Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Lymphoma

Prognostic and predictive value of a microRNA signature in adults with T-cell lymphoblastic lymphoma

Abstract

New prognostic factors are needed to establish indications for haematopoietic stem cell transplantation (HSCT) in first complete remission (CR1) for T-cell lymphoblastic lymphoma (T-LBL) patients. We used microarray to compare T-LBL tissue samples (n = 75) and fetal thymus tissues (n = 20), and identified 35 differentially expressed miRNAs. Using 107 subjects as the training group, we developed a five-miRNA-based classifier to predict patient survival with LASSO Cox regression: lower risk was associated with better prognosis (disease-free survival (DFS): hazard ratio (HR) 4.548, 95% CI 2.433–8.499, p < 0.001; overall survival (OS): HR 5.030, 95% CI 2.407–10.513, p < 0.001). This classifier displayed good performance in the internal testing set (n = 106) and the independent external set (n = 304). High risk was associated with more favorable response to HSCT (DFS: HR 1.675, 95% CI 1.127–2.488, p = 0.011; OS: HR 1.602, 95% CI 1.055–2.433, p = 0.027). When combined with ECOG-PS and/or NOTCH1/FBXW7 status, this classifier had even better prognostic performance in patients receiving HSCT (DFS: HR 2.088, 95% CI 1.290–3.379, p = 0.003; OS: HR 1.996, 95% CI 1.203–3.311, p = 0.007). The five-miRNA classifier may be a useful prognostic biomarker for T-LBL adults, and could identify subjects who could benefit from HSCT.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

The key raw data have been uploaded onto the Research Data Deposit public platform (RDD), with the approval RDD number of RDDA2018000588. The microarray data have been deposited online under accession number GSE113749.

References

  1. Portell CA, Sweetenham JW. Adult lymphoblastic lymphoma. Cancer J. 2012;18:432–8.

    Article  CAS  PubMed  Google Scholar 

  2. Raetz EA, Perkins SL, Bhojwani D, Smock K, Philip M, Carroll WL, et al. Gene expression profiling reveals intrinsic differences between T-cell acute lymphoblastic leukemia and T-cell lymphoblastic lymphoma. Pediatr Blood Cancer. 2006;47:130–40.

    Article  PubMed  Google Scholar 

  3. Basso K, Mussolin L, Lettieri A, Brahmachary M, Lim WK, Califano A, et al. T-cell lymphoblastic lymphoma shows differences and similarities with T-cell acute lymphoblastic leukemia by genomic and gene expression analyses. Genes Chromosomes Cancer. 2011;50:1063–75.

    Article  CAS  PubMed  Google Scholar 

  4. Burkhardt B, Mueller S, Khanam T, Perkins SL. Current status and future directions of T-lymphoblastic lymphoma in children and adolescents. Br J Haematol. 2016;173:545–59.

    Article  PubMed  Google Scholar 

  5. Sweetenham JW. Treatment of lymphoblastic lymphoma in adults. Oncology. 2009;23:1015–20.

    PubMed  Google Scholar 

  6. Cortelazzo S, Ponzoni M, Ferreri AJ, Hoelzer D. Lymphoblastic lymphoma. Crit Rev Oncol Hematol. 2011;79:330–43.

    Article  PubMed  Google Scholar 

  7. Hoelzer D, Gokbuget N, Digel W, Faak T, Kneba M, Reutzel R, et al. Outcome of adult patients with T-lymphoblastic lymphoma treated according to protocols for acute lymphoblastic leukemia. Blood. 2002;99:4379–85.

    Article  CAS  PubMed  Google Scholar 

  8. Thomas DA, O’Brien S, Cortes J, Giles FJ, Faderl S, Verstovsek S, et al. Outcome with the hyper-CVAD regimens in lymphoblastic lymphoma. Blood. 2004;104:1624–30.

    Article  CAS  PubMed  Google Scholar 

  9. Lepretre S, Touzart A, Vermeulin T, Picquenot JM, Tanguy-Schmidt A, Salles G, et al. Pediatric-like acute lymphoblastic leukemia therapy in adults with lymphoblastic lymphoma: the GRAALL-LYSA LL03 study. J Clin Oncol. 2016;34:572–80.

    Article  CAS  PubMed  Google Scholar 

  10. Aljurf M, Zaidi SZ. Chemotherapy and hematopoietic stem cell transplantation for adult T-cell lymphoblastic lymphoma: current status and controversies. Biol Blood Marrow Transplant. 2005;11:739–54.

    Article  CAS  PubMed  Google Scholar 

  11. Network. NCC. (NCCN) Clinical practice guidelines in oncology. In: Acute Lymphoblastic Leukemia, Version 1. 2018. https://www.nccn.org/professionals/physician_gls/f_guidelines.asp. Accessed 12 Mar 2018.

  12. Song KW, Barnett MJ, Gascoyne RD, Chhanabhai M, Forrest DL, Hogge DE, et al. Primary therapy for adults with T-cell lymphoblastic lymphoma with hematopoietic stem-cell transplantation results in favorable outcomes. Ann Oncol. 2007;18:535–40.

    Article  CAS  PubMed  Google Scholar 

  13. Gu Y, Pan Y, Meng B, Guan B, Fu K, Sun B, et al. High levels of bcl-2 protein expression do not correlate with genetic abnormalities but predict worse prognosis in patients with lymphoblastic lymphoma. Tumour Biol. 2013;34:1441–50.

    Article  CAS  PubMed  Google Scholar 

  14. Tilak TV, Raina V, Kumar L, Sharma A, Sharma MC, Vishnubhatla S, et al. Superior vena cava syndrome and poor performance status at presentation affect survival in mediastinal T-lymphoblastic lymphoma—a single institute experience from India. Ann Hematol. 2013;92:917–23.

    Article  CAS  PubMed  Google Scholar 

  15. Callens C, Baleydier F, Lengline E, Ben Abdelali R, Petit A, Villarese P, et al. Clinical impact of NOTCH1 and/or FBXW7 mutations, FLASH deletion, and TCR status in pediatric T-cell lymphoblastic lymphoma. J Clin Oncol. 2012;30:1966–73.

    Article  CAS  PubMed  Google Scholar 

  16. Hoelzer D, Gokbuget N. Treatment of lymphoblastic lymphoma in adults. Best Pract Res Clin Haematol. 2002;15:713–28.

    Article  CAS  PubMed  Google Scholar 

  17. Lujambio A, Lowe SW. The microcosmos of cancer. Nature. 2012;482:347–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Qian D, Chen K, Deng H, Rao H, Huang H, Liao Y, et al. MicroRNA-374b suppresses proliferation and promotes apoptosis in T-cell lymphoblastic lymphoma by repressing AKT1 and Wnt-16. Clin Cancer Res. 2015;21:4881–91.

    Article  CAS  PubMed  Google Scholar 

  19. Gonzalez-Gugel E, Villa-Morales M, Santos J, Bueno MJ, Malumbres M, Rodriguez-Pinilla SM, et al. Down-regulation of specific miRNAs enhances the expression of the gene Smoothened and contributes to T-cell lymphoblastic lymphoma development. Carcinogenesis. 2013;34:902–8.

    Article  CAS  PubMed  Google Scholar 

  20. Xi Y, Li J, Zhang P, Bai W, Gao N, Bai W, et al. Upregulation of miRNA-17 and miRNA-19 is associated with unfavorable prognosis in patients with T-cell lymphoblastic lymphoma. Exp Mol Pathol. 2015;99:297–302.

    Article  CAS  PubMed  Google Scholar 

  21. Vardiman JW, Thiele J, Arber DA, Brunning RD, Borowitz MJ, Porwit A, et al. The2008 revision of the World Health Organization (WHO) classification of myeloid neoplasms and acute leukemia: rationale and important changes. Blood. 2009;114:937–51.

    Article  CAS  PubMed  Google Scholar 

  22. Burkhardt B, Oschlies I, Klapper W, Zimmermann M, Woessmann W, Meinhardt A, et al. Non-Hodgkin’s lymphoma in adolescents: experiences in 378 adolescent NHL patients treated according to pediatric NHL-BFM protocols. Leukemia. 2011;25:153–60.

    Article  CAS  PubMed  Google Scholar 

  23. Kantarjian HM, O’Brien S, Smith TL, Cortes J, Giles FJ, Beran M, et al. Results of treatment with hyper-CVAD, a dose-intensive regimen, in adult acute lymphocytic leukemia. J Clin Oncol. 2000;18:547–61.

    Article  CAS  PubMed  Google Scholar 

  24. Asnafi V, Buzyn A, Le Noir S, Baleydier F, Simon A, Beldjord K, et al. NOTCH1/FBXW7 mutation identifies a large subgroup with favorable outcome in adult T-cell acute lymphoblastic leukemia (T-ALL): a Group for Research on Adult Acute Lymphoblastic Leukemia (GRAALL) study. Blood. 2009;113:3918–24.

    Article  CAS  PubMed  Google Scholar 

  25. Cheson BD, Pfistner B, Juweid ME, Gascoyne RD, Specht L, Horning SJ, et al. Revised response criteria for malignant lymphoma. J Clin Oncol. 2007;25:579–86.

    Article  PubMed  Google Scholar 

  26. Levine JE, Harris RE, Loberiza FR Jr., Armitage JO, Vose JM, et al. A comparison of allogeneic and autologous bone marrow transplantation for lymphoblastic lymphoma. Blood. 2003;101:2476–82.

    Article  CAS  PubMed  Google Scholar 

  27. Sweetenham JW, Santini G, Qian W, Guelfi M, Schmitz N, Simnett S, et al. High-dose therapy and autologous stem-cell transplantation versus conventional-dose consolidation/maintenance therapy as postremission therapy for adult patients with lymphoblastic lymphoma: results of a randomized trial of the European Group for Blood and Marrow Transplantation and the United Kingdom Lymphoma Group. J Clin Oncol. 2001;19:2927–36.

    Article  CAS  PubMed  Google Scholar 

  28. Fabbri M, Paone A, Calore F, Galli R, Gaudio E, Santhanam R, et al. MicroRNAs bind to Toll-like receptors to induce prometastatic inflammatory response. Proc Natl Acad Sci USA. 2012;109:E2110–2116.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Chen J, Jiang CC, Jin L, Zhang XD. Regulation of PD-L1: a novel role of pro-survival signalling in cancer. Ann Oncol. 2016;27:409–16.

    Article  CAS  PubMed  Google Scholar 

  30. Guraya S. Prognostic significance of circulating microRNA-21 expression in esophageal, pancreatic and colorectal cancers; a systematic review and meta-analysis. Int J Surg. 2018;60:41–47.

    Article  PubMed  Google Scholar 

  31. Wang WZ, Lin XH, Pu QH, Liu MY, Li L, Wu LR, et al. Targeting miR-21 sensitizes Ph + ALL Sup-b15 cells to imatinib-induced apoptosis through upregulation of PTEN. Biochem Biophys Res Commun. 2014;454:423–8.

    Article  CAS  PubMed  Google Scholar 

  32. Junker F, Chabloz A, Koch U, Radtke F. Dicer1 imparts essential survival cues in Notch-driven T-ALL via miR-21-mediated tumor suppressor Pdcd4 repression. Blood. 2015;126:993–1004.

    Article  CAS  PubMed  Google Scholar 

  33. Mavrakis KJ, Van Der Meulen J, Wolfe AL, Liu X, Mets E, Taghon T, et al. A cooperative microRNA-tumor suppressor gene network in acute T-cell lymphoblastic leukemia (T-ALL). Nat Genet. 2011;43:673–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Mavrakis KJ, Wolfe AL, Oricchio E, Palomero T, de Keersmaecker K, McJunkin K, et al. Genome-wide RNA-mediated interference screen identifies miR-19 targets in Notch-induced T-cell acute lymphoblastic leukaemia. Nat Cell Biol. 2010;12:372–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Di Lisio L, Gomez-Lopez G, Sanchez-Beato M, Gomez-Abad C, Rodriguez ME, Villuendas R, et al. Mantle cell lymphoma: transcriptional regulation by microRNAs. Leukemia. 2010;24:1335–42.

    Article  PubMed  Google Scholar 

  36. Lin Y, Li D, Liang Q, Liu S, Zuo X, Li L, et al. miR-638 regulates differentiation and proliferation in leukemic cells by targeting cyclin-dependent kinase 2. J Biol Chem. 2015;290:1818–28.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Junhang Luo (First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China) for manuscript consultation, and Wenjun He (Department of Medical Statistics and Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou, China) for supporting part of the data extraction and processing. This work was supported by grants from the National Natural Science Foundation of China (81672686, 81603137); Natural Science Foundation of Guangdong Province, China (2015A030313020); Sister Institution Net-work Fund of the MD Anderson Cancer Center; National Key R&D Program of China (2017YFC1309001, 2016YFC1302305).

Author information

Authors and Affiliations

Authors

Contributions

Q-QC and DX designed the study. X-PT, W-JH, H-QH, Y-HL, XZ, T-YL, H-LR, ML, FL, FZ, L-YZ, LL, X-LL, JL, BL, Z-HL, Q-LT, QL, C-KS, Q-LZ, R-FC, QS, KR, XG, X-NL, KY, Y-RS, X-DL, WD, WS, CS, HL, Z-GZ, JR, Q-NG, YZ, X-LM, YZ, C-LH, Y-RJ, YZ, LW, H-YG and Z-JX obtained and assembled data. X-PT, W-JH, DX, Q-QC, and H-YW analyzed and interpreted the data. X-PT, W-JH, XD, and Q-QC wrote the manuscript. X-PT, M-YZ, W-JH did the statistical analysis. All authors reviewed the manuscript and approved the final version.

Corresponding authors

Correspondence to Dan Xie or Qing-Qing Cai.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tian, XP., Huang, WJ., Huang, HQ. et al. Prognostic and predictive value of a microRNA signature in adults with T-cell lymphoblastic lymphoma. Leukemia 33, 2454–2465 (2019). https://doi.org/10.1038/s41375-019-0466-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41375-019-0466-0

This article is cited by

Search

Quick links