Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Multiple myeloma gammopathies

Metformin inhibits IL-6 signaling by decreasing IL-6R expression on multiple myeloma cells

Abstract

IL-6 signaling plays a crucial role in the pathogenesis of a number of diseases, including multiple myeloma, primary amyloidosis, cytokine release syndrome and other inflammatory conditions. It is central for the growth and survival of malignant plasma cells. IL-6R and IL-6ST receptors transduce IL-6 signaling. Molecular mechanisms regulating expression of IL-6R are not well understood and current therapies are based on monoclonal antibody to target IL-6 signaling. Small molecule inhibitors targeting IL-6 signaling are highly desirable. Metformin specifically decreased IL-6R expression which is mediated via AMPK, mTOR, and miR34a. This is a novel finding and adds to existing therapies targeting IL-6 signaling.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Hirano T, Taga T, Yamasaki K, Matsuda T, Tang B, Muraguchi A, et al. A multifunctional cytokine (IL-6/BSF-2) and its receptor. Int Arch Allergy Appl Immunol. 1989;88:29–33.

    Article  CAS  PubMed  Google Scholar 

  2. Hirano T, Taga T, Nakano N, Yasukawa K, Kashiwamura S, Shimizu K, et al. Purification to homogeneity and characterization of human B-cell differentiation factor (BCDF or BSFp-2). Proc Natl Acad Sci. 1985;82:5490–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Kishimoto T. INTERLEUKIN-6: From basic science to medicine—40 years in immunology. Annu Rev Immunol. 2004;23:1–21.

    Article  CAS  Google Scholar 

  4. Tanaka T, Narazaki M, Kishimoto T. IL-6 in inflammation, immunity, and disease. Cold Spring Harb Perspect Biol. 2014;6:a016295-a.

  5. Calabrese LH, Rose-John S. IL-6 biology: implications for clinical targeting in rheumatic disease. Nat Rev Rheumatol. 2014;10:720.

    Article  CAS  PubMed  Google Scholar 

  6. Hibi M, Murakami M, Saito M, Hirano T, Taga T, Kishimoto T. Molecular cloning and expression of an IL-6 signal transducer, gp130. Cell. 1990;63:1149–57.

    Article  CAS  PubMed  Google Scholar 

  7. Rose-John S. IL-6 Trans-signaling via the soluble IL-6 receptor: importance for the pro-inflammatory activities of IL-6. Int J Biol Sci. 2012;8:1237–47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Kozopas KM, Yang T, Buchan HL, Zhou P, Craig RW. MCL1, a gene expressed in programmed myeloid cell differentiation, has sequence similarity to BCL2. Proc Natl Acad Sci USA. 1993;90:3516–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Puthier D, Derenne S, Barillé S, Moreau P, Harousseau J-L, Bataille R, et al. Mcl-1 and Bcl-xL are co-regulated by IL-6 in human myeloma cells. Br J Haematol. 1999;107:392–5.

    Article  CAS  PubMed  Google Scholar 

  10. Heinrich PC, Behrmann I, Haan S, Hermanns HM, Müller-Newen G, Schaper F. Principles of interleukin (IL)-6-type cytokine signalling and its regulation. Biochem J. 2003;374:1–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Müller-Newen G. The cytokine receptor gp130: faithfully promiscuous. Sci STKE. 2003;2003:PE40.

    PubMed  Google Scholar 

  12. Garbers C, Kuck F, Aparicio-Siegmund S, Konzak K, Kessenbrock M, Sommerfeld A, et al. Cellular senescence or EGFR signaling induces Interleukin 6 (IL-6) receptor expression controlled by mammalian target of rapamycin (mTOR). Cell Cycle. 2013;12:3421–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Kawano M, Hirano T, Matsuda T, Taga T, Horii Y, Iwato K, et al. Autocrine generation and requirement of BSF-2/IL-6 for human multiple myelomas. Nature. 1988;332:83.

    Article  CAS  PubMed  Google Scholar 

  14. Klein B, Zhang XG, Jourdan M, Content J, Houssiau F, Aarden L, et al. Paracrine rather than autocrine regulation of myeloma-cell growth and differentiation by interleukin-6. Blood. 1989;73:517.

    Article  CAS  PubMed  Google Scholar 

  15. Jelinek DF. Mechanisms of myeloma cell growth control. Hematol Oncol Clin North Am. 1999;13:1145–57.

    Article  CAS  PubMed  Google Scholar 

  16. Chou T-C. Drug Combination Studies and Their Synergy Quantification Using the Chou-Talalay Method. Cancer Res. 2010;70:440.

    Article  CAS  PubMed  Google Scholar 

  17. Barretina J, Caponigro G, Stransky N, Venkatesan K, Margolin AA, Kim S, et al. The cancer cell line encyclopedia enables predictive modelling of anticancer drug sensitivity. Nature . 2012;483:603–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Toyama EQ, Herzig S, Courchet J, Lewis TL, Losón OC, Hellberg K, et al. AMP-activated protein kinase mediates mitochondrial fission in response to energy stress. Sci (New Y, NY). 2016;351:275–81.

    Article  CAS  Google Scholar 

  19. Rokavec M, Öner MG, Li H, Jackstadt R, Jiang L, Lodygin D, et al. IL-6R/STAT3/miR-34a feedback loop promotes EMT-mediated colorectal cancer invasion and metastasis. J Clin Investig. 2014;124:1853–67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Cifarelli V, Lashinger LM, Devlin KL, Dunlap SM, Huang J, Kaaks R, et al. Metformin and rapamycin reduce pancreatic cancer growth in obese prediabetic mice by distinct microRNA-regulated mechanisms. Diabetes. 2015;64:1632–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Xiao Z, Li CH, Chan SL, Xu F, Feng L, Wang Y, et al. A small-molecule modulator of the tumor-suppressor miR34a inhibits the growth of hepatocellular carcinoma. Cancer Res. 2014;74:6236.

    Article  CAS  PubMed  Google Scholar 

  22. Ravi P, Kumar SK, Cerhan JR, Maurer MJ, Dingli D, Ansell SM, et al. Defining cure in multiple myeloma: a comparative study of outcomes of young individuals with myeloma and curable hematologic malignancies. Blood Cancer J. 2018;8:26.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Rojas LBA, Gomes MB. Metformin: an old but still the best treatment for type 2 diabetes. Diabetol Metab Syndr. 2013;5:6-.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. van der Aa MP, Elst MAJ, van de Garde EMW, van Mil EGAH, Knibbe CAJ, van der Vorst MMJ. Long-term treatment with metformin in obese, insulin-resistant adolescents: results of a randomized double-blinded placebo-controlled trial. Nutr Amp; Diabetes. 2016;6:e228.

    Article  CAS  Google Scholar 

  25. Wu L, Zhou B, Oshiro-Rapley N, Li M, Paulo JA, Webster CM. et al. An ancient, unified mechanism for metformin growth inhibition in C. elegans and cancer. Cell. 2016;167:1705–18.e13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Singhal A, Jie L, Kumar P, Hong GS, Leow MK-S, Paleja B, et al. Metformin as adjunct antituberculosis therapy. Sci Transl Med. 2014;6:263ra159.

    Article  CAS  PubMed  Google Scholar 

  27. Rangarajan S, Bone NB, Zmijewska AA, Jiang S, Park DW, Bernard K, et al. Metformin reverses established lung fibrosis in a bleomycin model. Nat Med. 2018;24:1121–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Morales DR, Morris AD. Metformin in cancer treatment and prevention. Annu Rev Med. 2015;66:17–29.

    Article  CAS  PubMed  Google Scholar 

  29. Hardie DG, Ross FA, Hawley SA. AMPK: a nutrient and energy sensor that maintains energy homeostasis. Nat Rev Mol Cell Biol. 2012;13:251–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Zakikhani M, Dowling R, Fantus IG, Sonenberg N, Pollak M. Metformin is an AMP kinase-dependent growth inhibitor for breast cancer cells. Cancer Res. 2006;66:10269–73.

    Article  CAS  PubMed  Google Scholar 

  31. Howell JJ, Hellberg K, Turner M, Talbott G, Kolar MJ, Ross DS, et al. Metformin inhibits hepatic mTORC1 signaling via dose-dependent mechanisms involving AMPK and the TSC complex. Cell Metab. 2017;25:463–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Inoki K, Kim J, Guan KL. AMPK and mTOR in cellular energy homeostasis and drug targets. Annu Rev Pharmacol Toxicol. 2012;52:381–400.

    Article  CAS  PubMed  Google Scholar 

  33. Truong DoM, Gyun Kim H, Ho Choi J, Gwang Jeong H. Metformin induces microRNA-34a to downregulate the Sirt1/Pgc-1α/Nrf2 pathway, leading to increased susceptibility of wild-type p53 cancer cells to oxidative stress and therapeutic agents. Free Radic Biol Med. 2014;74:21–34.

    Article  CAS  Google Scholar 

  34. Wheaton WW, Weinberg SE, Hamanaka RB, Soberanes S, Sullivan LB, Anso E, et al. Metformin inhibits mitochondrial complex I of cancer cells to reduce tumorigenesis. eLife. 2014;3:e02242–e.

    Article  PubMed  PubMed Central  Google Scholar 

  35. McFarland-Mancini MM, Funk HM, Paluch AM, Zhou M, Giridhar PV, Mercer CA, et al. Differences in wound healing in mice with deficiency of IL-6 versus IL-6 receptor. J Immunol. 2010;184:7219.

    Article  CAS  PubMed  Google Scholar 

  36. Sommer JAN, Engelowski E, Baran P, Garbers C, Floss DM, Scheller J. Interleukin-6, but not the interleukin-6 receptor plays a role in recovery from dextran sodium sulfate-induced colitis. Int J Mol Med. 2014;34:651–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Schuster B, Kovaleva M, Sun Y, Regenhard P, Matthews V, Grotzinger J, et al. Signaling of human ciliary neurotrophic factor (CNTF) revisited. The interleukin-6 receptor can serve as an alpha-receptor for CTNF. J Biol Chem. 2003;278:9528–35.

    Article  CAS  PubMed  Google Scholar 

  38. Garbers C, Spudy B, Aparicio-Siegmund S, Waetzig GH, Sommer J, Hölscher C, et al. An Interleukin-6 receptor-dependent molecular switch mediates signal transduction of the IL-27 cytokine subunit p28 (IL-30) via a gp130 protein receptor homodimer. J Biol Chem. 2013;288:4346–54.

    Article  CAS  PubMed  Google Scholar 

  39. Lalau J-D. Lactic acidosis induced by metformin. Drug Saf. 2010;33:727–40.

    Article  CAS  PubMed  Google Scholar 

  40. Bailey CJ. Metformin: historical overview. Diabetologia. 2017;60:1566–76.

    Article  CAS  PubMed  Google Scholar 

  41. Brown JB, Pedula K, Barzilay J, Herson MK, Latare P. Lactic acidosis rates in type 2 diabetes. Diabetes Care. 1998;21:1659.

    Article  CAS  PubMed  Google Scholar 

  42. Misbin RI. The phantom of lactic acidosis due to metformin in patients with diabetes. Diabetes Care. 2004;27:1791.

    Article  PubMed  Google Scholar 

  43. Aharaz A, Pottegård A, Henriksen DP, Hallas J, Beck-Nielsen H, Lassen AT. Risk of lactic acidosis in type 2 diabetes patients using metformin: A case control study. PLOS ONE. 2018;13:e0196122.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We would like to thank the estate of R. Staberg through the Department of Development at Mayo Clinic that supported some of this work. The primary multiple myeloma cell bank at Mayo Clinic is supported by the SPORE: CA186781, The Predolin Foundation and The JABBS Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Dingli.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mishra, A.K., Dingli, D. Metformin inhibits IL-6 signaling by decreasing IL-6R expression on multiple myeloma cells. Leukemia 33, 2695–2709 (2019). https://doi.org/10.1038/s41375-019-0470-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41375-019-0470-4

This article is cited by

Search

Quick links