. Characterization of intratumoral follicular helper T cells in follicular lymphoma: role in the survival of malignant B cells. Leukemia. 2012;26:1053–63.

    Article  CAS  PubMed  Google Scholar 

  21. Dave SS, Wright G, Tan B, Rosenwald A, Gascoyne RD, Chan WC, et al. Prediction of survival in follicular lymphoma based on molecular features of tumor-infiltrating immune cells. N Engl J Med. 2004;351:2159–69.

    Article  CAS  PubMed  Google Scholar 

  22. Forster R, Emrich T, Kremmer E, Lipp M. Expression of the G-protein--coupled receptor BLR1 defines mature, recirculating B cells and a subset of T-helper memory cells. Blood. 1994;84:830–40.

    Article  CAS  PubMed  Google Scholar 

  23. Forster R, Mattis AE, Kremmer E, Wolf E, Brem G, Lipp M. A putative chemokine receptor, BLR1, directs B cell migration to defined lymphoid organs and specific anatomic compartments of the spleen. Cell. 1996;87:1037–47.

    Article  CAS  PubMed  Google Scholar 

  24. Wherry EJ. T cell exhaustion. Nat Immunol. 2011;12:492–9.

    Article  CAS  Google Scholar 

  25. Wherry EJ, Ha S-J, Kaech SM, Haining WN, Sarkar S, Kalia V, et al. Molecular signature of CD8+ T cell exhaustion during chronic viral infection. Immunity. 2007;27:670–84.

    Article  CAS  PubMed  Google Scholar 

  26. Schietinger A, Greenberg PD. Tolerance and exhaustion: defining mechanisms of T cell dysfunction. Trends Immunol. 2014;35:51–60.

    Article  CAS  PubMed  Google Scholar 

  27. Martinez GJ, Pereira RM, Aijo T, Kim EY, Marangoni F, Pipkin ME, et al. The transcription factor NFAT promotes exhaustion of activated CD8(+) T cells. Immunity. 2015;42:265–78.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Conze D, Krahl T, Kennedy N, Weiss L, Lumsden J, Hess P, et al. c-Jun NH2-terminal kinase (JNK)1 and JNK2 have distinct roles in CD8+ T cell activation. J Exp Med. 2002;195:811–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Roychoudhuri R, Clever D, Li P, Wakabayashi Y, Quinn KM, Klebanoff CA, et al. BACH2 regulates CD8(+) T cell differentiation by controlling access of AP-1 factors to enhancers. Nat Immunol. 2016;17:851–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Jain J, McCaffrey PG, Valge-Archer VE, Rao A. Nuclear factor of activated T cells contains Fos and Jun. Nature. 1992;356:801–4.

    Article  CAS  PubMed  Google Scholar 

  31. Yang CY, Best JA, Knell J, Yang E, Sheridan AD, Jesionek AK, et al. The transcriptional regulators Id2 and Id3 control the formation of distinct memory CD8+ T cell subsets. Nat Immunol. 2011;12:1221–9.

    Article  CAS  PubMed  Google Scholar 

  32. Collins A, Littman DR, Taniuchi I. RUNX proteins in transcription factor networks that regulate T-cell lineage choice. Nat Rev Immunol. 2009;9:106–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Gattinoni L, Lugli E, Ji Y, Pos Z, Paulos CM, Quigley MF, et al. A human memory T cell subset with stem cell-like properties. Nat Med. 2011;17:1290–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Gattinoni L, Zhong X-S, Palmer DC, Ji Y, Hinrichs CS, Yu Z, et al. Wnt signaling arrests effector T cell differentiation and generates CD8+ memory stem cells. Nat Med. 2009;15:808–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Cruz-Guilloty F, Pipkin ME, Djuretic IM, Levanon D, Lotem J, Lichtenheld MG, et al. Runx3 and T-box proteins cooperate to establish the transcriptional program of effector CTLs. J Exp Med. 2009;206:51–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Shan Q, Zeng Z, Xing S, Li F, Hartwig SM, Gullicksrud JA, et al. The transcription factor Runx3 guards cytotoxic CD8(+) effector T cells against deviation towards follicular helper T cell lineage. Nat Immunol. 2017;18:931–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Cao Y, Liu X, Zhang W, Deng X, Zhang H, Liu Y, et al. TGF-beta repression of Id2 induces apoptosis in gut epithelial cells. Oncogene. 2009;28:1089–98.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Schmitt N, Liu Y, Bentebibel S-E, Munagala I, Bourdery L, Venuprasad K, et al. The cytokine TGF-[beta] co-opts signaling via STAT3-STAT4 to promote the differentiation of human TFH cells. Nat Immunol. 2014;15:856–65.

  39. Rawal S, Chu F, Zhang M, Park HJ, Nattamai D, Kannan S, et al. Cross talk between follicular Th cells and tumor cells in human follicular lymphoma promotes immune evasion in the tumor microenvironment. J Immunol. 2013;190:6681–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Paley MA, Kroy DC, Odorizzi PM, Johnnidis JB, Dolfi DV, Barnett BE, et al. Progenitor and terminal subsets of CD8+ T cells cooperate to contain chronic viral infection. Science. 2012;338:1220–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Pearce EL, Mullen AC, Martins GA, Krawczyk CM, Hutchins AS, Zediak VP, et al. Control of effector CD8+ T cell function by the transcription factor Eomesodermin. Science. 2003;302:1041–3.

    Article  CAS  PubMed  Google Scholar 

  42. Intlekofer AM, Takemoto N, Wherry EJ, Longworth SA, Northrup JT, Palanivel VR, et al. Effector and memory CD8+ T cell fate coupled by T-bet and eomesodermin. Nat Immunol. 2005;6:1236–44.

    Article  CAS  PubMed  Google Scholar 

  43. Rao RR, Li Q, Odunsi K, Shrikant PA. The mTOR kinase determines effector versus memory CD8+ T cell fate by regulating the expression of transcription factors T-bet and Eomesodermin. Immunity. 2010;32:67–78.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Betts MR, Brenchley JM, Price DA, De Rosa SC, Douek DC, Roederer M, et al. Sensitive and viable identification of antigen-specific CD8+ T cells by a flow cytometric assay for degranulation. J Immunol Methods. 2003;281:65–78.

    Article  CAS  PubMed  Google Scholar 

  45. Gentles AJ, Newman AM, Liu CL, Bratman SV, Feng W, Kim D, et al. The prognostic landscape of genes and infiltrating immune cells across human cancers. Nat Med. 2015;21:938–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Newman AM, Liu CL, Green MR, Gentles AJ, Feng W, Xu Y, et al. Robust enumeration of cell subsets from tissue expression profiles. Nat Methods. 2015;12:453–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Alizadeh AA, Eisen MB, Davis RE, Ma C, Lossos IS, Rosenwald A, et al. Distinct types of diffuse large B-cell lymphoma identified by gene expression profiling. Nature. 2000;403:503–11.

    Article  CAS  PubMed  Google Scholar 

  48. Le K-S, Amé-Thomas P, Tarte K, Gondois-Rey F, Granjeaud S, Orlanducci F, et al. CXCR5 and ICOS expression identifies a CD8 T-cell subset with TFH features in Hodgkin lymphomas. Blood Adv. 2018;2:1889–1900.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Jiao Y-M, Yang H-G, Huang H-H, Tu B, Xing S-J, Mao L, et al. Dichotomous roles of programmed cell death 1 on HIV-specific CXCR5+ and CXCR5 CD8+ T Cells during Chronic HIV Infection. Front Immunol. 2017;8:1786.

  50. Hang J, Linhai L, Jiang H, Zhiwei S, Yihui R, Yun J. CXCR5+ CD8+ T cells indirectly offer B cell help and are inversely correlated with viral load in chronic hepatitis B infection. DNA Cell Biol. 2017;36:321–7.

    Article  CAS  Google Scholar 

  51. Perdomo-Celis F, Taborda NA, Rugeles MT. Follicular CD8(+) T cells: origin, function and importance during HIV infection. Front Immunol. 2017;8:1241.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Jiang H, Li L, Han J, Sun Z, Rong Y, Jin Y. CXCR5(+) CD8(+) T cells indirectly offer B cell help and are inversely correlated with viral load in chronic hepatitis B infection. DNA Cell Biol. 2017;36:321–7.

    Article  CAS  PubMed  Google Scholar 

  53. Mylvaganam GH, Rios D, Abdelaal HM, Iyer S, Tharp G, Mavigner M, et al. Dynamics of SIV-specific CXCR5+ CD8 T cells during chronic SIV infection. Proc Natl Acad Sci USA. 2017;114:1976–81.

    Article  CAS  PubMed  Google Scholar 

  54. Shi J, Hou S, Fang Q, Liu X, Liu X, Qi H. PD-1 controls follicular T helper cell positioning and function. Immunity. 2018;49:264–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Kallies A, Xin A, Belz GT, Nutt SL. Blimp-1 transcription factor is required for the differentiation of effector CD8(+) T cells and memory responses. Immunity. 2009;31:283–95.

    Article  CAS  PubMed  Google Scholar 

  56. Rutishauser RL, Martins GA, Kalachikov S, Chandele A, Parish IA, Meffre E, et al. Transcriptional repressor Blimp-1 promotes CD8(+) T cell terminal differentiation and represses the acquisition of central memory T cell properties. Immunity. 2009;31:296–308.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Kaech SM, Cui W. Transcriptional control of effector and memory CD8+ T cell differentiation. Nat Rev Immunol. 2012;12:749–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Crotty S, Johnston RJ, Schoenberger SP. Effectors and memories: Bcl-6 and Blimp-1 in T and B lymphocyte differentiation. Nat Immunol. 2010;11:114–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Shin HM, Kapoor V, Guan T, Kaech SM, Welsh RM, Berg LJ. Epigenetic modifications induced by Blimp-1 Regulate CD8(+) T cell memory progression during acute virus infection. Immunity. 2013;39:661–75.

    Article  CAS  PubMed  Google Scholar 

  60. Welsh RM. Blimp hovers over T cell immunity. Immunity. 2009;31:178–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Williams MA, Bevan MJ. Effector and memory CTL differentiation. Annu Rev Immunol. 2007;25:171–92.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Dr. Stephen E Ullrich (University of Texas MD Anderson Cancer Center) for technical advice. This work is supported by grants from the Leukemia and Lymphoma Society Quest for Cure Grant (P-QFC-3068-14 to SSN), NIH National Institute of Allergy and Infectious Diseases (RO1AI109294 to SSW), Oversea Development Program (SWH2016HWHZ-01 to XL), and generous philanthropic contributions to the University of Texas MD Anderson Moon Shots Program. The South Campus Flow Cytometry and Cell Sorting Core Facility is supported by The University of Texas MD Anderson Cancer Center Support Grant from National Institutes of Health (P30 CA016672) and the Advanced Microscopy Core Facility is supported by National Institutes of Health grant 1S10 RR029552.

Author information

Authors and Affiliations

Authors

Contributions

FC and HL designed, conducted the experiments, analyzed the results, and wrote the manuscript; XL contributed to experimental design; JC, YM, JW, XC, ZW, and JW performed experiments; ZYJ and AL provided vital experimental materials. KB assisted in manuscript writing. WM, ZZ, JW, and RED assisted with RNA-Seq and data analysis; RED, WP, CY, CD, and SSW provided expertize. SSN supervised the project design and experimental interpretation, and is principal investigator of the laboratory in which this work was conducted. All authors were involved in manuscript preparation and approved the final version of the manuscript.

Corresponding author

Correspondence to Sattva S. Neelapu.

Ethics declarations

Conflict of interest

SSN has received research support from Kite/Gilead, Celgene, Cellectis, Poseida, Merck, Acerta, Karus, and BMS; served as consultant and advisory board member for Kite/Gilead, Celgene, Novartis, Unum Therapeutics, Pfizer, and Merck. The remaining authors declare that they have no conflict of interest.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chu, F., Li, H.S., Liu, X. et al. CXCR5+CD8+ T cells are a distinct functional subset with an antitumor activity. Leukemia 33, 2640–2653 (2019). https://doi.org/10.1038/s41375-019-0464-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41375-019-0464-2

This article is cited by

Search

Quick links