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Abstract
Acute myeloid leukemia (AML) is a heterogeneous disease linked to a broad spectrum of molecular alterations, and as such, long-
term disease control requires multiple therapeutic approaches. Driven largely by an improved understanding and targeting of these
molecular aberrations, AML treatment has rapidly evolved over the last 3–5 years. The stellar successes of immunotherapies that
harness the power of T cells to treat solid tumors and an improved understanding of the immune systems of patients with
hematologic malignancies have led to major efforts to develop immunotherapies for the treatment of patients with AML. Several
immunotherapies that harness T cells against AML are in various stages of preclinical and clinical development. These include
bispecific and dual antigen receptor-targeting antibodies (targeted to CD33, CD123, CLL-1, and others), chimeric antigen receptor
(CAR) T-cell therapies, and T-cell immune checkpoint inhibitors (including those targeting PD-1, PD-L1, CTLA-4, and newer
targets such as TIM3 and STING). The current and future directions of these T-cell-based immunotherapies in the treatment
landscape of AML are discussed in this review.

Introduction

For decades, immunotherapy—in the form of allogeneic
hematopoietic stem cell transplantation (allo-HSCT)—has
been a cornerstone of the treatment of acute myeloid leu-
kemia (AML) and other hematologic malignancies, offering
the potential to cure a subset of patients. T cells are con-
sidered the major contributors to the success of this therapy,
as demonstrated, for example, by the efficacy of donor

lymphocyte infusions to eradicate residual disease after
transplantation [1]. However, allo-HSCT has major
limitations owing to significant, often long-term, side
effects. T cells can, apart from inducing a desirable graft-
versus-leukemia effect, also mediate harmful graft-versus-
host disease (GvHD). Innovative T-cell-based treatment
strategies aim to achieve robust antileukemic activity while
avoiding T-cell cytotoxicity against healthy tissues.

In recent decades, three different treatment platforms have
been developed to harness antineoplastic T-cell activity:

1. Recruitment of T cells independently of T-cell
receptor (TCR) specificity through T-cell-engaging
antibody constructs, and

2. Genetic engineering of T cells [TCR-modified and
chimeric antigen receptor (CAR) T cells].

3. Reactivation of endogenous T-cell responses through
immune checkpoint inhibitors.

These platforms have been successfully implemented
against hematologic malignancies—to date, mainly in B-
cell neoplasias. Blinatumomab, a bispecific T-cell
engager (BiTE), has been used to treat B-cell precursor
acute lymphoblastic leukemia (BCP-ALL) [2, 3]. CAR-T
cells induce high remission rates in heavily pretreated
BCP-ALL [4], diffuse large B-cell lymphoma (DLBCL),
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and primary mediastinal B-cell lymphoma (PMBCL)
patients [5, 6]. In addition, immune checkpoint inhibitors
(ICPIs) have been approved for the treatment of Hodg-
kin’s lymphoma and PMBCL [7–9].

However, the translation of these successes into treatments
for AML has been challenging owing to the lack of suitable
target antigens. Here, we review the current data, discuss
immunotherapeutic treatment strategies, delineate the potential
paths forward to successful implementation, and propose the
use of biomarker-driven clinical studies for the development of
individualized treatment approaches.

Target antigens in T-cell-based
immunotherapy

Ideally, any target antigen for antibody- or CAR-T cell-based
AML immunotherapy effectively identifies neoplastic cells and
spares healthy tissue. To achieve these goals, an ideal AML
target should be (1) expressed (strongly) on the surface of the
AML blasts, (2) expressed in the majority of AML cases, but
(3) should not be expressed in healthy bone marrow or extra-
medullary cells. In addition, optimal target antigens are
expressed on leukemic stem cells (LSCs) and progenitor cells,
a subpopulation of AML cells with self-renewal, and che-
morefractory capacity.

The identification of antigens that incorporate all these
properties has been challenging. Although expression
intensity can be higher in AML bulk cells and/or LSCs,
target-antigen candidates such as CD33 and CD123 are
frequently found on hematopoietic stem cells (HSCs),
resulting in the risk of long-lasting or even permanent
myelosuppression [10]. Results from clinical trials targeting
alternative antigens that are known not to be expressed on
HSCs (e.g., CD44v6 or TIM3) are yet to be published.

Classification of target antigens

Leukemia-specific antigens

Leukemia-specific neoantigens, resulting from (ideally leuke-
mogenic) mutations, are usually expressed intracellularly and

are presented in the context of HLA molecules (Table 1). As
these antigens result from aberrant proteins encoded by leu-
kemia mutations, they are exclusively expressed in malignant
clones and therefore might represent “ideal” targets. However,
not all these intracellular antigens are presented on the cell
surface (as evidenced by the lack of spontaneous T-cell
responses against, e.g., DEK–CAN fusion proteins). Leukemia-
specific neoantigens have not been evaluated in AML clinical
trials to date.

Lineage-restricted antigens

Lineage-restricted antigens are usually cell-surface antigens
confined to the myeloid lineage. The majority of current
clinical trials of antibody constructs or CAR-T cells in AML
patients target lineage-restricted antigens, most commonly
CD33 and CD123 (Table 2).

Leukemia-associated antigens

Leukemia-associated antigens are overexpressed on AML
cells relative to healthy tissue and are usually not lineage
specific, making expression on healthy hematopoietic cells
(and thereby HSC toxicity and subsequent aplasia) less
likely (Table 3). However, these antigens may be found on
nonhematopoietic tissues, resulting in on-target off-tumor
toxicities. WT1 and PRAME are being evaluated in early-
phase clinical trials in patients with AML [11–13]. Strate-
gies to identify additional antigens that are exclusively
expressed on AML cells (including LSCs) includes com-
paring transcriptome and surfaceome data of AML cell
lines, primary AML cells and healthy hematopoietic cells.
Using this approach, several promising candidates have
been identified [14, 15].

Combinatorial approaches

So far, a single target antigen as ideal as CD19 or CD22 in
B-cell ALLs has not been identified for AML. Combination
strategies, in which several different target antigens are used
to target AML cells and LSCs, might increase specificity.
Such multitargeting approaches might also reduce the risk

Table 1 Leukemia-specific target antigens in AML.

Target antigen Expression Spontaneous immune responses Ref.

Mutated NPM1 Intracellular CD8+ T-cell responses observed in AML; might contribute to
favorable outcome of NPM1mut AML

Greiner et al. [86], van der Lee
et al. [87]

IDH1R132H Intracellular CD4+ T-cell responses observed in glioma Schumacher et al. [88]

Mutated FLT3 (ITD) Intracellular CD8+ T-cell responses observed in AML Graf et al. [89]

PML-RARA Intracellular None observed Gambacorti-Passerini et al. [90]

DEK–CAN Intracellular None observed Makita et al. [91]

1844 N. Daver et al.



Ta
bl
e
2
L
in
ea
ge
-r
es
tr
ic
te
d
ta
rg
et

an
tig

en
s
in

A
M
L
.

T
ar
ge
t

an
tig

en
E
xp

re
ss
io
n

P
hy

si
ol
og

ic
al

fu
nc
tio

n
E
xp

re
ss
io
n
on

bu
lk

A
M
L
ce
lls

E
xp

re
ss
io
n

on
L
S
C
s

E
xp

re
ss
io
n

on
H
S
C
s

N
on

he
m
at
op

oi
et
ic

ex
pr
es
si
on

S
po

nt
an
eo
us

im
m
un

e
re
sp
on

se
s

C
lin

ic
al

tr
ia
ls

in
A
M
L
?

R
ef
.

C
D
33

S
ur
fa
ce

S
ia
lic
-a
ci
d-

de
pe
nd

en
t

cy
to
ad
he
si
on

m
ol
ec
ul
e

>
99

%
(h
ig
he
r

ex
pr
es
si
on

w
ith

no
rm

al
ka
ry
ot
yp

e
or

e.
g.
,
N
P
M
1+

)

+
+

K
up

ff
er

ce
lls

(l
iv
er
),

m
ic
ro
gl
ia
l
ce
lls

(C
N
S
)

A
D
C
,
B
iT
E
,
C
A
R
-T

K
ru
pk

a
et

al
.
[2
4]

C
D
12

3
S
ur
fa
ce

In
te
rl
eu
ki
n
3

re
ce
pt
or

~7
8%

(h
ig
he
r

ex
pr
es
si
on

in
F
L
T
3-
IT
D
-

m
ut
at
ed

A
M
L
)

+
+

(+
)

B
ro
nc
hu

s/
ga
st
ro
in
te
st
in
al

tis
su
e

C
A
R
-T
,
D
A
R
T

H
au
bn

er
et

al
.
[1
0]
,

K
ov

tu
n

et
al
.
[9
2]
,

E
hn

in
ge
r

et
al
.
[9
3]

C
L
L
-1
/

C
L
E
C
12

A
S
ur
fa
ce

In
hi
bi
to
ry

C
-t
yp

e
le
ct
in
-l
ik
e
re
ce
pt
or

in
vo

lv
ed

in
im

m
un

ol
og

ic
al

ho
m
eo
st
as
is

78
–
92

%
(l
ow

er
ex
pr
es
si
on

in
ad
ve
rs
e
ri
sk

cy
to
ge
ne
tic
s)

+
−

N
.r
.

C
A
R
-T

(i
n

co
m
bi
na
tio

n
w
ith

C
D
33

),
Ig
G
1

bi
sp
ec
ifi
c
an
tib

od
y

M
or
si
nk

et
al
.
[3
9]
,

W
an
g

et
al
.
[4
0]
,

va
n
R
he
ne
n

et
al
.
[4
1]

C
D
11

7
S
ur
fa
ce

M
as
t/s
te
m

ce
ll

gr
ow

th
fa
ct
or

re
ce
pt
or

78
–
90

%
(−

)
+

E
pi
th
el
ia
l
ce
lls

(e
.g
.,
in

sk
in
,
br
ea
st
tis
su
e)
,
C
aj
al

ce
lls
,
m
el
an
oc
yt
es

C
A
R
-T

E
sc
ri
ba
no

et
al
.
[9
4]
,

S
co
ln
ik

et
al
.
[9
5]

C
D
13

5/
F
L
T
3

S
ur
fa
ce

C
yt
ok

in
e
re
ce
pt
or

54
–
90

%
+
+

(+
)

C
N
S
,
in
te
st
in
e,

te
st
is
(n
o

su
rf
ac
e
ex
pr
es
si
on

)
B
iT
E

B
ra
uc
hl
e

et
al
.
[4
3]
,

K
an
de
el

et
al
.
[9
6]

F
ol
at
e

re
ce
pt
or

β
S
ur
fa
ce

F
ol
at
e
up

ta
ke

~7
0%

N
.a
.

(+
)

N
.r
.

−
L
yn

n
et

al
.
[9
7]

IL
1R

A
P

S
ur
fa
ce

IL
1
re
ce
pt
or

ac
ce
ss
or
y
pr
ot
ei
n

~8
0%

+
(−

)
E
so
ph

ag
us

−
M
itc
he
ll

et
al
.
[9
8]
,

A
sk
m
yr

et
al
.
[9
9]

P
R
1/

pr
ot
ei
na
se
-3
-

de
ri
ve
d

ep
ito

pe
pe
pt
id
e

In
tr
ac
el
lu
la
r

N
eu
tr
op

hi
lic

se
ri
ne

pr
ot
ea
se
s

+
+

+
−

C
D
8+

T
-c
el
l

re
sp
on

se
s

ob
se
rv
ed

in
A
M
L

V
ac
ci
na
tio

n
tr
ia
ls

S
er
ge
ev
a

et
al
.
[1
00
],

A
la
tr
as
h

et
al
.
[1
01
]

A
nt
ig
en

ex
pr
es
si
on

:
−

ne
ga
tiv

e,
(+

)
lo
w
,
+

po
si
tiv

e,
+
+

hi
gh

ly
ex
pr
es
se
d
(−

)
in
fr
eq
ue
nt
.

A
D
C
an
tib

od
y–

dr
ug

co
nj
ug

at
e,
B
iT
E
bi
sp
ec
ifi
c
T
-c
el
le
ng

ag
er
,C

A
R
T
ch
im

er
ic
an
tig

en
re
ce
pt
or

T
ce
lls
,C

N
S
ce
nt
ra
ln

er
vo

us
sy
st
em

,D
A
R
T
du

al
-a
ffi
ni
ty

re
ta
rg
et
in
g
an
tib

od
y,
H
SC

he
m
at
op

oi
et
ic

st
em

ce
ll,

L
SC

le
uk

em
ic

st
em

ce
ll,

N
K

ce
ll
na
tu
ra
l
ki
lle
r
ce
ll,

n.
a.

no
t
as
se
ss
ed
,
n.
r.
no

t
re
po

rt
ed
.

T-cell-based immunotherapy of acute myeloid leukemia: current concepts and future developments 1845



Ta
bl
e
3
L
eu
ke
m
ia
-a
ss
oc
ia
te
d
ta
rg
et

an
tig

en
s
in

A
M
L
.

T
ar
ge
t
an
tig

en
E
xp

re
ss
io
n

P
hy

si
ol
og

ic
al

fu
nc
tio

n
E
xp

re
ss
io
n
on

bu
lk

A
M
L
ce
lls

E
xp

re
ss
io
n

on
L
S
C
s

E
xp

re
ss
io
n

on
H
S
C
s

N
on

he
m
at
op

oi
et
ic

ex
pr
es
si
on

S
po

nt
an
eo
us

im
m
un

e
re
sp
on

se
s

C
lin

ic
al

tr
ia
ls

in
A
M
L
?

R
ef
.

L
ew

is
Y

(C
D
17

4)
S
ur
fa
ce

U
nk

no
w
n

+
N
.a
.

(−
)

E
pi
th
el
ia
l
ce
lls

C
A
R
-T

M
ur
oi

et
al
.[
10

2]
,

Z
ha
ng

et
al
.
[1
03

]

M
U
C
1

S
ur
fa
ce

M
uc
os
al

pr
ot
ec
tio

n
+ (M

ye
lo
m
on

oc
yt
ic
/

m
on

oc
yt
ic

A
M
L
s)

+
(−

)
E
pi
th
el
ia
l
ce
lls

C
A
R
-T

S
tr
oo

pi
ns
ky

et
al
.
[1
04

,
10

5]

C
D
44

v6
S
ur
fa
ce

C
el
l–
ce
ll
in
te
ra
ct
io
ns
/

ce
ll–

m
at
ri
x

in
te
ra
ct
io
ns

+
(6
4–
72

%
)

P
ro
ba
bl
e

−
K
er
at
in
oc
yt
es

C
A
R
-T

L
eg
ra
s

et
al
.
[1
06

],
N
eu

et
al
.
[1
07
],

C
as
uc
ci

et
al
.
[1
08

]

C
D
24

4/
2B

4
S
ur
fa
ce

A
ct
iv
at
in
g/
in
hi
bi
to
ry

re
ce
pt
or

of
N
K

ce
lls

+
+

+
+

+
+

–
−

H
au
bn

er
et

al
.
[1
0]

C
D
96

S
ur
fa
ce

Im
m
un

e
ce
ll
ad
he
si
on

+
+

(−
)

−
−

H
os
en

et
al
.
[1
09

]

T
IM

-3
S
ur
fa
ce

C
o-
in
hi
bi
to
ry

re
ce
pt
or

of
im

m
un

e
ce
lls

+
(8
7%

)
+

(7
8%

)
−

B
la
dd

er
?

A
nt
ib
od

y
(c
he
ck
po

in
t

in
hi
bi
tio

n)

H
au
bn

er
et

al
.
[1
0]
,

H
e
et

al
.
[5
2]
,

K
ik
us
hi
ge

et
al
.
[1
10

]

C
D
70

S
ur
fa
ce

L
ig
an
d
of

C
D
27

in
vo

lv
ed

in
im

m
un

e
ce
ll
ho

m
eo
st
as
is

+
(>
95

%
)

+
−

M
ed
ul
la
ry

th
ym

ic
ep
ith

el
ia
l
ce
lls

F
c-
en
gi
ne
er
ed

an
tib

od
y

R
ie
th
er

et
al
.
[1
11

]

W
T
1/
W
ilm

s’
tu
m
or

ge
ne

1
In
tr
ac
el
lu
la
r

T
ra
ns
cr
ip
tio

n
fa
ct
or

+
(7
3–
10

0%
)

+
+

K
id
ne
y,

sp
le
en
,

he
ar
t,
lu
ng

,
pr
os
ta
te

C
D
8+

T
-c
el
l

re
sp
on

se
s

ob
se
rv
ed

in
A
M
L

V
ac
ci
na
tio

n
tr
ia
ls
,

T
C
R
-t
ra
ns
ge
ni
c

T
ce
lls

T
aw

ar
a
et
al
.[
11
],

L
ic
ht
en
eg
ge
r

et
al
.
[1
3]
,

R
os
en
fe
ld

et
al
.
[1
12

]

P
R
A
M
E

In
tr
ac
el
lu
la
r

(C
an
ce
r
te
st
is
an
tig

en
)

+
(4
1–
55

%
)

+
M
in
im

al
T
es
tis

C
D
8+

T
-c
el
l

re
sp
on

se
s

ob
se
rv
ed

in
A
M
L

V
ac
ci
na
tio

n
tr
ia
ls

Q
in

et
al
.
[1
13
],

D
in
g
et

al
.
[1
14

],
R
ez
va
ni

et
al
.
[1
15

]

R
H
A
M
M

In
tr
ac
el
lu
la
r

C
el
l–
m
at
ri
x

in
te
ra
ct
io
ns

+
Q
ue
st
io
ne
d

+
C
ol
on

C
D
8+

T
-c
el
l

re
sp
on

se
s
ra
re
ly

ob
se
rv
ed

in
A
M
L

V
ac
ci
na
tio

n
tr
ia
ls

C
as
al
eg
no

-
G
ar
du

ño
et

al
.
[1
16

],
G
re
in
er

et
al
.

[1
17
],
S
na
uw

ae
rt

et
al
.
[1
18

]

S
ur
vi
vi
n

In
tr
ac
el
lu
la
r

A
nt
i-
ap
op

to
tic

pr
ot
ei
n

(r
el
ev
an
ce

in
em

br
yo

ge
ne
si
s)

+
+

+
E
nd

ot
he
lia
l
ce
lls

T
-c
el
l
re
sp
on

se
s

ob
se
rv
ed

in
br
ea
st

ca
nc
er
,
m
el
an
om

a,
an
d
C
L
L

V
ac
ci
na
tio

n
tr
ia
ls

A
nd

er
se
n

et
al
.
[1
19

],
C
ar
te
r
et
al
.[
12

0]
,

X
in
g
et

al
.
[1
21

],

1846 N. Daver et al.



of target-antigen downregulation on malignant cells, an
escape mechanism frequently observed in patients after anti-
CD19 CAR-T-cell therapy [16, 17]. Combinatorial targeting
of different AML target antigens might be used in parallel
(e.g., by simultaneous use of two or more T-cell-recruiting
antibodies with different target-antigen specificity, or with
dual CAR-T cell approaches) or sequentially (e.g., by con-
secutive infusion of antibodies or CAR-T cells with different
target-antigen specificity). Optimal treatment sequences
might be patient-specific, and remain to be elucidated.

Selection of a target antigen

Three characteristics related to the expression of the antigen
are of importance when evaluating it as a target for
immunotherapy.

Localization

HLA-restricted antigens are expressed intracellularly and
can only be targeted with receptors that recognize this
antigen in the context of a presenting HLA molecule (e.g.,
by TCR-modified T cells transduced with a full synthetic
TCR, or by T-cell bispecific antibodies). In contrast, HLA-
unrestricted antigens are expressed on the cell surface and
are accessible to, for example, CARs.

Expression intensity

Target antigens can be expressed with very low intensity on
cells and, in such cases, might be undetectable by even
sensitive methods such as flow cytometry. Nonetheless, dim
expression might be sufficient to direct CAR-T cells against
these cells, as demonstrated for anti-CD19 CAR-T cells in
multiple myeloma samples [10].

Expression distribution

The pattern of target-antigen expression might influence the
pharmacokinetics of, for example, antibody constructs.
Interestingly, in a phase I clinical trial, the applied dosage of
the CD33-targeting BiTE AMG 330 was significantly
higher than that used of blinatumomab, its CD19-targeting
equivalent. In comparison to the strictly B-lymphocyte-
specific expression of CD19, the wider expression of CD33
on different cell types likely causes large amounts of the
BiTE to bind to off-tumor sites. This not only poses a risk of
on-target off-tumor toxicity, but might also influence the
biologically active half-life of the molecule by creating an
“antigen sink” effect. Interindividual differences of an
antigen sink might therefore influence the efficacy and
toxicity of a targeted molecule.Ta
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Recruitment of T cells independent of TCR
specificity

T-cell-recruiting antibody constructs: BiTEs, DARTs,
and others

Bispecific antibodies are recombinant proteins that recruit
T cells, through CD3 engagement, and target tumor cells,
usually with a higher affinity, through binding to a tumor-
associated antigen. Blinatumomab (a BiTE antibody) is the
only bispecific antibody approved by both the US Food and
Drug Administration (FDA) and the European Medicines
Agency (EMA). Blinatumomab binds CD19 on B cells and
CD3 on T cells and is used to treat patients with relapsed/
refractory (R/R) or minimal residual disease (MRD)-posi-
tive (≥10−3) BCP-ALL [2, 3]. Different formats of bispe-
cific antibodies have been developed, such as BiTEs, half-
life-extended BiTEs, dual-affinity retargeting (DART)
antibodies, tandem diabodies, DuoBody antibodies, affinity-
tailored adaptors for T cells, and tetravalent bispecific
antibodies. Some of these formats were designed for prac-
tical reasons related to construction and manufacturing,
whereas others were designed with their biological char-
acteristics, including pharmacokinetics, in mind [18, 19].

A major challenge in translating the success of bispecific
antibody constructs from B-cell neoplasias to AML has
been the identification of suitable target antigens. As dis-
cussed in the section “Target antigens in T-cell-based
immunotherapy”, several AML-selective antigens are being
investigated as therapeutic targets. Among these, bispecific
antibodies targeting the lineage-restricted antigens CD33,
CD123, CLL-1 (CLEC12A), and FLT3 are in early clinical
trials and are discussed below.

Targeting CD33 with T-cell-recruiting antibody constructs

CD33 is widely expressed in human AML cells. CD33’s
validity as a therapeutic target in AML was exemplified by
gemtuzumab ozogamicin—an antibody–drug conjugate
(ADC) directed against CD33—which, in combination with
daunorubicin and cytarabine, was approved by both the US
FDA and the EMA for the treatment of newly diagnosed
CD33-positive AML [20–23]. Several CD33 × CD3 bispe-
cific antibodies are in ongoing clinical trials.

AMG 330, a BiTE molecule [24] was able to kill AML
cells in primary human AML samples across a wide range
of effector:target (E:T) ratios in ex vivo experiments, and
was able to continuously expand and activate T cells [24]. It
is currently being tested in a phase I trial in adult R/R AML
patients, given as a continuous intravenous infusion because
of its short half-life (<2 h; NCT02520427). The updated
results of this trial included 60 treated patients [25]. This
trial used a dose-step approach together with

dexamethasone prophylaxis in order to prevent cytokine
release syndrome (CRS) and to achieve high targeted doses.
CRS was the most commonly observed treatment-related
adverse event (TRAE): 40 of the 60 treated patient (67%)
developed CRS; reaching grade 3 or higher in nine patients
(15% of the total). The CRS was mitigated through
implementation of three dose-steps and early use of tocili-
zumab, an anti-IL-6 antibody, approved for CAR-T-cell-
mediated CRS. Other commonly observed TRAEs were of
lower grade and included skin disorders in 58%, elevated
liver function tests in 25%, and gastrointestinal disorders in
30% of the patients. AMG 330 exposures and E:T ratios
were positively correlated with CRS occurrence and
severity. As expected, CRS frequency and severity were
associated with the levels of IL-6 and IL-10 released upon
treatment.

Seven patients achieved complete remission (CR),
including four with incomplete hematologic recovery (CRi)
and one morphologic leukemia-free state (MLFS). The
minimal efficacious dose for achieving response was
120 µg/day, and the CR/CRi rate was 17% with doses
≥120 µg/day. The median duration of response was
58.5 days (range 14–121 days). Responders were more
likely to have higher AMG 330 exposures and lower
baseline leukemic burden, with no correlation between
CD33 expression on AML blasts and response.

A major challenge in using AMG 330 is its short half-
life, requiring continuous intravenous infusion. A logical
development was the fusion of the N-terminus of a single-
chain IgG Fc region to a CD33 x CD3 BiTE to create the
half-life-extended molecule AMG 673. AMG 673 is cur-
rently in a phase I trial in adult patients with R/R AML
(NCT03224819). In contrast to AMG 330, AMG 673 is
administered as two 1 h intravenous infusions on days 1 and
5 during each 14-day cycle. As of March 23, 2020, 38
patients had been treated with 11 different doses of AMG
673, ranging from 0.05 to 110 μg per dose. CRS was
reported in 63%, with 18% grade 3 or higher events. Of the
27 evaluable patients, five experienced ≥50% reduction of
blasts in bone marrow, including one CRi [26, 27].

AMV564 is a bivalent CD33 x CD3 bispecific antibody.
In a phase I clinical trial in adult patients with R/R AML,
AMV564 is administered by continuous intravenous infu-
sion for 14 consecutive days in 28-day cycles
(NCT03144245). Thirty-six patients were treated with 10
dose levels using a lead-in dose-escalation schedule [28].
All 36 patients were evaluable for safety and no dose-
limiting toxicity (DLT) was reported. The most common
grade 3 or higher TRAE was anemia, observed in 11% of
patients. Among 35 evaluable patients, one CR, one
CRi, and one PR were reported. AMV564 was reported to
have a terminal half-life of 2–3 days. Other CD33 x CD3
bispecific antibodies in clinical trials include GEM333
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(NCT03516760) and JNJ-67571244 (NCT03915379), both
in adult patients with R/R AML (Table 4).

Targeting CD123 with T-cell recruiting antibody constructs

CD123, the IL-3 receptor alpha chain, is expressed in nor-
mal hematopoietic stem/progenitor cells (HSPCs) and
myeloid cells but its expression is increased on AML blast
and LSCs [29–32]. The CD123-based bispecific antibody
that is most advanced in clinical development is flotetuzu-
mab (MGD006), a CD123 x CD3 DART [33]. Flotetuzu-
mab is being evaluated in an ongoing phase I/II clinical trial
in patients ≥18 years old with primary induction failure
(PIF) or early relapse (ER) AML (NCT02152956), and in
patients up to 20 years old with R/R AML (NCT04158739).
Data on 30 patients, 25 of whom had high-risk disease,
treated with the recommended phase II dose of 500 ng/kg/
day administered as a 7-day/week continuous infusion was
presented at ASH 2018 [34]. Patients received a lead-in
dose (30 ng/kg/day for 3 days, followed by 100 ng/kg/day
for 4 days) during week 1, followed by 500 ng/kg/day
during weeks 2–4 of cycle 1, and a 4 days on/3 days off
schedule for cycle 2 and beyond. CRS occurred in all
patients, including 13.3% at grade 3 or above, although
most cases were transient and reversible. Among 27
response-evaluable patients, five achieved a CR/CRi. Intri-
guingly, four of 13 patients (31%) with primary che-
motherapy refractory AML had CR/CRi, whereas none of
the 11 patients with relapsed disease had CR/CRi [34]. In a
follow-up report, 42 of 88 adults with R/R AML were
treated with flotetuzumab in a dose-finding segment; the
other 46 received the recommended phase 2 dose of 500 ng/
kg/day [35]. Grade 1/2 CRS was the most common adverse
event. Systematic application of stepwise dosing, pretreat-
ment dexamethasone, early use of tociluzimab, and tem-
porary dose interruptions helped to successfully prevent
grade 3 or higher CRS. Thirty PIF/ER patients were treated
at the recommended phase 2 dose, for whom the rate of CR/
CR with partial hematological recovery (CRh) was 27% and
the overall response rate (ORR) (CR/CRh/CRi) was 30%.
The median overall survival (OS) among PIF/ER patients
achieving CR/CRh was 10.2 months. In a related study, 442
primary bone-marrow samples from children and adults
with AML were analyzed to identify immune-infiltrated and
immune-depleted AML classes by applying gene and pro-
tein profiling [36]. Interestingly, interferon-gamma-related
mRNA profiles were predictive for both chemotherapy
resistance and response to flotetuzumab therapy, suggesting
that this might be a potential biomarker for selecting AML
patients most likely to benefit from flotetuzumab and
potentially other similar immune-enhancing strategies [36].

Vibecotamab (XmAb 14045) is another CD123 x CD3
bispecific antibody in a phase I trial in patients with CD123-

expressing hematological malignancies. The first results
from 64 patients (63 with R/R AML, 1 with R/R B-ALL)
presented at ASH 2019 [37] revealed no MTD but a DLT of
grade 4 CRS at 2.3 µg/kg, leading to the recommended dose
of 1.3 µg/kg. CRS was observed in 77%, including 11%
with grade 3 or higher. Two CRs and one CRi were
observed, all in patients treated with either the 1.3 or 2.3 µg/
kg weekly dose, the two highest doses tested [37].

Other CD123 x CD3 bispecific antibodies in early-phase
clinical trials in patients with R/R AML include
SAR440334 (NCT03594955), a T-cell-engaging multi-
specific monoclonal antibody, APVO436 (NCT03647800),
an optimized ADAPTIR bispecific antibody, and JNJ-
63709178 (NCT02715011), a humanized DuoBody
(Table 5). Results from these trials are yet to be reported.

Targeting CLL-1/CLEC12A with T-cell-recruiting antibody
constructs

MCLA-117 [38] is a modified full-length human bispecific
IgG and is the only CLEC12A x CD3 bispecific antibody
currently in a clinical trial in adult patients with AML
(NCT03038230). The target antigen, C-type lectin domain
family 12 member A (CLEC12a, also named CLL-1), is
expressed in the majority of AML cases, including on
LSCs, but has not been detected on healthy HSCs, making it
an attractive immunotherapeutic target [39–41]. The
administration of MCLA-117 includes ramp-up dosing
steps followed by weekly infusion at the target dose (each
cycle is 20 days). Mascarenhas et al. reported preliminary
results of this trial at the 2020 EHA Congress [42]. As of
November 30, 2019, 50 patients had been treated with
MCLA-117 with a target dose from 0.675 to 120 mg. No
DLTs were identified. The most common TRAEs included
pyrexia (32%), CRS (32%), chills (22%), infusion site
phlebitis (14%), vomiting (12%), and nausea (10%). Grade
3 and 4 TRAEs included CRS (2%) and elevated liver
transaminase (8%). Among 26 evaluable patients, four
showed ≥50% blast reduction in the bone marrow, including
one MLFS [42].

Targeting FLT3 with T-cell-recruiting antibody constructs

Like CLL-1, FLT3 (CD135) shows favorable expression
in AML, with high expression intensities on bulk AML
cells and LSCs, and low expression on healthy HSCs. AMG
427 is a CD3 x FLT3 half-life-extended BiTE [43]. In
ex vivo experiments, the killing of AML cells by AMG 427
correlated with high FLT3 cell-surface levels and high
(>1:38) E:T ratios, and was enhanced by the presence of
an anti-PD-1 antibody [43]. AMG 427 is being evaluated
in a phase I clinical trial in adults with R/R AML
(NCT03541369).
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Future directions

All of the bispecific antibodies used to treat AML are still in
early clinical trials. As illustrated above, clinical data is
available mainly in peer-reviewed abstracts and meeting
presentations because these trials are still ongoing. None-
theless, these preliminary results indicate that the safety
profile of these bispecific antibodies is acceptable and
suggest that bispecific antibodies might be promising ther-
apeutics for treating AML.

There remain many unanswered questions. The most
suitable antigens and, more specifically, the most appropriate
epitopes of these antigens to target are yet to be identified.
Unsurprisingly, CRS has been a common TRAE reported
from the emerging data. Intriguingly, unlike with blinatu-
momab, neurotoxicity was not common among these reports.
By using anti-inflammatory prophylaxis alone or in combi-
nation with a dose-step approach, high doses of bispecific
antibodies were safely administered to patients. However,
whether there are more convenient ways of administering
bispecific antibodies while further reducing toxicity and
improving efficacy remains to be investigated. In addition,
the clinically most useful formats of bispecific antibodies
remain undefined. Smaller formats have shorter in vivo half-
lives, which, if necessary, makes interrupting or adjusting
doses easier, but pose logistical challenges for dosing patients
owing to the need for continuous infusion. Larger formats in
general have slower clearance, thus longer in vivo half-lives
meaning they cannot be shut off quickly but do not require
continuous infusion. Moreover, larger formats that include Fc
fragments can engage Fc-mediated cell killing, which might
increase their efficacy [18, 19].

As T-cell function is key for the activity of bispecific
antibodies, T-cell exhaustion might contribute to primary or
secondary resistance. Knaus et al. [44] demonstrated a
decrease in T-cell function in AML patients compared to
healthy controls. All current AML BiTE trials are currently
being investigated in R/R AML patients with a median of ≥4
prior treatment lines or post-allo-HSCT relapse (e.g., in the
AMG 330 trial, up to 50% of patients had prior allo-HSCT).
Moving forward, we believe that bispecific antibodies should
be tested in earlier treatment lines including salvage-1 or
even more optimally in the MRD setting, when there is likely
to be an active and harnessable anti-AML T-cell immunity.
As has been reported for BCP-ALL, in vivo and in pre-
clinical models ex vivo in AML, that PD-L1 upregulation on
AML cells is a common adaptive immune escape strategy
[45]. The use of combination strategies of bispecifics with
anti-PD-1 and anti-PD-L1 antibodies might help overcome
such resistance and may be even more potent in earlier
treatment lines with a better-preserved functional T-cell
compartment. A study of AMG 330 with the PD-1 inhibitor
pembrolizumab (NCT04478695) will evaluate this approach.

Chimeric antigen receptor T-cell therapy

In contrast to bispecific antibodies, which transiently direct
the patient’s endogenous T cells against target expressing
cells, CAR-T cells are genetically modified autologous
T cells equipped with a synthetic target-antigen receptor
(the CAR) that expand after transfusion in a target-antigen
dependent matter (so-called “living drug”). They have the
potential to persist after infusion and induce a long-term
antileukemic memory. The binding between a CAR and its
antigen on a tumor cell triggers a signal transduction cas-
cade through signaling domains that then activate T cells to
kill the target either directly or by harnessing other com-
ponents of the immune system [46]. CARs bind to their
tumor antigens in an MHC-independent manner, which is
their main advantage over regular TCRs [47].

Anti-CD19 CAR-T-cell therapies against B-lineage
malignancies have been successfully used in clinical prac-
tice and are approved in the US and Europe [6]. In contrast
to lymphoid malignancies, most AML antigens targeted by
ADCs, bispecific antibodies, and CAR-T cells are fre-
quently expressed in normal HSPCs or healthy organ tissues
(e.g., liver, lung), increasing the risk of on-target, off-tumor
toxicity. Accordingly, most clinical trials are currently
applying CAR-T cell therapy as a “bridge to transplant”
strategy, aiming at the eradication of chemorefractory
(residual) AML cells to reduce relapse rates post-allo-HSCT
while avoiding the risk of profound and prolonged
cytopenia.

Early-phase AML CAR-T and CAR NK clinical trials,
targeting CD33, CD123, and NKG2D are ongoing
(Table 6). In a phase I study (NCT03018405, still recruit-
ing) [48], 12 patients with hematological malignancies
(eight AML, three MM and one MDS) received CYAD-01,
a CAR product based on the receptor NKG2D with speci-
ficity for a broad range of ligands (MICA, MICB, and
ULBP1-6) expressed on most tumors. CYAD-01 was
administered without prior preconditioning therapy. CRS
occurred in five patients, three at grade 1/2 and two at grade
3, and rapidly resolved with appropriate therapy such as
tocilizumab. No neurotoxicity was observed. Of eight R/R
AML patients, with a median of three prior therapies, seven
were evaluable for response. The CR/CRi rate was 42%
(three of seven patients, respectively). One patient pro-
ceeded to allo-HSCT and has been in durable response for
more than 1 year.

Autologous CD123-specific CAR-T cells are under
investigation (NCT02159495) for R/R AML (cohort 1) and
blastic plasmacytoid dendritic cell neoplasm (BPDCN;
cohort 2). Prior to T-cell infusion, all patients undergo
lymphodepletion (fludarabine 25–30 mg/m2 for 3 days and
cyclophosphamide 300 mg/m2 for 3 days). Patients receive
a single dose of CD123-CAR-T cells with an option for a
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second infusion if they continue to meet safety and elig-
ibility criteria and have persistent CD123+ disease at the
end of cycle 1. At the most recent update [49], seven
patients (six AML, one BPDCN) had received CD123-
CAR-T cells. All six patients in the AML cohort had
refractory AML following allo-HSCT, and a median of four
(range 4–7) prior lines of therapy. One patient achieved CR
and proceeded to a second allo-HSCT. Another patient with
CR prior to treatment remained in CR post-therapy and
proceeded to allo-HSCT. Two patients had blast reduction,
including one patient who achieved MLFS. CRS occurred
in five patients (four grade 1, one grade 2). All toxicities
were reversible and manageable. There were no treatment-
related cytopenias. In the BPDCN cohort, one patient with a
bulky subcutaneous mass who did not respond to prior
CD123 ADC therapy achieved CR after a single dose of
CD123-CAR-T cells and continued in CR 60 days post-
infusion. That patient tolerated the treatment well with no
CRS or neurologic toxicity.

To overcome AML heterogeneity and the lack of tumor-
specific antigen, and to mitigate toxicity due to the antigens
common to leukemic blasts and normal tissues, dual-
targeting CAR-T targeting strategies are being investigated
[14]. In a phase I study, Liu et al. [50, 51] evaluated
compound CAR (cCAR) T cells targeting two AML anti-
gens, CD33 and CLL-1. The CLL-1b-CD33b cCAR con-
sists of two individually complete and functional CAR
molecules on the surface of a T-cell connected by P2A, a
self-cleaving peptide linker. The study was designed with a
CD52 safety switch. Patients received lymphodepletion
with fludarabine and cyclophosphamide. To date, two
unique responders have been reported from this trial
[50, 51]; both had R/R AML treated with multiple lines of
chemotherapy. Both patients had blast counts >20% before
cCAR T-cell infusion, and both achieved MRD-negative
remission and were able to proceed to allo-HSCT. The
study is ongoing (NCT03795779).

Another novel strategy recently published by He et al.
[52] was the isolation of multiple nanobodies (heavy-chain-
only antibodies with a small single variable domain) that
bind to various epitopes. By using a sequentially tumor-
selected antibody and antigen retrieval (STAR) system, they
developed a bispecific and split CAR (BissCAR) targeting
CD13 and TIM3. This BissCAR T-cell effectively eradi-
cated patient-derived AML with limited toxicity to normal
HSCs, cells of myeloid lineage, and healthy organ systems
in murine and patient-derived xenograft models [52]. This
might be a promising approach for developing an effective
CAR-T cell therapy for AML.

Despite the lack of an ideal AML antigen, concerns over
CRS, and the potential for prolonged myelosuppression, the
field of CAR-T cells as a therapeutic option in AML con-
tinues to make progress, both pre-clinically and clinically.Ta
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Indeed, several strategies, such as gene-editing technology,
combination therapies with checkpoint inhibitors or ago-
nists, and targeting low-burden disease or MRD, are the
subjects of early investigations to optimize CAR-T cells in
AML. Specifically, genetic ablation of the CD33 antigen
using CRISPR–Cas9 technology in human HSPCs has
already been shown to be feasible, with multilineage
hematopoietic recovery in an in vivo model system [53]. A
first-in-human trial will be initiated that combines an allo-
HSCT utilizing genetically modified, CD33-negative HSCs
with CD33-directed CAR-T cells [54]. Advances in tech-
nology, in conjunction with AML-specific target-antigen
identification, might allow CAR-T cell therapy in patients
ineligible for allo-HSCT. However, this concept should be
evaluated in a clinical setting before definitive recommen-
dations can be made.

Reactivation of endogenous T-cell responses
against AML: immune checkpoint inhibitors

Immune checkpoints play an important role in the regula-
tion of immune homeostasis by optimally balancing the
stimulatory and inhibitory signals that mediate the T-cell
immune response via co-stimulatory receptors such as
CD28, OX40, CD27, and ICOS (expressed on T cells), or
CD80 and CD86 (expressed on APCs), and co-inhibitory
receptors, such as cytotoxic T-lymphocyte-associated pro-
tein 4 (CTLA-4) and programmed cell-death protein 1 (PD-
1; both expressed predominantly, but not exclusively, on
T cells) [55, 56]. ICPIs are approved in the United States
and Europe for several solid tumors [57, 58]. In hemato-
logical malignancies, ICPIs are yet to be as widely devel-
oped or approved, although nivolumab and pembrolizumab
are notable exceptions for the treatment of Hodgkin’s
lymphoma and PMBCL [9, 59]. In AML, bone-marrow-
infiltrating T-cell populations are preserved and may even
be increased compared with bone marrows from healthy
individuals, with an increased frequency of immune inhi-
bitory and activating co-receptor expression (especially in
relapsed AML), including PD-1, OX40, TIM3, and LAG3,
suggesting a potential role for T-cell-harnessing therapies in
AML [60–62]. Within the last five years, several ICPIs have
been evaluated in clinical trials in patients with AML
(Table 7) [56, 62].

Single-agent checkpoint inhibitors and
combinatorial approaches with
hypomethylating agents

ICPIs have demonstrated very modest clinical efficacy as
single agents in patients with R/R AML and

myelodysplastic syndrome (MDS) who have not undergone
allo-HSCT [63, 64].

Investigators have demonstrated that patients with AML/
MDS treated with hypomethylating agents (HMAs) had
dose-dependent upregulation of the surface expression of
ICPI receptors and ligands (PD-L1, PD-L2, PD-1, and, to a
lesser extent, CTLA-4) [65, 66]. Patients who had the
highest PD-L1 upregulation had the shortest duration of
response to HMA therapy, and a trend to inferior OS. This
led to the hypothesis that the activation and upregulation of
immune checkpoints during HMA therapy could be a pos-
sible mechanism of resistance, which might be overcome by
combining HMA therapy with ICPIs [67, 68].

Nivolumab, an anti-PD-1 antibody, was combined with
azacitidine in patients with R/R AML in a phase II clinical
trial (NCT02397720) [69]. Among 70 patients treated, the
ORR was 33%, including 22% with CR or CRi. Notably,
this was a high-risk population, with 44% of the patients
having secondary AML with poor risk cytogenetics, and a
median of 2 (range 1–7) prior therapies. Grade 3/4
immune-related adverse events occurred in 11% of the
patients, the most frequent being pneumonitis. The median
OS for the 70 patients was 6.3 months, and among salvage-
1 patients (n= 32) the median OS was 10.5 months.
Patients with pre-therapy increased bone marrow CD3 and
CD8 infiltration had a higher response rate, suggesting
pre-therapy T-cell infiltration might be an indicator of an
“inflamed tumor” and a biomarker for selecting patients
likely to benefit from ICPI-based therapies. The anti-
CTLA-4 antibody ipilimumab was added to the azacitidine
and nivolumab backbone regimen in an ongoing expansion
cohort of this phase II trial [70]. Twenty-four evaluable R/R
AML patients were treated with the combination of azaci-
tidine, nivolumab, and ipilimumab. The ORR was 44%,
including 36% CR/CRi. Grade 3/4 immune-mediated toxi-
cities were observed in six patients (25%), including rash,
pneumonitis, and colitis.

In another phase II study (NCT02845297) the anti-PD-1
antibody pembrolizumab was given in combination with
azacitidine to patients with R/R and newly diagnosed AML
[71]. In the R/R AML cohort, four out of 29 patients (14%)
evaluable for response achieved CR or CRi, and one (4%)
PR. The median OS for the R/R AML cohort was
10.8 months. In the second cohort, 22 newly diagnosed
AML older patients who were not candidates for intensive
chemotherapy were enrolled. Among 17 evaluable patients,
47% achieved CR/CRi and 12% PR. The median OS for the
frontline cohort was 13.1 months. Grade 3/4 immune-
related adverse events were observed in nine patients (24%)
in cohort 1, and three patients (14%) in cohort 2.

The results of a phase II, randomized, international,
multicenter study (NCT02775903) of azacitidine with or
without the PD-L1 antibody durvalumab in frontline
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therapy for high-risk MDS (cohort 1) or AML (cohort 2)
were recently reported [72]. Cohort 2 randomized (1:1) 129
AML patients ≥65 years old ineligible for intensive che-
motherapy. There were no statistically significant differences
in the ORR (31.3% vs. 35.4%) or CR rate (17.2% vs. 21.5%)
between azacitidine with durvalumab versus azacitidine
alone. The median OS for azacitidine with durvalumab and
azacitidine alone was 13.0 and 14.4 months, respectively. No
concerning or unexpected safety signals were noted. Notably,
more than 50% of the patients discontinued the trial medi-
cations and were censored for survival analysis, which might
impact the interpretation of the results.

Interestingly, PD-1 inhibition and PD-L1 inhibition
appear to have differential efficacy profiles in AML and
MDS, as has been shown in solid tumors [73]. Herbrich
et al. [74] evaluated bone marrow and peripheral blood
samples by single-cell mass cytometry (CYTOF) profiling
of serially collected samples from nine R/R AML patients
treated with azacitidine and PD-L1 inhibitor avelumab
(NCT02953561). Four of the nine evaluable patients
experienced an initial blast reduction and seven had sub-
sequent rapid disease progression. Serial measurements
from the same patients were used to phenotypically track
both resistant and newly emerging clones. Whereas PD-L1
levels were consistently low in baseline and on-treatment
sample analyses, the seven who developed initial blast
reduction followed by rapid progression exhibited high PD-
L2 protein expression on AML cells. PD-L2 was also fre-
quently expressed in emerging clones not present at base-
line. According to the authors, this observation suggests that
PD-1 and PD-L1 inhibition might not be the same in AML
and might help explain, at least in part, the apparent dis-
crepancy in response rates and survival with PD-1 inhibitor-
versus PD-L1 inhibitor-based therapies seen in the clinical
trials in patients with AML. Ongoing analysis using
CYTOF and single-cell RNA sequencing should help us
better understand the mechanistic differences between PD-
1- and PD-L1-based therapies [73].

Checkpoint inhibitors in combination with
cytotoxic chemotherapy

Chemotherapy may augment the immune response against
cancer. In vivo experiments in mouse models have shown
that the injection of cytosine arabinoside (cytarabine)
induced the expression of CD80 and CD86, and reduced the
expression of PD-1 on leukemic cells, making them more
susceptible to cytotoxic T-lymphocyte-mediated killing
[75]. In a phase II study, nivolumab was combined with
idarubicin and cytarabine in patients with newly diagnosed
AML or high-risk MDS (>10% blasts) [76]. Forty-four
patients were enrolled, of whom 42 had AML and two hadTa
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MDS. The ORR was 78%, comprising 64% complete
responses and 14% CRi. Of these 34 responders, 18 pro-
ceeded to allo-HSCT. At a median follow-up of
17.3 months, the median OS for all patients was
18.5 months. Six patients had grade 3/4 immune-related
adverse events. The combination was deemed safe with no
concerning toxicities pre- or post-allo-HSCT. These results,
did not, in the opinion of the authors, demonstrate clear
improvement in CR rates, MRD negativity rates, EFS, or
OS over standard therapies in this population, and the study
was terminated.

In the R/R setting, a phase II trial examined high-dose
cytarabine followed by pembrolizumab [77]. Thirty-seven
patients with R/R AML received age-adjusted high-dose
cytarabine followed by pembrolizumab 200mg IV adminis-
tered on day 14 of the cytarabine. The ORR (CR+CRi+
PR+MLFS) was 46% and the CR/CRi rate was 38%. Nine
patients (24%) proceeded to allo-HSCT. There were no
instances of grade >3 acute GvHD or veno-occlusive disease
post-allo-HSCT. At a median follow-up of 7.8 months, the
median OS was 8.9 months. This study is ongoing.

Immune checkpoint inhibitors in minimal
residual disease and maintenance

Eradication of MRD is an active area of investigation in
AML therapy. Preclinical data suggests that immune
checkpoint pathways might contribute to tumor persistence
by enabling leukemic cells to escape immune surveillance
[78]. In a mouse AML model with MRD positivity, per-
sisting leukemic blasts became more resistant over time to
cytotoxic T-cell-mediated killing, concomitantly associated
with increased PD-L1 and CTLA-4 expression. Blocking
this pathway in vitro and in vivo prolonged the survival of
the mice [78]. NCT02532231 is an ongoing single-arm
phase II study of nivolumab as a maintenance therapy for
patients with high-risk AML in CR who are ineligible for
allo-HSCT. Fourteen patients were enrolled [79]. High-risk
features were five (36%) with persistent MRD, four (29%)
with adverse cytogenetics, one (7%) adverse mutation
alone, one t-AML (7%) and three patients (21%) in ≥CR2.
Seventy-one percent of patients were in CR at 12 months,
which is encouraging. This study is ongoing.
NCT02275533 is a randomized phase II study investigating
the role of nivolumab in eliminating MRD in patients with
AML in CR after completion of the planned chemotherapy.

Future directions

ICPIs appear to have clinical activity in AML, albeit with
less impressive results than in patients with solid tumors

and certain lymphomas. Several reasons for this have been
proposed, including the heterogenicity of AML with diverse
clonality and multiple driver mutations [80], as well as the
relatively lower mutational burden in AML cells, thereby
possibly limiting the repertoire of leukemia-specific anti-
gens available to prime the T-cell response [80–82]. The
protective bone-marrow microenvironment might also
exert an immunosuppressive influence by preventing
access of T cells to AML blasts or by secretion of
immune-dampening metabolites such as indoleamine
2,3-dioxygenase, 2-hydroxyglutarate, and arginine by the
AML blasts [83].

Combining ICPIs with another AML therapy might
improve their activity, as mentioned above. As multiple
targeted and signaling therapies have recently been
approved for AML, ongoing trials are combining ICPIs with
these new backbone regimens. NCT04277442 is a phase I
trial combining nivolumab with decitabine and venetoclax
in frontline TP53-mutated AML, NCT02397720 is evalu-
ating nivolumab with azacitidine and venetoclax in R/R and
frontline AML, and NCT04284787 is a phase II trial of
pembrolizumab in combination with azacitidine and vene-
toclax in newly diagnosed AML patients deemed unsuitable
for induction therapy. NCT03730012 is a phase I/II trial
evaluating atezolizumab with gilteritinib in R/R FLT3-
mutated AML, and NCT04044209 is evaluating nivolumab
with ivosidenib (AG-120) in R/R IDH1-mutated AML.

Pertinent questions on treatment stratification will
hopefully be answered with ongoing clinical trials. Identi-
fying biomarkers that will help select patients most likely to
benefit from ICPIs is of the highest importance for choosing
the optimal setting (frontline, MRD+, maintenance, early
salvage) and the ideal combination partners and/or sequence
to improve outcomes while maintaining an acceptable
safety profile.

Conclusions

The last 3–5 years have seen significant progress made in
the understanding of the immune biology of AML [84] and
advances in technology resulting in the development of
novel AML-directed T-cell therapeutic approaches. Despite
the numerous ongoing trials, we believe that T-cell immu-
notherapies for myeloid malignancies are still in their
infancy. Such trials will help AML immunotherapeutics
evolve and advance in the coming years. We predict that
these clinical advances will be accelerated by a focused
analysis of biomarkers at the pre-therapy, on-therapy, and
relapse stages. These data can help us to identify the
patients most likely to respond, to elucidate the mechanisms
of immune resistance/escape [85], validate novel check-
points and AML-specific targets, and better manage
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immune toxicities. In addition to biomarker-driven strate-
gies, identifying and deploying these therapies in optimal
clinical settings such as MRD, low-burden disease, and
early salvage will be important. The application of novel
techniques such as single-cell RNA and DNA sequencing,
single-cell cytokine analysis, and mass cytometry on patient
samples, to unravel at a granular level the role of the tumor
microenvironment and non-T-cell compartments in immune
response or resistance is likely to add critical information to
guide combinatorial or sequential immune therapy approa-
ches. Thus, we can look forward to an exciting and hope-
fully fruitful next decade for immunotherapies for AML.
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