
ARTICLE OPEN

MYELODYSPLASTIC NEOPLASM

Dynamics of clonal hematopoiesis under DNA-damaging
treatment in patients with ovarian cancer
Christopher Maximilian Arends 1,16, Klara Kopp1,16, Raphael Hablesreiter 1, Natalia Estrada1, Friederike Christen 1,
Ute Martha Moll2, Robert Zeillinger3, Wolfgang Daniel Schmitt 4, Jalid Sehouli5,6, Hagen Kulbe5,6, Maximilian Fleischmann7,
Isabelle Ray-Coquard8, Alain Zeimet9, Francesco Raspagliesi10, Claudio Zamagni11, Ignace Vergote12,13, Domenica Lorusso14,
Nicole Concin9, Lars Bullinger1,15, Elena Ioana Braicu5,6,17 and Frederik Damm 1,15,17✉

© The Author(s) 2024

Clonal hematopoiesis (CH) driven by mutations in the DNA damage response (DDR) pathway is frequent in patients with cancer and
is associated with a higher risk of therapy-related myeloid neoplasms (t-MNs). Here, we analyzed 423 serial whole blood and plasma
samples from 103 patients with relapsed high-grade ovarian cancer receiving carboplatin, poly(ADP-ribose) polymerase inhibitor
(PARPi) and heat shock protein 90 inhibitor (HSP90i) treatment within the phase II EUDARIO trial using error-corrected sequencing
of 72 genes. DDR-driven CH was detected in 35% of patients and was associated with longer duration of prior PARPi treatment.
TP53- and PPM1D-mutated clones exhibited substantially higher clonal expansion rates than DNMT3A- or TET2-mutated clones
during treatment. Expansion of DDR clones correlated with HSP90i exposure across the three study arms and was partially
abrogated by the presence of germline mutations related to homologous recombination deficiency. Single-cell DNA sequencing of
selected samples revealed clonal exclusivity of DDR mutations, and identified DDR-mutated clones as the origin of t-MN in two
investigated cases. Together, these results provide unique insights into the architecture and the preferential selection of DDR-
mutated hematopoietic clones under intense DNA-damaging treatment. Specifically, PARPi and HSP90i therapies pose an
independent risk for the expansion of DDR-CH in a dose-dependent manner.
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INTRODUCTION
Clonal hematopoiesis (CH), characterized by the expansion of
somatically mutated hematopoietic stem cells, has emerged as a
prevalent phenomenon associated with the development of
hematologic malignancies [1–4], increased cardiovascular risk
[5, 6] and other age-related pro-inflammatory conditions [7–11].
While in the unselected aging population somatic mutations in
epigenetic regulator genes such as DNMT3A, TET2 and ASXL1
(collectively called DTA mutations) predominate, exposure to
cytotoxic treatment, in particular platinum-based treatment,
differentially selects for gene mutations affecting the DNA

damage response (DDR) machinery, mainly TP53, PPM1D, ATM
and CHEK2 [12]. These clones show increased resistance to DNA
damage-induced apoptosis, providing them with a selective
advantage under the evolutionary pressure of cytotoxic stress
[13–16]. Increasing evidence suggests that cancer patients with
pre-existing mutant TP53 clones are at elevated risk for developing
therapy-related myeloid neoplasms (t-MNs) [12, 17–23].
In recent years, poly(ADP-ribose) polymerase (PARP) inhibitors

(PARPi) have revolutionized the therapeutic landscape for patients
with ovarian cancer, offering improved treatment outcomes and
prolonged progression-free survival [24–29]. PARPi selectively
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target PARP enzymes and prevent the repair of DNA single-strand
breaks. In cells with homologous recombination (HR) deficiency
(HRD), for instance due to disruptive mutations in BRCA1/2, the
accumulation of unresolved DNA damage leads to the formation
of double-strand breaks during DNA replication and consecutive
cell death [30, 31]. Several studies and meta-analyses have
indicated that, similar to platinum treatment, PARPi treatment is
associated with the occurrence of t-MNs [32, 33]. While emerging
evidence suggests a role for CH in the development of t-MN under
PARPi treatment [34, 35], a comprehensive understanding of the
interplay between the dynamics of CH clones and PARPi therapy is
lacking.
In this study, we performed an in-depth DNA sequencing

analysis of CH in whole blood (WB) and plasma of patients with
relapsed HGOC participating in the EUDARIO trial to elucidate the
mutational landscape of CH, its associations with clinical out-
comes, and the clonal architecture and evolutionary dynamics of
CH clones under treatment. The prospective and randomized
design of the EUDARIO trial allowed us to systematically examine
clonal dynamics under intense DNA-damaging treatments includ-
ing carboplatin, PARPi, and heat-shock protein 90 (HSP90)
inhibition (HSP90i). Specifically, we show that PARPi and HSP90i
therapy independently pose an increased risk for the develop-
ment of DDR-CH in a dose-dependent manner in the setting of
carboplatin.

METHODS
Patients and materials
The European Trial on Enhanced DNA Repair Inhibition in Ovarian Cancer
(EUDARIO)/European Network of Gynaecological Oncological Trials groups
(ENGOT)-ov48 (NCT03783949; in the following called EUDARIO) is a
multicenter, randomized, open-label, phase ll trial performed in women
with relapsed, platinum-sensitive HGOC according to the ENGOT Model A
[36]. By definition, patients had experienced progressive disease
> 76 months after previous platinum-based treatment. A total of 120
women of age older than 18 years were randomized 1:1:1 to 3 different
treatment arms. The backbone of all treatment arms consisted of 6 cycles
of carboplatin-based chemotherapy followed by maintenance therapy
with Niraparib. In the 2 experimental arms, the study drug Ganetespib, a
HSP90 inhibitor [37], was administered during chemotherapy (arm B) or
during chemotherapy and maintenance (arm C; see Supplementary
Table S1 for a detailed treatment plan). The primary endpoint of the
study was progression-free survival (PFS), secondary outcome measures
included overall survival (OS), adverse events and best response. Peripheral
WB and plasma specimens of EUDARIO participants were collected at the
initiation of study treatment, at the initiation of maintenance PARPi
treatment, and at the end of study treatment. DNA was extracted using
commercially available kits as detailed in the Supplementary Methods
section [38]. For single-cell sequencing analysis, additional 37 patients with
OC receiving PARPi and/or platinum treatment were prospectively
recruited at the Department of Gynecology, Charité Berlin, Germany.
Written consent was obtained from all patients in accordance with the
Declaration of Helsinki and the study was approved by local ethics
committees.

Targeted sequencing
A custom targeted sequencing panel (TWIST Bioscience, South San
Francisco, CA, USA) was designed including 24 genes recurrently mutated
in CH, 21 genes recurrently mutated in myeloid malignancies, as well as 27
additional genes involved in the HR pathway (Supplementary Table S2).
Library construction for next generation sequencing was performed using
a commercially available hybrid-capture based library preparation kit
(TWIST Bioscience), in combination with custom sequencing adapters
including 9 bp unique molecular identifiers (UMIs, xGen UDI-UMI adapters
by Integrated DNA Technologies, Iowa, USA) to enable bioinformatic error-
correction. Libraries were sequenced on the NovaSeq 6000 platform
(Illumina, San Diego, CA, USA) in paired-end mode.
The sequencing data was processed using our in-house snakemake [39]

pipeline, following previously described methods [40–43]. Briefly, con-
sensus reads containing at least 3 raw reads were aligned to the GRCh38

reference genome using the BWA-MEM algorithm. Variant calling was
performed using VarDict with a minimum allele frequency of 0.1% [44] and
annotated with public databases using ANNOVAR [45]. Nonsynonymous
variants in the coding region and splice site variants with a minimum
alternate allele count of 10 consensus reads were retained. Variants with
VAF > 45% were classified as germline mutations. Furthermore, variants
with VAF > 40% that were reported in the dbSNP database as single
nucleotide polymorphisms (SNPs) or had a population-based allele
frequency (AF) > 1% in the gnomAD database, were classified as SNPs
and excluded. Highly recurrent single nucleotide variants (DNMT3A codon
R882, GNB1 K57E, JAK2 V617F, SF3B1 codons K666 and K700, SFRS2 codon
P95, and U2AF1 codons S34 and Q157) were retained.
For the analysis of paired WB and cfDNA samples, variants that were

detected in either source with a VAF ≥ 0.8%, or in both sources with sum of
the VAFs ≥ 0.8% were included in further analyses. Variants in cfDNA were
classified as of non-hematopoietic origin if the VAF in cfDNA was 5-fold
higher than in WB DNA. In the serial sample analysis in WB DNA and
cfDNA, variants that were detected in at least 2 timepoints and with
VAF ≥ 0.8% in at least one timepoint were retained. For variants not
detected in all available timepoints sequencing data was manually
reviewed for the presence of the variant beneath the variant calling
threshold (0.1%), and, if present, the VAF was manually set to the detection
threshold of 0.1%.

Germline homologous recombination deficiency
WB DNA variant calls in BRCA1 and BRCA2 were annotated with the
BRCAExchange database [46]. All variants with a VAF > 40% that were
classified as pathogenic or likely pathogenic by ClinVar [47], the evidence-
based network for the interpretation of germline mutant alleles (ENIGMA)
[48] or expert review, or that were deleterious (splice site, truncating indel,
stopgain, or startloss mutation) and had a population based AF < 1% were
categorized as pathogenic germline BRCA mutations. For the remaining
HR-related genes (as defined in Supplementary Table S2), variants with a
VAF > 40% with deleterious mutations and a population-based AF < 1%
were classified as pathogenic germline HRD mutations.

Clonal fitness analysis
Clonal fitness was determined from paired samples as previously described
[41, 49]. We modeled clonal growth over time as a sigmoid function

vðtÞ ¼ 1
2

1
1þ Ae�st ;

where v is the VAF as a function of time t (in years), A is a numeric constant
such that v(t= 0) equals the VAF at the first timepoint and s is a parameter
quantifying the clonal fitness. Clones with a fitness s <−0.25/year were
categorized as decreasing, clones with a fitness s > 0.25/year as increasing,
and all others as stable.

Single-cell sequencing analysis
Single-cell DNA sequencing of WB mononuclear cell samples was
performed on the MissionBio Tapestri platform using the Tapestri Single-
Cell DNA Sequencing V2 kit (MissionBio, South San Francisco, CA, USA) and
the MissionBio Myeloid or Myeloid Koichi Takahashi (MDACC) [50] panels,
depending on best amplicon coverage of the previously identified
patient’s somatic mutations. In some cases, a sample-multiplexing
approach was applied in which the individual SNP profile was used as
specific sample marker, enabling sample pooling and bioinformatic
decoding (see Supplementary Methods). The libraries were sequenced
on the NovaSeq 6000 platform (Illumina, San Diego, CA, USA) using the S1
flow-cell for a 150 bp paired-end run with a 15% ratio of PhiX DNA.
Sequencing reads were processed using Mission Bio’s Tapestri pipeline
v2.0.2 with default settings and a customized analysis pipeline as detailed
in the Supplementary Methods section. Downstream analysis was
conducted on samples with a minimum of 400 genotyped cells. Clones
in each sample were reported if the mutated allele was present in at least
5 cells.

Statistical analysis
The statistical analysis was performed in R version 4.2.3. PFS and OS were
assessed with crude Kaplan-Meier analysis and with multivariate Cox
regression models including treatment arm, age, prior PARPi treatment,
number of prior treatment lines, and BRCA status as covariates. Due to the
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exploratory nature of this study no prior sample size calculation was
performed. Pairwise comparisons of variables were performed using
Wilcoxon rank-sum tests or Fisher’s exact tests. The 2-sided level of
significance was set at a p-value of < 0.05 without adjustment for multiple
testing, if not stated otherwise.

RESULTS
Detection of clonal hematopoiesis in peripheral whole
blood DNA
A total of 103 patients enrolled in the study had WB samples
available at the initiation of treatment. WB targeted DNA
sequencing identified 130 somatic mutations in 59 patients
(57%) with a VAF of ≥ 1% (Supplementary Table S3a). Among
these mutations, 24 affected HR-related genes, 8 of them in genes
not commonly mutated in CH (Fig. 1a). In contrast to the
mutational profile observed in healthy individuals where DNMT3A,
TET2, and ASXL1 (DTA) are most frequently mutated [51, 52], our
analysis revealed a high prevalence of mutations in DDR genes, i.e.
in PPM1D (51 mutations in 27 patients), CHEK2 (11 mutations in 9
patients), TP53 (7 mutations in 7 patients), and ATM (4 mutations in
4 patients). A total of 30 patients (29%) harbored multiple
mutations (Fig. 1b), with 6 patients exhibiting 5 or more
mutations. Notably, 9 patients had multiple mutations in PPM1D.
Age (Fig. 1c), number of prior therapy lines (1 vs > 1 therapy line),
and prior PARPi treatment were significantly associated with the
presence of CH (Table 1). Specifically, the number of previous
therapy lines and prior exposure to PARPi treatment were strongly
associated with both clone size and number of mutations
(Fig. 1d, e). In a multivariate logistic regression with age, number
of previous therapy lines, and duration of prior PARPi treatment as
independent variables, age (odds ratio [OR] 1.95, 95%-CI 1.21–3.12
per decade, p= 0.006) was the only significant predictor for the
presence of DTA mutations (Supplementary Table S4a). In contrast,
age (OR 1.98, 95%-CI 1.19–3.27 per age decade, p= 0.008),
number of previous therapy lines (OR 3.18, 95%-CI 1.12–9.10,
p= 0.030) and duration of prior PARPi therapy (OR 1.09, 95%-CI
1.01–1.17 per month, p= 0.032) were significant predictors for the
presence of DDR mutations (Supplementary Table S4b). These
data strongly suggest that mutations affect different genetic
pathways in therapy-related CH versus ageing-related CH.
Among patients with multiple mutations, analysis of the 5 most

frequently mutated genes (see Supplementary Methods) revealed
significant co-occurrence of PPM1D and TP53 mutations (OR 8.2,
FDR-adjusted p= 0.046; Fisher’s exact test; Fig. 1f).

Associations of clonal hematopoiesis with clinical
characteristics and outcome measures
We next assessed the association of CH with clinical character-
istics, laboratory measures, occurrence of therapy-related compli-
cations, and survival. A total of 53 patients (51%) had at least one
somatic mutation in a typical CH gene (Supplementary Table S2),
with a VAF ≥ 1%. The demographic and clinical characteristics
of the patients at baseline are shown in Table 1. Patients with
CH were significantly older than those without CH (median 68 vs
55 years, p < 0.001) and had lower levels of hemoglobin (12.3 vs
13.0 g/dl, p= 0.004, Table 1) at initiation of treatment. In terms of
therapy-related complications, patients with CH had higher rates
of infectious complications (49% vs 26%, p= 0.025; Supplemen-
tary Table S5a). No significant differences between occurrences of
cytopenias or hematotoxicity-related treatment interruptions were
noted during carboplatin or maintenance treatment between
patients with and without CH (Supplementary Tables S5b, c and
S6). No t-MN development was reported during the median
follow-up period of 22 months in the EUDARIO trial. The presence
of CH was not associated with best response to treatment
(Supplementary Table S7). CH-positive patients had shorter PFS
(median PFS 7.9 months vs 10.6 months, p= 0.021 in log-rank

test), and a trend for shorter OS (median OS 21.1 months vs
27.7 months, p= 0.16) in univariate survival analysis (Fig. 2). In a
multivariate Cox regression model with age, treatment arm,
number of previous therapy lines, and prior PARPi treatment as
covariates, prior PARPi therapy was the only variable associated
with shorter PFS (hazard ratio 2.55, 95%-CI 1.35–4.80, p= 0.004)
and shorter OS (hazard ratio 2.33, 95%-CI 1.06–5.10, p= 0.03;
Supplementary Fig. S1a, b).

Detection of clonal hematopoiesis in cell-free DNA
Next, we explored the landscape of somatic mutations in cfDNA
extracted from plasma samples. A corresponding plasma sample
at the initiation of study treatment was available for 102 patients.
A total of 340 somatic mutations were identified in cfDNA and all
but 5 mutations with VAF ≥ 1% detected in WB samples were also
detectable in cfDNA (Fig. 3a), with a strong correlation of VAFs
(Pearson correlation coefficient R= 0.83, p < 10−15, Supplemen-
tary Fig. S2), implying that the clone sizes (as measured by the
VAF) of CH clones can also be quantified in cfDNA with reasonable
accuracy. Depending on the VAF ratio between WB and cfDNA,
157 of the 340 mutations were classified as non-hematopoietic in
origin (Fig. 3a, b), indicating that these mutations were most likely
tumor-derived. The mutation composition differed significantly
between the 2 compartments: mutations that were classified as
non-hematopoietic had a high fraction of TP53 mutations (the
most frequently mutated gene in HGOC) and mutations in HR-
related genes, while the most frequently affected CH genes
DNMT3A (2/157), TET2 (1/157), ASXL1 (1/157) and PPM1D (1/157)
were rarely mutated (Fig. 3a, b). Notably, a substantial proportion
of cfDNA mutations detected in genes commonly mutated in
HGOC, specifically TP53 (14/64= 18%) and HR-related genes (as
defined in Supplementary Table S2; 28/88= 32%), were of
hematopoietic origin.
To corroborate the tumor-origin of TP53 mutations classified as

non-hematopoietic in origin, we categorized their VAF dynamics
in cfDNA during carboplatin treatment as increasing (VAF increase
by factor 10), decreasing (VAF decrease by factor 10), or stable (all
others), which correlated with radiographic response to carbopla-
tin, PFS, and OS (Fig. 3c, d). In conclusion, these observations
underline the importance of parallel sequencing of WB and cfDNA
in liquid biopsies to correctly attribute the origin of cfDNA
mutations.

Clonal dynamics under DNA-damaging therapy
To investigate the dynamics of hematopoietic clone size under
carboplatin, PARP inhibition and HSP90 inhibition, we first
analyzed paired WB samples from each patient obtained at the
beginning and end of the study treatment (n= 61 patients). The
relative VAF changes in PPM1D, DNMT3A, TP53, CHEK2 and TET2
mutations, categorized as increasing, stable, or decreasing, are
shown in Fig. 4a. We found expansion of TP53-mutated clones in
25% (15/61) and PPM1D-mutated clones in 43% (26/61) of
patients during the study period. For each mutation, we
estimated the clonal fitness s as previously described [41, 49]
by modeling clonal growth as a sigmoid function over time
(Fig. 4b). Gene-wise comparisons revealed that PPM1D- and TP53-
mutated clones had significantly higher median fitness than
TET2- or DNMT3A-mutated clones (Fig. 4c). Of note, 48 clones that
initially had a VAF < 1% emerged during treatment, including 28
PPM1D and 5 TP53 mutations. 11 mutations, on the other hand,
fell below the 1% VAF threshold during treatment (Fig. 4d).
Interestingly, the median fitness in TP53- and PPM1D-mutated
hematopoietic clones was significantly lower in patients with
germline HRD (Supplementary Table S3b), than in those without
germline HRD (0.89/year vs 1.59/year, p= 0.04, Fig. 4e). While
time on treatment was identical between patients with and
without germline HRD (data not shown), episodes of thrombo-
cytopenia occurred more frequently in patients with germline
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Fig. 1 Detection of clonal hematopoiesis in whole blood DNA. Somatic mutation analysis on whole blood DNA from 103 patients enrolled in
the EUDARIO study. Targeted sequencing of 72 genes listed in Supplementary Table S2. a Gene-specific prevalence of somatic mutations
colored by gene class. b Number of patients with single and multiple mutations. c Age-related prevalence of CH mutations. d Stacked bar plot
showing the clone size of the largest clone in relation to the number of prior treatment lines (left) and prior PARPi treatment (right). e Stacked
bar plot showing the number of mutations per patient in relation to the number of prior treatment lines (left) and prior PARPi treatment
(right). f ) Analysis of mutation co-occurrence in patients with multiple mutations. The size of each square denotes the number of co-
occurrences. Color depicts the fraction of cases in which gene 1 (y-axis) has a higher VAF than gene 2 (x-axis).
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HRD (Supplementary Tables S8a, b), which however did not lead
to significantly more treatment interruptions or discontinuations
(Supplementary Tables S9a, b).
To delineate the influence of HSP90 inhibition, we leveraged

the randomized design of the study into 3 arms with increasing
HSP90i exposure (none in arm A, arm B < arm C). While the
median clonal fitness of DNTM3A- and TET2-mutated clones did
not differ among the 3 arms, we observed a significant increase in
clonal fitness in PPM1D- and TP53-mutated clones with increasing
HSP90i exposure (Fig. 4f). However, Ganetespib exposure corre-
lated with an increase in clonal fitness of TP53/PPM1D-mutated
clones only in the absence of germline HRD (Fig. 4g).
Next, we aimed to differentiate clonal fitness between

carboplatin versus PARPi maintenance treatment. To overcome

the lack of WB samples at the initiation of Niraparib
maintenance, we used cfDNA to estimate CH clone size at
3 timepoints: initiation of study treatment, initiation of
maintenance therapy and end of study treatment (Fig. 5a) in
49 patients (median duration of chemotherapy 5.8 months,
range 4.9–8.2 months; median duration of maintenance
5.5 months, range 1.2–31.4 months). In many cases, clonal
fitness during carboplatin treatment diverged from clonal fitness
during PARPi maintenance treatment (Fig. 5b). Interestingly,
median fitness of PPM1D-mutant clones was significantly lower
during PARPi treatment than during carboplatin treatment
(median 0.36/year vs 1.93/year, p= 0.003 in paired Wilcoxon
rank sum test), which was not the case for TP53-mutated clones
(Fig. 5c).

Fig. 2 Survival analysis of the 103 patients enrolled in the EUDARIO study. a Kaplan-Meier analysis of progression-free survival stratified by
CH status. b Kaplan-Meier analysis of overall survival stratified by CH status.

Table 1. Demographic and clinical baseline characteristics of 103 participants of the EUDARIO cohort.

Characteristic Level CH negative n= 50 CH positive n= 53 p-value

Age in years – median (IQR) 55 (5066) 68 (6073) < 0.001

Treatment arm – No. (%) A 16 (32.0) 18 (34.0) 1.00

B 17 (34.0) 18 (34.0)

C 17 (34.0) 17 (32.1)

ECOG performance status – No. (%) 0 44 (88.0) 39 (73.6) 0.08

1 6 (12.0) 14 (26.4)

BRCA status – No. (%) Mutated 21 (42.0) 14 (26.4) 0.14

Wildtype 27 (54.0) 33 (62.3)

Unknown 2 (4.0) 6 (11.3)

History of cancer – No. (%) No 48 (96.0) 45 (84.9) 0.09

Yes 2 (4.0) 8 (15.1)

Number of previous lines – No. (%) 1 38 (76.0) 24 (45.3) 0.002

> 1 12 (24.0) 29 (54.7)

Prior PARPi treatment – No. (%) No 46 (92.0) 29 (54.7) < 0.001

Yes 4 (8.0) 24 (45.3)

Platelet count – median (IQR) 246 (214298) 258 (180–368) 0.768

White blood cell count – median (IQR) 7.00 (5.62–8.34) 6.33 (5.07–8.50) 0.342

Hemoglobin – median (IQR) 12.95 (12.28–13.60) 12.30 (11.40–13.00) 0.004

CH was defined as the presence of a somatic mutation in a typical CH gene (as defined in Supplementary Table S2) with a VAF ≥ 1%. ECOG Eastern cooperative
oncology group, BRCA status includes germline or tumor pathogenic mutations in BRCA1 or BRCA2; IQR Interquartile range, p-value form Fisher’s exact test for
categorical variables or Wilcoxon rank sum test for numeric variables.
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Clonal architecture of therapy-related clonal hematopoiesis
with multiple co-occurring DDR mutations
Finally, the high abundance of co-occurring DDR mutations in this
patient collective led us to investigate the clonal architecture of
therapy-related clonal hematopoiesis at single-cell resolution. WB
specimens from an additional set of 37 HGOC patients undergoing
platinum- and/or PARPi treatment (see Supplementary Table S10
for demographic and clinical characteristics) were screened for the
presence of CH using the same sequencing pipeline. 56 somatic
mutations with VAF ≥ 1% were identified in 30 patients, with
DNMT3A, PPM1D, and TP53 being the most frequently mutated
genes (Supplementary Figure S3). In line with our findings,
DDR gene mutations were closely associated with the number of
prior therapy lines (81% DDR-mutated with > 1 therapy line vs
33% in DDR-wildtype, p= 0.007) and the duration of prior
PARPi treatment (median 18.5 months in DDR-mutated vs
9 months in DDR-wildtype, p= 0.033). Among 30 CH-positive

patients, 14 had multiple mutations and 5 had co-occurring
mutations in DDR genes.
Eleven samples from 7 patients (Supplementary Table S11) were

selected for single-cell DNA sequencing based on their co-
mutational pattern, with a focus on DDR mutations. In all cases
with multiple DDR mutations (14 DDR mutation pairs in 5 patients),
each mutation resided in a separate clone (Fig. 6a–g). Two of 37
patients (5%) developed therapy-related acute myeloid leukemia
(t-AML) within 6 months of follow-up (Fig. 6f, g). Case SC5 carried a
TP53-mutant clone with loss of heterozygosity, which had
substantially expanded at the time of AML diagnosis and
expanded further at the time of relapse after treatment with
venetoclax and 5-azacitidine, whereas the other clones had
disappeared (Fig. 6f). Case SC3 had a large PPM1D-mutated clone
at the time of first sampling, with 2 independent IDH1- and IDH2-
mutant subclones. At the time of AML diagnosis, the PPM1D/IDH1-
mutant subclone had expanded (Fig. 6g). We conclude that in

Fig. 3 Detection of clonal hematopoiesis in cell-free DNA.Mutational landscape of 340 somatic mutations detected in cfDNA of 102 patients
from the EUDARIO study. a VAFs of somatic mutations detected in cfDNA and/or WB DNA at initiation of study treatment. VAFs of mutations
detected in only one DNA source were set to the detection limit of 0.1% in the other for the purpose of visualization on a logarithmic scale.
Color depicts different mutated gene groups. TP53 mutations are shown as a separate group due to their abundance. b Prevalence of somatic
mutations detected in cfDNA by mutated genes. Color depicts hematopoietic vs non-hematopoietic origin depending on the VAF ratio
between WB and cfDNA. c Radiographic response to carboplatin treatment in 36 HGOC patients stratified by the VAF dynamics of TP53
mutations of non-hematopoietic origin in cfDNA during carboplatin treatment. d Progression-free survival stratified by the TP53 VAF
dynamics. e Overall survival stratified by TP53 VAF dynamics.
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Fig. 4 Clonal dynamics under DNA-damaging therapy. Clonal fitness measured in paired WB samples taken at the beginning and end of
study treatment for each patient (n= 61 patients). a Relative VAF changes over time between initiation and end of treatment. Color denotes
the category of clonal fitness, defined as increasing if clonal fitness s > 0.25/year, decreasing if s <−0.25/year and stable otherwise.
b Schematic model for the evolution of clone size as a sigmoid function over time over the whole treatment course (no differentiation
between chemotherapy and maintenance phase). c Violin plot of clonal fitness per gene for the 5 most frequently mutated genes. DTA genes
are colored in blue, DDR genes in red. d Number of increasing/decreasing clones passing the 1% VAF threshold colored by mutated gene/
gene group. e Median clonal fitness of TP53- and PPM1D- mutated clones in patients with and without germline HRD mutations. f Median
clonal fitness of DNMT3A/TET2- and TP53/PPM1D-mutated clones in different treatment arms with increasing exposure to HSP90 inhibition (arm
A – no HSP90i, arm B – HSP90i during carboplatin treatment, arm C – HSP90i during carboplatin and PARPi treatment. g Median clonal fitness
of DNMT3A/TET2- and TP53/PPM1D-mutated clones in patients with and without germline HRD mutations. Asterisks denote level of statistical
significance: * < 0.05, ** < 0.01, *** < 0.001, **** < 0.0001.
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patients with multiple DDR-mutant clones there is mutual clonal
exclusivity for individual DDR mutations in hematopoietic stem
cells. Moreover, DDR-mutant clones were the origin of t-AML in
both investigated cases.

DISCUSSION
In the present study, we performed a detailed analysis of the
prevalence, mutational spectrum, and clonal architecture of CH in
patients with relapsed HGOC and quantified clonal fitness under
serial treatment with carboplatin and PARPi in combination with
HSP90 inhibition. Our data revealed a high overall prevalence of
CH and specifically of DDR-CH at study entry in this patient cohort
(57% and 35% of patients, respectively), and provide compelling
evidence that in addition to the known association with prior
platinum treatment [12], PARPi and HSP90i therapy independently
pose an increased risk for the expansion of high-fitness DDR-CH in
a dose-dependent manner.
While large studies of the longitudinal history of CH over the

patient’s life span reported a slow growth rate of TP53 and PPM1D
mutations in the absence of external stressors [49, 53, 54], our
clonal fitness analysis points towards a strong selection of DDR-
mutated clones over the course of study treatment. We observed
an increase in clonal fitness of DDR-CH in response to increasing
cytotoxic stress across the 3 treatment arms with increasing
exposure to HSP90 inhibition. Interestingly, this selective advan-
tage was partially abrogated by the presence of germline HRD
mutations, however, the present study cannot fully delineate
factors contributing to this association. While the median clonal
fitness of TP53-mutated clones during PARPi maintenance was
identical to that during carboplatin treatment, the clonal fitness of
PPM1D-mutated clones was significantly lower during PARPi
maintenance. Although no t-MN development was reported in
the EUDARIO trial, likely due to the aggressive nature of the
underlying disease and a short median overall survival of
24 months, we demonstrated the expansion of TP53-mutated

clones in 25% (15/61) and PPM1D-mutated clones in 43% (26/61)
of patients during treatment. While the risk for progression to
t-MN is best documented for TP53 mutations [21, 34, 55, 56] both
TP53- and PPM1D-driven CH have recently been associated with
cardiovascular complications [41, 57, 58]. A recent case series of
patients with OC under PARPi treatment who developed
persistent cytopenia reported that in some cases cytopenia and
clonal abnormalities reversed upon discontinuation of PARPi
treatment, providing a rationale for close monitoring of certain
high-risk patients [59].
Single-cell level analysis to elucidate the clonal architecture in

patients harboring multiple DDR mutations showed that each
mutation emerged in a separate clone. PPM1D mutations are
truncating variants that predominantly occur in exon 6 and
are considered to be gain-of-function mutations that impair wild-
type TP53 function [13, 14], phenocopying the dominant-negative
effect of missense TP53 mutations [16]. Accordingly, this observa-
tion is likely a consequence of the strong selective pressure from
cytotoxic treatment, leading to positive selection of multiple
clones with similar traits that converge on resistance to DNA
damage-induced apoptosis. As evidenced by single-cell genotyp-
ing, large DDR-clones were indeed the origin of subsequent t-AML
that developed within 6 months after the initial sampling in both
cases investigated.
Finally, our data enabled a comparison of the landscapes of

somatic mutations in cfDNA and WB DNA. Liquid biopsies are
emerging as non-invasive diagnostic tools that have potential
applications in non-invasive tumor profiling as well as in the
prediction and evaluation of therapy response [60–63]. For
patients with metastatic castration-resistant prostate cancer,
cfDNA testing to detect HRD mutations as an eligibility criterion
for olaparib treatment has already been integrated into the
clinical routine [64]. Parallel sequencing of cfDNA and WB DNA in
our patient cohort revealed significant overlap in the mutational
profiles derived from hematopoietic and non-hematopoietic
cells in cfDNA, specifically affecting TP53 and HR-related
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Fig. 5 Comparison of clonal fitness under carboplatin and PARPi therapy. a Schematic model of evolution of clone size (estimated from
cfDNA VAF) as a sigmoid function over time for carboplatin and PARPi maintenance treatment separately. b Comparison of individual clonal
fitness estimates between carboplatin (C) and PARPi maintenance (P) for the 5 most frequently mutated genes. c Scatterplot showing median
fitness estimates for the 5 most frequently mutated genes during chemotherapy (x-axis) and PARPi maintenance (y-axis). Error bars denote the
interquartile range. Point size reflects the number of clones with mutations in the respective gene. Asterisks denote level of statistical
significance: * < 0.05, ** < 0.01, *** < 0.001, **** < 0.0001.
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mutations. These findings underscore the potential confounding
impact of CH mutations on the interpretation of tumor-derived
mutations in liquid biopsies, when solely relying on the
detection of the latter in cfDNA without concurrent sequencing
of tumor material or WB, as was previously shown in prostate
cancer patients [65].

In conclusion, this study provides unique insights into the
architecture and the preferential selection of DDR-mutated
hematopoietic clones under intense DNA-damaging treatment.
Specifically, PARPi and HSP90i therapy independently pose an
increased risk for the development of DDR-CH in a dose-
dependent manner.
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