Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Multiple myeloma gammopathies

The first-in-human study of the pan-PIM kinase inhibitor PIM447 in patients with relapsed and/or refractory multiple myeloma

Subjects

Abstract

PIM447, a novel pan-PIM inhibitor, has shown preclinical activity in multiple myeloma (MM). In the multicenter, open-label, first-in-human study, patients with relapsed and/or refractory MM were enrolled to determine the maximum-tolerated dose (MTD) or recommended dose (RD), safety, pharmacokinetics, and preliminary anti-myeloma activity of PIM447. PIM447 was administered in escalating oral doses of 70–700 mg once daily (q.d.) for 28-day continuous cycles. Seventy-nine patients with a median of four prior therapies were enrolled. Seventy-seven patients (97.5%) had an adverse event (AE) suspected as treatment related, with treatment-related grade 3/4 AEs being mostly hematologic. Eleven dose-limiting toxicities occurred, and an MTD of 500 mg q.d. and an RD of 300 mg q.d. were established. The main reason for discontinuation was disease progression in 54 patients (68.4%). In the entire study population, a disease control rate of 72.2%, a clinical benefit rate of 25.3%, and an overall response rate of 8.9% were observed per modified International Myeloma Working Group criteria. Median progression-free survival at the RD was 10.9 months. PIM447 was well tolerated and demonstrated single-agent antitumor activity in relapsed/refractory MM patients, providing proof of principle for Pim (Proviral Insertions of Moloney Murine leukemia virus) kinase inhibition as a novel therapeutic approach in MM.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

Novartis supports the publication of scientifically rigorous analysis that is relevant to patient care, regardless of a positive or negative outcome. Qualified external researchers can request access to anonymized patient-level data, respecting patient informed consent, through www.clinicalstudydatarequest.com, according to requirements noted on the web portal.

References

  1. Dimopoulos MA, Richardson PG, Moreau P, Anderson KC. Current treatment landscape for relapsed and/or refractory multiple myeloma. Nat Rev Clin Oncol. 2015;12:42–54.

    Article  CAS  PubMed  Google Scholar 

  2. Cornell RF, Kassim AA. Evolving paradigms in the treatment of relapsed/refractory multiple myeloma: increased options and increased complexity. Bone Marrow Transplant. 2016;51:479–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Holstein SA, Richardson PG, Laubach JP, McCarthy PL. Management of relapsed multiple myeloma after autologous stem cell transplant. Biol Blood Marrow Transplant. 2015;21:793–8.

    Article  PubMed  Google Scholar 

  4. Usmani S, Ahmadi T, Ng Y, Lam A, Desai A, Potluri R, et al. Analysis of real-world data on overall survival in multiple myeloma patients with > / = 3 prior lines of therapy including a proteasome inhibitor (PI) and an immunomodulatory drug (IMiD), or double refractory to a PI and an IMiD. Oncologist. 2016;21:1355–61.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Nawijn MC, Alendar A, Berns A. For better or for worse: the role of Pim oncogenes in tumorigenesis. Nat Rev Cancer. 2011;11:23–34.

    Article  CAS  PubMed  Google Scholar 

  6. Cuypers HT, Selten G, Quint W, Zijlstra M, Maandag ER, Boelens W, et al. Murine leukemia virus-induced T-cell lymphomagenesis: integration of proviruses in a distinct chromosomal region. Cell. 1984;37:141–50.

    Article  CAS  PubMed  Google Scholar 

  7. van der Lugt NM, Domen J, Verhoeven E, Linders K, van der Gulden H, Allen J, et al. Proviral tagging in E mu-myc transgenic mice lacking the Pim-1 proto-oncogene leads to compensatory activation of Pim-2. EMBO J. 1995;14:2536–44.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Mikkers H, Allen J, Knipscheer P, Romeijn L, Hart A, Vink E, et al. High-throughput retroviral tagging to identify components of specific signaling pathways in cancer. Nat Genet. 2002;32:153–9.

    Article  CAS  PubMed  Google Scholar 

  9. van Lohuizen M, Verbeek S, Krimpenfort P, Domen J, Saris C, Radaszkiewicz T, et al. Predisposition to lymphomagenesis in pim-1 transgenic mice: cooperation with c-myc and N-myc in murine leukemia virus-induced tumors. Cell. 1989;56:673–82.

    Article  PubMed  Google Scholar 

  10. Brault L, Gasser C, Bracher F, Huber K, Knapp, Schwaller J. PIM serine/threonine kinases in the pathogenesis and therapy of hematologic malignancies and solid cancers. Haematologica. 2010;95:1004–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Qian KC, Studts J, Wang L, Barringer K, Kronkaltis A, Peng C, et al. Expression, purification, crystallization and preliminary crystallographic analysis of human Pim-1 kinase. Acta Crystallogr Sect F. 2005;61:96–9.

    Article  CAS  Google Scholar 

  12. Asano J, Nakano A, Oda A, Amou H, Hiasa M, Takeuchi K, et al. The serine/threonine kinase Pim-2 is a novel anti-apoptotic mediator in myeloma cells. Leukemia. 2011;25:1182–8.

    Article  CAS  PubMed  Google Scholar 

  13. Keane NA, Reidy M, Natoni A, Raab MS, O’Dwyer M. Targeting the Pim kinases in multiple myeloma. Blood Cancer J. 2015;5:e325.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Burger MT, Nishiguchi G, Han W, Lan J, Simmons R, Atallah G, et al. Identification of N-(4-((1R,3S,5S)-3-amino-5-methylcyclohexyl)pyridin-3-yl)-6-(2,6-difluorophenyl)-5-fluoropicolinamide (PIM447), a potent and selective proviral insertion site of moloney murine leukemia (PIM) 1, 2, and 3 kinase inhibitor in clinical trials for hematological malignancies. J Med Chem. 2015;58:8373–86.

    Article  CAS  PubMed  Google Scholar 

  15. Garcia PD, Langowski JL, Wang Y, Chen M, Castillo J, Fanton C, et al. Pan-PIM kinase inhibition provides a novel therapy for treating hematologic cancers. Clin Cancer Res. 2014;20:1834–45.

    Article  CAS  PubMed  Google Scholar 

  16. Lu J, Zavorotinskaya T, Dai Y, Niu XH, Castillo J, Sim J, et al. Pim2 is required for maintaining multiple myeloma cell growth through modulating TSC2 phosphorylation. Blood. 2013;122:1610–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Paino T, Garcia-Gomez A, Gonzalez-Mendez L, San-Segundo L, Hernandez-Garcia S, Lopez-Iglesias AA, et al. The novel pan-PIM kinase inhibitor, PIM447, displays dual antimyeloma and bone-protective effects, and potently synergizes with current standards of care. Clin Cancer Res. 2017;23:225–38.

    Article  CAS  PubMed  Google Scholar 

  18. Neuenschwander B, Branson M, Gsponer T. Critical aspects of the Bayesian approach to phase I cancer trials. Stat Med. 2008;27:2420–39.

    Article  PubMed  Google Scholar 

  19. Babb J, Rogatko A, Zacks S. Cancer phase I clinical trials: efficient dose escalation with overdose control. Stat Med. 1998;17:1103–20.

    Article  CAS  PubMed  Google Scholar 

  20. Durie BG, Harousseau JL, Miguel JS, Blade J, Barlogie B, Anderson K, et al. International uniform response criteria for multiple myeloma. Leukemia . 2006;20:1467–73.

    Article  CAS  PubMed  Google Scholar 

  21. He J, Abdel-Wahab O, Nahas MK, Wang K, Rampal RK, Intlekofer AM, et al. Integrated genomic DNA/RNA profiling of hematologic malignancies in the clinical setting. Blood. 2016;127:3004–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Lonial S, Waller EK, Richardson PG, Jagannath S, Orlowski RZ, Giver CR, et al. Risk factors and kinetics of thrombocytopenia associated with bortezomib for relapsed, refractory multiple myeloma. Blood. 2005;106:3777–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Salvini M, Bonello F, Boccadoro M, Larocca A. Management of adverse events induced by next-generation immunomodulatory drug and proteasome inhibitors in multiple myeloma. Expert Rev Anticancer Ther. 2017;17:75–87.

    Article  CAS  PubMed  Google Scholar 

  24. Mikkers H, Nawijn M, Allen J, Brouwers C, Verhoeven E, Jonkers J, et al. Mice deficient for all PIM kinases display reduced body size and impaired responses to hematopoietic growth factors. Mol Cell Biol. 2004;24:6104–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. An N, Kraft AS, Kang Y. Abnormal hematopoietic phenotypes in Pim kinase triple knockout mice. J Hematol Oncol. 2013;6:12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Chari A, Suvannasankha A, Fay JW, Arnulf B, Kaufman JL, Ifthikharuddin JJ, et al. Daratumumab plus pomalidomide and dexamethasone in relapsed and/or refractory multiple myeloma. Blood. 2017;130:974–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Baz RC, Martin TG III, Lin HY, Zhao X, Shain KH, Cho HJ, et al. Randomized multicenter phase 2 study of pomalidomide, cyclophosphamide, and dexamethasone in relapsed refractory myeloma. Blood. 2016;127:2561–8.

    Article  CAS  PubMed  Google Scholar 

  28. Richardson PG, Rocafiguera AO, Beksac M, Liberati AM, Galli A, Schjesvold F, et al. Pomalidomide (POM), bortezomib, and low-dose dexamethasone (PVd) vs bortezomib and low-dose dexamethasone (Vd) in lenalidomide (LEN)-exposed patients (pts) with relapsed or refractory multiple myeloma (RRMM): Phase 3 OPTIMISMM trial. J Clin Oncol. 2018;36 Suppl 15:Abstract 8001.

    Article  Google Scholar 

  29. Dimopoulos MA, Dytfeld D, Grosicki S, Moreau P, Takezako N, Hori M, et al. N Engl J Med. 2018;379:1811–1822. https://doi.org/10.1056/NEJMoa1805762.

    Article  CAS  Google Scholar 

  30. Guenther A, Baumann P, Burger R, Kellner C, Klapper W, Schmidmaier R, et al. Activity of everolimus (RAD001) in relapsed and/or refractory multiple myeloma: a phase I study. Haematologica. 2015;100:541–7.

    Article  CAS  Google Scholar 

  31. Ma XM, Blenis J. Molecular mechanisms of mTOR-mediated translational control. Nat Rev Mol Cell Biol. 2009;10:307–18.

    Article  PubMed  CAS  Google Scholar 

  32. Fox CJ, Hammerman PS, Cinalli RM, Master SR, Chodosh LA, Thompson CB. The serine/threonine kinase Pim-2 is a transcriptionally regulated apoptotic inhibitor. Genes Dev. 2003;17:1841–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Cervantes-Gomez F, Chen LS, Orlowski RZ, Gandhi V. Biological effects of the Pim kinase inhibitor, SGI-1776, in multiple myeloma. Clin Lymphoma Myeloma Leuk. 2013;13:S317–29.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Chen LS, Redkar S, Taverna P, Cortes JE, Gandhi V. Mechanisms of cytotoxicity to Pim kinase inhibitor, SGI-1776, in acute myeloid leukemia. Blood. 2011;118:693–702.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Keeton EK, McEachern K, Dillman KS, Palakurthi S, Cao Y, Grondine MR, et al. AZD1208, a potent and selective pan-Pim kinase inhibitor, demonstrates efficacy in preclinical models of acute myeloid leukemia. Blood. 2014;123:905–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Adam K, Lambert M, Lestang E, Champenois G, Dusanter-Fourt I, Tamburini J, et al. Control of Pim2 kinase stability and expression in transformed human haematopoietic cells. Biosci Rep. 2015;35:e00274.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. Lu G, Middleton RE, Sun H, Naniong M, Ott CJ, Mitsiades CS, et al. The myeloma drug lenalidomide promotes the cereblon-dependent destruction of Ikaros proteins. Science . 2014;343:305–9.

    Article  CAS  PubMed  Google Scholar 

  38. Zhu YX, Braggio E, Shi CX, Bruins LA, Schmidt JE, Van Wier S, et al. Cereblon expression is required for the antimyeloma activity of lenalidomide and pomalidomide. Blood. 2011;118:4771–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Chamberlain PP, Lopez-Girona A, Miller K, Carmel G, Pagarigan B, Chie-Leon B, et al. Structure of the human Cereblon-DDB1-lenalidomide complex reveals basis for responsiveness to thalidomide analogs. Nat Struct Mol Biol. 2014;21:803–9.

    Article  CAS  PubMed  Google Scholar 

  40. Hao HWD, Vanasse G, Caponigro G. The pan-PIM inhibitor PIM447 enhances the antitumor activity of lenalidomide in multiple myeloma cells via synergistic inhibition of c-MYC. Cancer Res. 2016;76 Suppl 14:Abstract 4630.

    Google Scholar 

  41. Meja K, Stengel C, Sellar R, Huszar D, Davies BR, Gale RE, et al. PIM and AKT kinase inhibitors show synergistic cytotoxicity in acute myeloid leukaemia that is associated with convergence on mTOR and MCL1 pathways. Br J Haematol. 2014;167:69–79.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank all the patients, their families, the study investigators, study nurses, and clinical research associates from the participating trial centers that supported this trial. We thank Kinjal Mody for all the operational support with this clinical program. We also thank Amirtha Ganesh, PhD (Novartis Healthcare Pvt Ltd), for providing medical editorial assistance with this manuscript. This work was financially supported by Novartis Pharmaceuticals Corporation.

Author contributions

KGV and FX conceptualized and designed the study. MSR, SKT, EMO, Y-TG, AG, NH, MT, SZ, FX, CS, KGV, and SKK participated in collection/assembly data and or analysis/interpretation of data and also wrote the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marc S. Raab.

Ethics declarations

Conflict of interest

SZ, FX, CS, KGV are all employees of Novartis and SZ, FX, and KGV own stocks of Novartis. The other authors declare that they have no conflict of interest.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Figure Legend

41375_2019_482_MOESM2_ESM.pdf

Suppl- Figure 2: Foundation T7 gene assay interrogates 404 genes for base substitutions, insertion-deletions, and copy number changes

Suppl- Figure 1: Individual change of pS6RP from baseline correlated with the best overall response

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Raab, M.S., Thomas, S.K., Ocio, E.M. et al. The first-in-human study of the pan-PIM kinase inhibitor PIM447 in patients with relapsed and/or refractory multiple myeloma. Leukemia 33, 2924–2933 (2019). https://doi.org/10.1038/s41375-019-0482-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41375-019-0482-0

This article is cited by

Search

Quick links