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Visual observation of photonic Floquet–Bloch
oscillations
Zhen Zhang 1, Yuan Li 2, Xiankai Sun 2✉ and Xuewen Shu1✉

Abstract
Bloch oscillations (BOs), an important transport phenomenon, have been studied extensively in static systems but
remain mysterious in Floquet systems. Here, by harnessing notions from photonic analogy, we propose a
generalization of the existing BOs in photonic Floquet lattices, namely the “photonic Floquet–Bloch oscillations”,
which refer to rescaled photonic Bloch oscillations with a period of extended least common multiple of the
modulation period and the Bloch oscillation period. Next, we report the first visual observation of such photonic
Floquet–Bloch oscillations (FBOs) by employing waveguide fluorescence microscopy. Most significantly, the FBOs
surpass the existing BOs in Floquet systems and exhibit exotic properties on their own, including fractal spectrum and
fractional Floquet tunneling. This new transport mechanism offers an intriguing method of wave manipulation that
may contribute to rapidly developing fields in photonics, condensed matter physics, and quantum physics.

Introduction
As a fundamental phenomenon of coherent quantum

motion, Bloch oscillations (BOs), the oscillatory motion of
a quantum particle with a BO period ΛBO, were first
predicted by Bloch and Zener in the context of crystal
under a constant electric field1,2. BOs were initially
observed for matter waves within semiconductor super-
lattices3 and ultracold atoms4,5, revealing their nature as a
wave phenomenon. Subsequently, BOs have been exten-
ded to various wave systems, including acoustic cavities6,7,
waveguide arrays8–12, and synthetic frequency lat-
tices13–15. In the past decade, abundant interesting phe-
nomena concerning BOs were focused primarily on static
systems16–20. Recently, the exploration of BOs in peri-
odically driven quantum systems, equivalent as “Floquet
systems”, has drawn tremendous attention because their
exotic characteristics are profoundly distinct from those

in static systems21–37. More specifically, two types of
Bloch-like oscillations have been investigated as quasi-
Bloch oscillations (QBOs)21–23 and super-Bloch oscilla-
tions (SBOs)24–31. QBOs occur with a period ΛQBO=ΛBO

if the BO period ΛBO is an integer multiple of the mod-
ulation period ΛFL, i.e., ΛBO=NΛFL (N is a positive
integer greater than 1). SBOs refer to rescaled BOs with
super large oscillation amplitude and period, where the
BO period ΛBO (or its integer multiple) is slightly detuned
from the modulation period ΛFL, i.e., ΛFL ~NΛBO. Under
similar schemes, these two phenomena seem to be inti-
mately related. However, the underlying connection of
these existing BOs in Floquet systems remains elusive,
and a general theory concerning BOs in Floquet systems
needs to be developed.
Furthermore, as a key to unraveling the mechanism of

the underlying transport, the visual observation con-
cerning BOs in Floquet systems is still experimentally
challenging owing to the fast temporal evolution of the
wavefunction in a quantum mechanical system. Recently,
the concept of “photonic analogy” has emerged to address
this challenge by simulating the temporal evolution of the
wavefunction through the spatial light evolution in a
waveguide array38–42. With the photonic analogy, the
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propagation coordinate z acts as “time” and the periodic
drive implemented in waveguide trajectory gives rise to
Floquet engineering43–47. Therefore, the photonic analogy
has offered experimentally realistic configurations to
verify various Floquet–Bloch theories.
In this article, we developed a general theory concerning

BOs in photonic Floquet lattices and report the first visual
observation of the photonic Bloch-like oscillations, which
we called “photonic Floquet–Bloch oscillations (FBOs)”.
The photonic FBOs refer to rescaled BOs with a motion
period ΛFBO of the extended least common multiple
(LCM) of the Floquet modulation period ΛFL and the BO
period ΛBO. The photonic FBOs occur for arbitrary Flo-
quet engineering when the rational ratio of ΛFL/ΛBO is
non-integer, i.e., ΛFL ≠NΛBO. Under this framework, the
conventional QBOs (ΛBO=NΛFL) and SBOs (ΛFL ~
NΛBO) can now be unified and treated as two special cases
of FBOs (ΛFL ≠NΛBO) with specific ratios ΛFL/ΛBO.
Moreover, we directly visualized the breathing and oscil-
latory motions of photonic FBOs by employing waveguide
fluorescence microscopy. In contrast to previous mea-
surements that only recorded several profiles during one
oscillation period23–25, the direct visualization reported
here records the intricate details of continuum evolution.
Significantly, the visual observation contributes to

revealing the key features of photonic FBOs. With this
insight, we investigated two exotic properties of photonic

FBOs, namely the fractal spectrum and fractional Floquet
tunneling. Specifically, we found that the FBO period
ΛFBO is the Thomae’s function (a fractal spectrum) of the
ratio ΛBO/ΛFL, and several peaks of such a fractal spec-
trum were experimentally confirmed. In addition, we
experimentally demonstrated the Floquet-induced
rescaling of the FBO amplitude with a varying ampli-
tude A of harmonic modulation, which refers to fractional
Floquet tunneling. Beyond the conventional tunneling
that follows an integral-order Bessel function Bv(A)

35–40,
such fractional Floquet tunneling of FBO amplitude fol-
lows a linear combination of fractional-order Anger Jv(A)
and Weber functions Ev(A). Hence, photonic FBOs con-
stitute a unique transport phenomenon on their own, in
addition to being a generalization of the existing BOs in
Floquet systems.

Results
Theory of BOs in a photonic Floquet lattice
Here, we employ a femtosecond-laser-written wave-

guide array48–51 in a fused silica substrate (Corning 7980)
as an experimental platform for visualizing BOs in a
photonic Floquet lattice. As depicted in Fig. 1a, we first
considered a curved photonic lattice that consists of
identical waveguides with waveguide spacing d and array
length L. In the transverse direction x, the center of each
waveguide core varies along the longitudinal direction z
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Fig. 1 Photonic implementation and generalized acceleration theory. a Schematic of a one-dimensional lattice composed of evanescently
coupled waveguides with combined bending trajectory. b Schematic of a reduced Floquet lattice in the transformed coordinate frame. c Cross-
sectional optical microscope image of the fabricated sample. Scale bar, 30 μm. d Top-view optical microscope image of the fabricated sample with a
harmonic modulation. Scale bar, 30 μm. e Representation of F(z)-induced wave vector shift according to the generalized acceleration theory. f z-
dependent shift of the transverse Bloch momentum for several specific cases corresponding to conventional BOs (A= 0, blue solid line), FBOs
(ΛBO= 3ΛFL, orange dashed line), FBOs (3ΛBO= 4ΛFL, red dashed line), and spreading (ΛBO= ΛFL, gray solid line)
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by following a combined trajectory according to x0(z)=
xBO(z) + xFL(z), where xBO(z)= [R2 − (z – L/2)2]1/2 is the
circular bending term with a bend radius R, and
xFL(z)=M(z) is the periodic bending term with a mod-
ulation period ΛFL and modulation function M(z) that
satisfies M(z)=M(z+ΛFL). In the case of paraxial pro-
pagation along the longitudinal direction z, the envelope
ψ(x, y, z) of the optical field guided in this photonic lattice
at operating wavelength λ is governed by the Schrödinger-
type equation:

i
∂ψ

∂z
¼ � 1

2k0
∇2ψ � k0Δnðx; y; zÞ

n0
ψ ð1Þ

where ∇2 ¼ ∂2x þ ∂2y is the Laplacian operator in the
transverse plane, n0 ~ 1.46 is the refractive index of the
substrate, k0= 2πn0/λ is the wave number, and Δn(x, y,
z)= n(x, y, z) – n0 is the femtosecond-laser-induced
refractive-index increase (Δn > 0) that defines the entire
photonic lattice. By considering a reference coordinate
frame where the waveguides are straight in the ~z direction,
namely: ~x ¼ xþ x0ðzÞ, ~y ¼ y, and ~z ¼ z, the paraxial
equation in the transformed coordinates can be expressed
as

i
∂~ψ

∂~z
¼ � 1

2k0
~∇2~ψ � k0

n0
½Δnð~x;~y;~zÞ þ Fð~zÞ~x�~ψ ð2Þ

with ~ψ ¼ ψð~x;~y;~zÞ exp � ik0
2π ∂~zx0ð~zÞ~x� ik0

4π

R ~z
0½∂~zx0ðτÞ�2dτ

n o

and Fð~zÞ ¼ �n0∂
2
~zx0ð~zÞ. The additional term Fð~zÞ is

determined by the combined trajectory and can be
separated into two terms, i.e., Fð~zÞ ¼ FBO þ FFL; with
FBO ~ n0/R (with R significantly larger than L) and FFL ¼
�n0∂

2
~zMð~zÞ.

By using the notions from the photonic analogy, Eq. (2)
indicates that the spatial evolution of low-power light in
the proposed lattice is analogous to the temporal evolu-
tion of noninteracting electrons in a periodic potential
subject to an electric field. As sketched in Fig. 1b, the
spatial coordinate ~z acts as “time” t, the periodic bending
trajectory of each waveguide xFL(z) records the “time”-
dependent information, the term FFLð~zÞ~x serves as the
Floquet engineering, and the effective potential
½Δnð~x;~y;~zÞ þ FBO~x� refers to a sign-reversed linearly tilted
potential �V ð~xÞ that gives rise to photonic BOs. There-
fore, our proposed scheme provides an experimental
realization of BOs in a photonic Floquet lattice.
Figure 1c displays the cross-sectional microscope image

of a fabricated sample. Each waveguide in our sample
supports a well-confined fundamental mode, allowing the
application of nearest-neighbour tight-binding approx-
imation, so the propagation of guided light can be

described by the following set of coupled equations:

i
∂am
∂z

¼ �c0ðam�1 þ amþ1Þ � k0mFðzÞd
n0

am ð3Þ

where am is the amplitude of the guided mode jmi in the
mth waveguide and c0 is the coupling constant between the
nearest-neighbour waveguides. In the absence of force F(z),
i.e., for straight waveguide arrays, introducing a plane wave
ansatz am ∝ exp[i(βzz − mkxd)] into Eq. (3) yields the single-
band dispersion βz(kx)= 2c0cos(kxd) (blue line in Fig. 1e),
where βz(kx) denotes the longitudinal propagation constant
and kx denotes the transverse Bloch momentum. According
to the generalized acceleration theory27, the presence of force
F(z) leads to a shift of the transverse Bloch momentum
kxðzÞ ¼ kxð0Þ þ k0

n0

R z
0FðτÞdτ and the Houston function

jψm;kxðzÞi ¼ exp � ik0
n0

R z
0βz½kxðτÞ�dτ

n o
jψm;kxðzÞi is the

reconstructed solution (Supplementary Note 1). When
PΛBO=QΛFL (Q, P are mutually prime integers), the
extended LCM of ΛBO and ΛFL is defined as LCM(ΛBO,
ΛFL)= PΛBO=QΛFL, and βz[kx(z)] is a z-periodic function
with a period ΛFBO= LCM(ΛFL, ΛBO) (Supplementary Note
1). Consequently, the integral of βz[kx(z)] can be expressed as
a sum of a linear function and a periodic function, i.e.,R z
0βz½kxðτÞ�dτ ¼ εðkxÞz þ PðzÞ with P(z)= P(z+ΛFBO). As

a result, the entire lattice be mapped onto another Floquet
lattice, since the Houston function can be reduced to Floquet
states as

jψm;kxðzÞi ¼ exp � iz
k0

εðkxÞ
� �

jum;kxðzÞi ð4Þ

where jum;kxðzÞi ¼ exp � i
k0

R z
0βz½kxðτÞ� � εðkxÞdτ

n o
jψm;kxðzÞi ¼

jum;kxðzþΛFBOÞi is known as the Floquet function and

εðkxÞ � 1
ΛFBO

R ΛFBO

0 βz½kxðτÞ�dτ is the corresponding Floquet
dispersion that provides the effective transport properties
over a period ΛFBO. Under the single-band approximation,
the Floquet dispersion is expressed as

εðkxÞ ¼
XΛFBO=ΛFL

n¼1

cos
2πΛFL

ΛBO
n

� �

DðkxÞ ð5Þ

where DðkxÞ ¼ 2c0
ΛFBO

R ΛFL

0 cos kxð0Þd � 2πτ
ΛBO

� k0d∂zMðzÞj�τ
0

h i
dτ

in general contributes nonflat dispersion. Equation (5)
implies that there are two possibilities for BOs in a
photonic Floquet lattice. When ΛFL ≠NΛBO, a complete
cancellation of all orders of diffraction
PΛFBO=ΛFL

n¼1 cos 2πΛFL
ΛBO

n
� �

¼ 0 results in flat Floquet disper-

sion ε(kx) ≡ 0, indicating that the state experiences a
periodic motion and returns to the initial state after
propagating a period ΛFBO. We call this phenomenon
“Floquet–Bloch oscillations”, because it is a combined
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phenomenon of Floquet engineering and Bloch oscilla-

tions. When ΛFL=NΛBO, the Floquet dispersion εðkxÞ �
2c0
ΛFL

R ΛFL

0 cos kxð0Þd � 2πτ
ΛBO

� k0d∂zMðzÞj�τ
0

h i
dτ is in general

no longer flat and the state experiences spreading. We
emphasize that the above conclusions are valid for an
arbitrary modulation function M(z). In this connection,
the existing BOs under specific modulation, namely QBOs
(ΛBO=NΛFL) and SBOs (ΛFL ~NΛBO), can be unified and
treated as two special cases of FBOs (ΛFL ≠NΛBO) with
specific ratios ΛFL/ΛBO.

Visual observation of BOs in photonic Floquet lattices
To illustrate the similarity and difference between FBOs

and the existing BOs in Floquet systems, we employed a
harmonic modulation M(z)=Acos(2πz/ΛFL) (see Fig. 1d),
where A denotes modulation amplitude. Without loss of
generality, we considered four specific scenarios that corre-
spond to conventional BOs (A= 0), FBOs (ΛBO/ΛFL= 3),
FBOs (ΛBO/ΛFL= 4/3), and spreading (ΛBO/ΛFL= 1). The
corresponding shifts of the transverse Bloch momentum

according to the generalized acceleration theory: kxðzÞ ¼
kxð0Þ þ 2πz

ΛBOd
þ 2πAk0

ΛFL
sin 2πz

ΛFL

� �h i
are displayed in Fig. 1f,

where the harmonic modulation contributes a sub-oscillation
to the states with Bloch-momentum-oscillation amplitude
(2πAk0)/ΛFL. In the latter three scenarios, we considered the
modulation amplitude A=A0ΛFL/ΛBO so that the sub-
oscillation amplitude was normalized to (2πA0k0)/ΛBO.
To experimentally verify our prediction, we fabricated

a set of 90-mm-long samples composed of 31 identical
waveguides with a waveguide spacing d= 16 μm. With
such a waveguide spacing d, the coupling coefficient
between straight waveguides c0 ~ 1.45 cm−1 was
experimentally characterized. These waveguides follow
the combined trajectories having a bend radius
R= 110.8 cm (corresponding to ΛBO ~ 30 mm) and the
modulation period ΛFL= 10, 22.5, and 30 mm (corre-
sponding to the ratios ΛBO/ΛFL= 3, 4/3, and 1, respec-
tively). With the considered modulation period,
A0= 18 μm was chosen to reduce the associated radia-
tion losses of waveguides.
Similar to the existing BOs, FBOs exhibit a breathing and

an oscillatory motion under a single-site excitation and a
broad-beam excitation, respectively. In the following experi-
ments, we implemented visible-light excitation (λ= 633 nm)
and directly visualized both the breathing modes and oscil-
lating modes of FBOs by using waveguide fluorescence
microscopy39,52. As the key features of BOs in Floquet lattice,
the sub-oscillations are clearly presented here, which have
not been experimentally observed before. A coordinate
transformation that maps circular arcs into straight lines was
applied to digitally process the fluorescence image so that the

light evolution could be visualized more intuitively. Further
details of the sample fabrication and fluorescence imaging
characterization are provided in Supplementary Note 2,3.
First, we focus on the breathing modes under a single-

site excitation. The narrow excitation in the real space
corresponds to a broad excitation of Bloch modes in the
reciprocal space, resulting in strongly diffracting wave
packets. To quantify the diffraction of wave packets for
the single-site excitation, we define the variance of exci-
tation at the distance z in such a discrete system as

σ2ðzÞ ¼
P

mm
2jamj2

P
mjamj2

ð6Þ

The light is initially excited in the central waveguide
resulting in a vanishing variance σ2(0)= 0, and a rise of
the variance indicates that the light experiences broad-
ening. Under the single-site excitation, the experimental
results, respective simulations, and extracted variances
σ2(z) for the scenarios considered in Fig. 1f are
summarized in Fig. 2, where the first, second, third, and
fourth columns correspond to conventional BOs (A= 0),
FBOs (ΛBO/ΛFL= 3), FBOs (ΛBO/ΛFL= 4/3), and spread-
ing (ΛBO/ΛFL= 1), respectively. Without modulation
(A= 0), Fig. 2a, e displays the light evolution that
corresponds to conventional BOs, where the measured
BO period ~30mm is consistent with its theoretical value
ΛBO= Rλ/(n0d). The light first broadens until it propa-
gates half of the BO period and then focuses into the
central waveguide again at the BO period, as σ2 reaches its
maximum at z ~ 15mm and then decreases to zero at
z ~ 30mm (see Fig. 2i). When the modulation is
introduced, BOs in the Floquet lattice exhibit diverse
transport properties as expected, where the ratio ΛBO/ΛFL

makes a significant difference. For ΛBO/ΛFL= 3, the FBOs
are observed and degenerate into conventional QBOs,
where the FBO period ΛFBO is equal to the BO period ΛBO

(see Fig. 2b, f). The QBOs pattern is basically similar to
that of conventional BOs, except that light experiences
additional sub-oscillations, as σ2 oscillates with dual
periods (see Fig. 2j). For ΛBO/ΛFL= 4/3, the FBOs exhibit
their similarity to SBOs, where the FBO period
ΛFBO ~ 90mm is much longer than the BO period ΛBO

(see Fig. 2c, g). In addition to the extended FBO period,
we also observed dramatic broadening of the light, as the
maximum of σ2 is far larger than that of conventional BOs
(see Fig. 2k). For ΛBO/ΛFL= 1, the evolution of light
propagating from 0 to ΛFBO/2 cannot be canceled with
that propagating from ΛFBO/2 to ΛFBO. As a result,
photonic FBOs are destroyed and spreading occurs, where
light exhibits ballistic spreading and is no longer localized
(see Fig. 2d, h). The discrete diffraction pattern accom-
panied by oscillations is observed, as σ2 oscillates around
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the gray-dashed curve of 2c20B
2
1

2πAdk0
ΛFL

� �
z2 where B1 is the

first-order Bessel function (see Fig. 2l).
Next, we focus on the oscillation modes under a broad-

beam excitation. The broad-beam excitation in the real
space corresponds to a narrow excitation in the reciprocal
space. In this case, the group velocity of beam motion in
the lattices can be expressed as Vgroup(z)=−dβz(z)/
dkx(z)= 2dc0sin[kx(z)d], and the transverse displacement
Δx(z) of beam center is determined by ΔxðzÞ ¼R z
0V groupðτÞdτ. Here we define the weighted average

position of excitation at the distance z in such a discrete
system as

xðzÞ ¼
P

mmdjamj2
P

mjamj2
ð7Þ

The excitation is located at the center of the lattice, i.e.,
x(0)= 0. During propagation, a rise (drop) of x(z)
indicates that the light shifts toward the x (−x) direction.
Here, we launched a 7-waveguide-wide Gaussian beam at
normal incidence to the edge of the substrate. This
corresponds to a narrow spectrum centered at kx(0)= 0 in
the reciprocal space. Under the broad excitation, the
experimental results, respective simulations, extracted
trajectories of the beam x(z) (white dashed lines), and

simulated acceleration of transverse Bloch momentum for
the scenarios considered in Fig. 1f are summarized in
Fig. 3, where the first, second, third, and fourth columns
correspond to conventional BOs (A= 0), FBOs (ΛBO/
ΛFL= 3), FBOs (ΛBO/ΛFL= 4/3), and spreading (ΛBO/
ΛFL= 1), respectively. Without modulation (A= 0),
Fig. 3a, e display the light evolution that corresponds to
conventional BOs, where the broad beam undergoes a
sinusoidal oscillation with the BO period ΛBO. Similar to
the breathing motion discussed previously, the oscillating
motion exhibits diverse transport properties when the
modulation is introduced. For ΛBO/ΛFL= 3, Fig. 3b, f
display the light evolution of FBOs that degenerate into
conventional QBOs, where the trajectory of the broad
beam following a sub-oscillating function was observed.
The broad beam evolves along the x direction and returns
to the initial position after propagating any multiple of the
BO period ΛBO ~ 30mm. For ΛBO/ΛFL= 4/3, Fig. 3c, g
display the light evolution of FBOs that exhibit their
similarity to SBOs, where the trajectory of the broad beam
follows a giant sub-oscillating function with an extended
period of ~90mm. The maximal displacement of the
broad beam for these SBOs-like oscillations is observed at
half of the FBO period, i.e., z ~ 45mm. For ΛBO/ΛFL= 1,
Fig. 3d, h display the light evolution that corresponds to
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spreading. Although the trajectory of the broad beam
follows an oscillating function, beam broadening is
observed during propagation. As a result, the beam does
not return to the initial state of excitation, and photonic
FBOs are destroyed.
For both single-site and broad-beam excitations, the

visual observations of fluorescence images and quantita-
tive analyses have excellent agreement with the respective
simulation results. Therefore, our waveguide arrays are
capable of accurately revealing BOs in photonic Floquet
lattices.

Fractal spectrum and fractional Floquet tunneling
In this section, we further provided quantitative analysis

and investigated two exotic properties of photonic FBOs,
namely fractal spectrum and fractional Floquet tunneling.
These properties of photonic FBOs not only clarify their
profound connection to the existing BOs in Floquet sys-
tems, but also reveal the way photonic FBOs constitute a
unique phenomenon on their own. The detailed theore-
tical derivations and experimental results are provided in
Supplementary Note 5, 6.
Firstly, we studied the dependence of ΛBO/ΛFBO on

ΛBO/ΛFL and investigated the fractal spectrum. As shown
in Fig. 4a, the theoretically predicted FBO period

ΛFBO= LCM(ΛBO, ΛFL) determines that the FBO period
spectrum follows the Thomae’s function when ΛBO/ΛFL

belongs to (1, 2). One may find that Thomae’s function is
a fractal structure composed of infinite discrete peaks,
where the patterns exhibit self-similarity at increasingly
smaller scales53. Owing to limited sample lengths, we
fabricated a set of samples with ΛBO/ΛFBO ≥ 1/6, fixed
ΛBO= 30mm, and varied ΛFL from 15 to 30 mm. As
expected, we experimentally verified several peaks of such
a fractal spectrum by fitting the measured and simulated
variance σ2(z) under single-site excitation. This fractal
spectrum clarifies the profound connection between the
existing BOs in Floquet systems and FBOs. The Thomae’s
function can be approximated to a continuous linear
function for a small detuning limit (ΛBO/ΛFL approaches
1), indicating that the FBOs degenerate into conventional
SBOs with a period given by ΛSBO=ΛFLΛBO/(ΛBO−ΛFL).
When ΛBO/ΛFL equals to 1, the light experiences
spreading as the FBO period approaches infinity. The
situation is no longer the same when ΛBO/ΛFL equals 2,
where the FBOs degenerate into conventional QBOs with
a period ΛQBO=ΛBO. Most importantly, the existence of
FBOs is experimentally confirmed for fractional ΛBO/ΛFL

(marked by the black arrows in Fig. 4a), which goes far
beyond the existing BOs in Floquet systems. These peaks
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Fig. 3 Experimental visualization and simulation of the oscillating modes for broad-beam excitation. a–d Fluorescence microscopy images of
the wave evolution in the curved waveguide arrays with a fixed circular bend radius R= 110.8 cm (corresponding to ΛBO= 30 mm). a A= 0,
corresponding to conventional BOs; b A= 6 μm and ΛFL= 10 mm, corresponding to QBOs; c A= 13.5 μm and ΛFL= 22.5 mm, corresponding to SBO-
like oscillations; d A= 18 μm and ΛFL= 30 mm, corresponding to spreading. e–h Simulated wave evolution corresponding to those in (a–d). The
trajectories of the beam x(z) extracted from the measured (a–d) and simulated (e–h) light evolution are marked as white dashed lines.
i–l Corresponding simulated z-dependent shift of the transverse Bloch momentum obtained by projecting the wave evolution into the reciprocal
space with spatial Fourier transform W(kx)= ∫W(rx)exp(−jkx⋅rx)dr
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are the epitome of the entire spectrum that reveals the
fractal nature of the FBOs: their period ΛFBO has complex
and seemingly random dependence on ΛBO/ΛFL.
Secondly, we studied the dependence of FBO amplitude

[defined as σ2(ΛFBO/2)] on modulation amplitude A and
investigated the fractional Floquet tunneling. Under the
single-site excitation, the introduction of harmonic
modulation leads to a rescaling of FBO amplitude fol-
lowing the square of a linear combination of the Anger

function J v
2πAdk0
ΛFL

� �
and the Weber function Ev

2πAdk0
ΛFL

� �

with a fractional-order v=ΛFL/ΛBO. Figure 4b displays
two examples of such fractional Floquet tunneling,
including QBOs (red line, ΛBO/ΛFL= 3) and SBOs-like
oscillations (blue line, ΛBO/ΛFL= 4/3). Each curve is
normalized to unity at its maximum. For the QBOs, the
theoretically predicted FBO amplitude has a characteristic

2 cosðπ=3ÞE1=3 � 2πAdk0
ΛFL

� �
þ 2 sinðπ=3ÞJ1=3 � 2πAdk0

ΛFL

� �h i2

dependence on A/ΛFL. By contrast, the Floquet tunneling
for the SBOs-like oscillations exhibits a different behavior,
where the FBO amplitude has a characteristic

8J3=4
2πAdk0
ΛFL

� �2
dependence on A/ΛFL. To verify our pre-

diction, we fabricated two sets of samples with a varied
modulation amplitude A and extracted the corresponding
variance σ2(z) from the measured fluorescence images.
For the QBOs, with increasing amplitude A, the FBO
amplitude decreases before it reaches zero, indicating that
the introduction of harmonic modulation will not
broaden the FBO amplitude compared with the conven-
tional BOs (A= 0). For the SBOs-like oscillations, with
increasing amplitude A the FBO amplitude first increases
to its maximum around A= 22.5 μm and then decreases.
We emphasize that the proposed fractional Floquet tun-
neling provides a flexible way to manipulate the light that
goes beyond the conventional tunneling that follows

integral-order Bessel function B0
2πAdk0
ΛFL

� �2
for dynamic

localization38–40 and BN
2πAdk0
ΛFL

� �2
for spreading35–37.

Discussion
In summary, we report the first visual observation of

BOs in photonic Floquet lattices and the investigation of
photonic FBOs. In addition to the above-discussed cases
with a harmonic modulation, we emphasize that FBOs
occur for arbitrary Floquet engineering M(z) far beyond
harmonic modulation. We experimentally verified pho-
tonic FBOs in Supplementary Note 4 with the three types
of ∂zMðzÞ, i.e. smooth function, nonsmooth continuous
function, and discontinuous function.
Photonic FBOs are essentially a coherent phenomenon

that can readily contribute to diverse platforms. As special
cases of FBOs, conventional SBOs have been extended to
ultracold atoms24,25, synthetic frequency lattices15,29, and
quantum walks31. The exotic properties of FBOs can also be
extended to these rapidly developing fields and may offer
new insight into wide potential applications in high-efficiency
frequency conversion, precision measurement, and wave
manipulation54. For instance, the fractal spectrum of FBOs
suggests that the FBO period is ultrasensitive to the ratio
ΛBO/ΛFL, which may provide a new protocol for sensing.
Furthermore, the proposed FBOs may also contribute to

fundamental research. Recently, space-time crystals have
attracted interest because of their exotic oblique Brillouin
zone33,34. In space-time crystals, the so-called FBOs (refer-
ring particularly to oscillations in time and space) arise from
the periodic repetitions of Floquet dispersion. As a specific
analogy to FBOs in space-time crystals, our proposed exact
FBOs arise from the collapse of Floquet dispersion, and the
corresponding visual observation is a cornerstone for the
further development of space-time crystals.
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Fig. 4 Fractal spectrum and fractional Floquet tunneling of FBOs.
a Theoretical (blue stems) and measured (red dots) ratio ΛBO/ΛFBO as a
function of the ratio ΛBO/ΛFL. The inset is a close-up spectrum at a finer
scale, which shows the property of self-similarity of this spectrum.
b Normalized theoretical (lines) and measured (dots) FBO amplitude
σ2(ΛFBO/2) as a function of the ratio A/ΛFL
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Materials and methods
Sample fabrication
Our samples were fabricated inside a 90-mm-long

polished fused silica substrate (Corning 7980) by a cus-
tomized femtosecond-laser-writing system (Newport
Corporation). See details in Supplementary Note 2.

Fluorescence imaging characterization
A linearly polarized beam (TEM00 > 95%) at 633 nm

wavelength from a 15mW He-Ne laser (HNL150LB,
Thorlabs) was employed for the single-site excitation and
broad-beam excitation. Waveguide fluorescence micro-
scopy was employed to directly visualize the light evolu-
tion in our samples. See details in Supplementary Note 3.
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