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Ovarian carcinoma has the highest mortality of all female reproductive cancers and current treatment has become histotype-
specific. Pathologists diagnose five common histotypes by microscopic examination, however, histotype determination is not
straightforward, with only moderate interobserver agreement between general pathologists (Cohen’s kappa 0.54–0.67). We
hypothesized that machine learning (ML)-based image classification models may be able to recognize ovarian carcinoma histotype
sufficiently well that they could aid pathologists in diagnosis. We trained four different artificial intelligence (AI) algorithms based
on deep convolutional neural networks to automatically classify hematoxylin and eosin-stained whole slide images. Performance
was assessed through cross-validation on the training set (948 slides corresponding to 485 patients), and on an independent test
set of 60 patients from another institution. The best-performing model achieved a diagnostic concordance of 81.38% (Cohen’s
kappa of 0.7378) in our training set, and 80.97% concordance (Cohen’s kappa 0.7547) on the external dataset. Eight cases
misclassified by ML in the external set were reviewed by two subspecialty pathologists blinded to the diagnoses, molecular and
immunophenotype data, and ML-based predictions. Interestingly, in 4 of 8 cases from the external dataset, the expert review
pathologists rendered diagnoses, based on blind review of the whole section slides classified by AI, that were in agreement with AI
rather than the integrated reference diagnosis. The performance characteristics of our classifiers indicate potential for improved
diagnostic performance if used as an adjunct to conventional histopathology.
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INTRODUCTION
Ovarian carcinoma is the deadliest cancer of the female reproduc-
tive system, with an estimated 13,770 deaths in the U.S. in 20211. It
is also a heterogeneous disease with five common histotypes: high-
grade serous carcinoma (HGSC) accounts for 70% of cases (and 90%
of advanced-stage disease and mortality), clear cell ovarian
carcinoma (CCOC) accounts for 12%, endometrioid (ENOC) for
11%, low-grade serous (LGSC) for 4%, and mucinous carcinoma
(MUC) for 3%. These five common histotypes have distinct cellular
morphologies and etiologies, as well as molecular, genetic, and
clinical attributes2,3. There has been a move towards histotype-
based treatment4, for example with the introduction of PARP
inhibitor therapy for patients with HGSC5, and this trend increases
the importance of accurate histotype diagnosis in practice6.
Ovarian carcinoma histotype classification by pathologists is

associated with challenges in diagnostic reproducibility and inter-
observer disagreement4,7,8. Initial diagnosis is performed through
histological assessment of hematoxylin & eosin (H&E)-stained
sections, but studies have shown that for pathologists without
current, gynecologic pathology-specific training, the interobserver
agreement is only moderate (0.54–0.67 Cohen’s kappa9)10,11.

Furthermore, the number of pathologists trained has not kept up
with the increasing volume and complexity of cancer diagnoses.
There has been a 4.5% increase per year in the amount of
histopathology requests to laboratories in the United Kingdom,
without a simultaneous increase in the pathology workforce. In fact,
there is a projected pathologist shortage with >75% of full-time
pathologists being 45 years or older and a relative decrease in the
number of new pathology residents compared to other specialties12.
A potential way to enhance pathologist efficiency and diagnostic

accuracy is to use machine learning as a diagnostic adjunct. In the
past decade, machine learning models have demonstrated their
potential for a wide range of applications in digital pathology,
including cancer diagnoses13–16. Wang et al.17 introduced a two-
stage transfer learning model for ovarian cancer classification that
exceeded the Cohen’s kappa of general pathologists. However, they
only trained and tested their model with 305 H&E slides from a
single dataset. Differences between scanners, tissue processing, and
staining procedures between laboratories contribute to substantial
variation between datasets18–20; to truly serve as a diagnostic
adjunct for practicing pathologists, a generalizable algorithm that
can classify ovarian cancer cases from different centers is needed.
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In this paper, aiming to develop a generalizable model for
automatic ovarian carcinoma histotype classification, we used four
different deep learning-based algorithms17,21,22 on a large dataset
of 948 H&E-stained whole slide images (WSIs) and evaluated the
performance on a held-out set of 60 cases from a different
institution. To the best of our knowledge, our model achieved
the highest performance for ovarian carcinoma histotype diag-
nosis based on an out-of-distribution test set to date and
approached the performance level of expert gynecologic
pathologists.

MATERIALS AND METHODS
Data acquisition and processing
Two datasets from separate centers containing WSIs of the five common
histotypes of ovarian carcinoma were used in this study. To prove the
generalizability of our models, we used the first dataset for training and the
second dataset (from a different hospital) was used for testing only. A
visual summary of the procedure is shown in Fig. 1.
The first dataset (referred to henceforth as Internal Training Dataset)

retrieved from the OVCARE archives consisted of 948 WSIs (scanned at 40×
objective magnification on an IntelliSite Ultra-Fast Scanner (Philips,
Amsterdam, Netherlands)) of 485 patients. The breakdown of the
histotypes as shown in Table 1 is as follows: 410 HGSC slides (200
patients), 167 CCOC slides (95 patients), 237 ENOC slides (114 patients), 69
LGSC slides (34 patients), and 65 MUC slides (42 patients). The reference
diagnosis for each patient was defined by combination of expert
pathology review and molecular assays, typically IHC but also including
sequencing in a subset of cases, to give an “integrated” diagnosis23. Using
a combination of annotations from board-certified pathologists (for
416 slides) and pseudo annotations, a maximum of 150 patches per
tumor and maximum of 20,000 patches per histotype were extracted from
the tumor areas of all the slides at multiple sizes and magnifications (see
Table 1). For example, to get 512 × 512 pixel patches at 20× magnification,
patches of size 1024 × 1024 pixels at 40× magnification were down-

sampled using the Lancoz filter24. The pseudo annotations were created
using a stroma-tumor binary classifier trained on patches from the
416 slides with annotations (see Supplementary Information: Creating
Pseudo Annotations). This stroma-tumor classifier has a mean area under
receiver operating characteristic (ROC) curve (AUC) of 0.9441 (see
Supplementary Table S1 and Supplementary Fig. S1) and was also shown
to reliably filter non-malignant samples, such as benign ovarian tissue or
benign fallopian tube cases (see Supplementary Tables S2, S3). We chose
to limit the training dataset to 20,000 patches per histotype to create a
partially balanced dataset because the least represented histotype (MUC)
had approximately 10,000 patches extracted. Then each set of patches was
grouped by patient origin into a 3-fold cross validation scheme for training
(66%), validation (17%), and testing (17%).
The External Test Dataset comprised 60 WSIs (scanned at 40× magnifica-

tion from an Aperio CSO scanner (Leica Biosystems, Buffalo Grove, IL, United
States)) of 60 tumors (from 60 patients) from the University of Calgary. The
slides consisted of 31 HGSC, 10 CCOC, 10 ENOC, 4 LGSC, and 5 MUC. The
reference diagnoses for these cases was made by one of the authors (MK)
and included histologic examination in addition to an 8-marker IHC panel
(COSPv3) that predicts ovarian carcinoma histotype with 93% diagnostic
concordance25. All WSIs were annotated by a pathologist, and 150 patches of
size 1024 × 1024 pixels at 40×magnification were tiled from the tumor
regions of the slides belonging to each tumor and down sampled to
512 × 512 pixels at 20×magnification, similar to the Internal Training Dataset.
This dataset was used for testing purposes only.

Color normalization
Both datasets were then color normalized using the strategy described by
Boschman et al.26. A representative reference image from the Internal Training
Dataset was chosen (Supplementary Table S4), and then each patch was
randomly normalized by either the Reinhard27, Vahadane28, or Macenko29

methods. The rationale is that if there is not a singular color normalization
method that is ideal for all datasets or tasks, using a combination of them to
normalize the images should make the images diverse enough to train a
generalizable model, but similar enough to overcome the domain shift from
having different colors from different datasets.

Fig. 1 Training and testing pipeline. Overall pipeline showing how the deep learning classifiers were trained and tested on color-normalized
patches from the Internal Training Dataset, and then the trained models were tested on the External Test Dataset.
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Training the deep learning-based histotype classifier
We compared four deep learning-based models (details outlined below)
for ovarian carcinoma histotype classification. The models were initialized
with ImageNet pre-trained weights, and then each were fine-tuned with
the color-normalized patches from the Internal Training Dataset, using the
ImageNet mean and standard deviation to normalize the RGB pixel values
of each patch between −1 and 1.
After training, the performance of the models were compared using the

testing set of the respective Internal Training Dataset cross-validation split
and the out-of-distribution External Test Dataset. In cases where there was
a discrepancy between the reference diagnosis and the histotype
diagnosed by artificial intelligence, two of the study pathologists (NS
and CBG) reviewed the WSIs blinded to either the reference diagnosis or
the AI diagnosis, and without access to the immunostaining results of the
COSPv3 8-marker panel.
The GPU hardware used was either a Quadro RTX 500 (Nvidia, Santa

Clara, CA, United States) or a Tesla V100-SXM2-32GB (Nvidia) based on
availability.

One-stage transfer learning. For the first model, we used a one-stage
transfer learning (1STL) algorithm. We implemented the PyTorch30

VGG1931 model with a modified last layer for five-histotype classification.
VGG19 is a popular convolutional neural network that uses smaller,
typically 3 × 3, filters in order to create a deeper network. Training was
done with the patches of size 512 × 512 pixels at 20× magnification using a
batch size of 8 and AMSGrad optimization32 with 0.0002 learning rate. For
each experiment, the model was fine-tuned for seven epochs, with the
state having the best validation patch-level overall accuracy saved and
used for testing.
Test slide-level results were calculated using majority vote from patch-

level results (i.e., argmax on the counts of the different patch histotype
predictions for each slide).

DeepMIL. The second architecture was DeepMIL22, a model that
combines permutation-invariant multiple instance learning (MIL) with an
attention-based neural network. MIL is a type of supervised learning where
the labelled data (i.e., a WSI with a diagnosis) is broken up into a “bag of
instances” which are considered to be weakly labelled (i.e., patches from
the WSI, but each patch is not individually labelled). DeepMIL computes
bag-level (WSI-level) features from attention-weighted patch instance
feature vectors, and then classifies them with a fully connected layer. In our
DeepMIL implementation, the patch feature vectors were extracted using
the 1STL model trained on the same cross-validation split of 512 × 512
patches at 20× magnification, using patch-level balanced accuracy as the
metric for saving the best model state. Then DeepMIL was trained for 300
epochs with an initial learning rate of 0.0001; the learning rate was
decreased by half if the validation loss did not decrease for 15 consecutive
epochs, and training was stopped if the validation loss did not decrease for
30 epochs. The metric used for saving the best model state for testing was
the slide-level overall accuracy. The test set slide-level results were
calculated directly using this model.

VarMIL. Thirdly, we implemented VarMIL21, a model based on DeepMIL.
One limitation of DeepMIL is that the bag-level latent features based on
the attention-weighted instance vectors do not consider tile interactions or
high-level features of the bag (WSI). VarMIL extends the architecture with
an additional attention-weighted variance module to represent the tissue
heterogeneity of the different tiles in a WSI. Just as our implementation of
DeepMIL, we used trained 1STL models for patch-level feature extraction.
We then trained VarMIL with the 512 × 512 patches at 20× magnification
and the same learning rate decay patience strategy as with DeepMIL. Slide-
level overall accuracy was used to save the best state for testing. This
model also calculated slide-level results directly.

Two-stage transfer learning. The final model we compared was a two-
stage deep transfer learning (2STL) algorithm introduced for ovarian
cancer histotype classification17. The first stage trains with patches of size
256 × 256 at 10× magnification, while the second stage training and
testing uses patches of size 512 × 512 at 20× magnification. The rationale is
that training with WSI patches of multiple sizes and magnifications gains
context of the tissue at different perspectives. Each mini-batch is
manipulated so that the same number of patches of each histotype is
used during training. We used a batch size of 16 for the first stage and a
batch size of 8 for the second stage. Each stage was trained with learning
rate 0.0002 for 10 epochs, with the state with the highest patch-level
overall balanced accuracy saved for the next stage of testing. The 3-fold
cross validation scheme was modified by alternatively swapping the
validation and test set for each training set, yielding a 6-fold scheme. The
slide-level results were calculated by training a random forest classifier on
the 6 patch-level cross-validation splits.

RESULTS
To find the model architecture with the best performance, we
compared four deep learning networks for ovarian carcinoma
histotype classification: a one-stage transfer learning algorithm
(1STL), DeepMIL, VarMIL, and a two-stage transfer learning
algorithm (2STL). Each model was trained and tested on patches
from the large Internal Training Dataset for three cross-validation
splits. The three trained models from cross-validation splits were
then tested on the External Test Dataset from a different center.
Due to the distribution shift that exists between H&E datasets

from different centers, even of the same tissue type, we focus on
the results on the External Test Dataset. In order to effectively
supplement pathologists with a machine learning-based ovarian
carcinoma classifier, the model must be generalizable enough to
work on WSIs from various locations. Our criterion for choosing
the best model was the highest mean slide-level diagnostic
concordance on the External Test Dataset.
Our results show that the highest performing model was

1STL (Table 2), which achieved a mean slide-level diagnostic

Table 1. Overview of datasets.

Dataset Unit Histotype

HGSC CCOC ENOC LGSC MUC

Internal Training Dataset (max 150 patches per patient,
max 20,000 patches per histotype)

Patients 200 95 114 34 42

Slides 410 167 237 69 65

Annotations 185 67 74 50 50

Pseudo annotations 225 100 163 19 15

256 × 256 pixel patches at 10×
magnification

19,998 19,998 19,998 10,109 9476

512 × 512 pixel patches at 20×
magnification

19,998 19,998 19,998 10,109 9618

External Test Dataset (max 150 patches per patient) Patients 31 10 10 4 5

Slides 31 10 10 4 5

Annotations 31 10 10 4 5

512 × 512 pixel patches at 20×
magnification

4650 1500 1500 600 750
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concordance of 80.97 ± 0.03 % on the External Test Dataset. This
model was trained with color normalized patches from the
Internal Training Dataset that were partially balanced across the
histotypes. We performed additional experiments for all the
models, including no color normalization and a larger, unbalanced
set of patches (see Supplementary Table S5), and found that this
strategy yielded the best results on the External Test Dataset (see
Supplementary Tables S6–S17 and Supplementary Figs. S3–S6).
For completeness, we also calculated slide-level results for 1STL
with random forest classifiers and for 2STL with majority vote, but
these results did not affect our conclusion (see Supplementary
Tables S8, S9, S14, S15). As well, we tested this best-performing
model on patches from the External Test Dataset using the
pseudo annotation classifier rather than pathologist annotations
and found the exact same ensemble classifier results (see
Supplementary Table S18).
Table 3 shows the performance of the 1STL model across the

three cross-validation splits for the Internal Training Dataset.
Furthermore, it shows the results for the External Test Dataset,
where the three models trained based on the cross-validation
splits (as separate raters) were applied to the External Test Dataset.
In addition, we formed an ensemble classifier in which the three
models (i.e., raters) in a majority voting strategy predicted the
histotype. Using this strategy, we achieved a Cohen’s kappa value
of 0.77 in predicting histotypes which was better than the mean
kappa value of 0.75 (Table 3).

Given that in clinical practice, multiple slides per tumor are
examined to make a diagnosis, we asked whether our deep
learning model would perform better when provided with
multiple slides for a given tumor. Because we only had one slide
per tumor in the External Dataset, we were only able to test this
hypothesis in our Internal Training Dataset. Table 4 shows that the
mean case-level concordance based on examination of multiple
slides was higher than the slide-level results (86.56% (Table 4)
versus 81.38% (Table 3)) when we used a majority voting strategy
in which histotype was assigned based on the histotype diagnosis
of the majority of slides.
Figure 2 shows the confusion matrix associated with the

Ensemble Model (Table 3). We can see that the models generally
struggled with classifying the ENOC slides of the External Test
Dataset; even the ensemble classifier (Fig. 2) misdiagnosed half of
the ENOC external test cases as HGSC or MUC. The 8 discrepant
cases were independently reviewed by 2 of the authors (CBG, NS)
blinded to the reference and AI diagnoses. Looking specifically at
these 8 cases that were misclassified (Table 5 and Fig. 3), there are
a variety of scenarios that could account for the misclassification.
Cases A and D showed transitional pattern, an architecture that
can be seen in either HGSC or ENOC, and IHC may be needed, as
in these cases, for correct histotype diagnosis. Case B is a rare
tumor in which the histotype is not clear, even after performing
IHC, and arguably would best be classified as carcinoma NOS, as
was done in the original cancer registry entry. Cases C, G, and H

Table 3. Detailed results of applying the 1STL model with color normalization and partially balanced dataset.

HGSC
Concordance

CCOC
Concordance

ENOC
Concordance

LGSC
Concordance

MUC
Concordance

Cohen’s
Kappa

F1 Score AUC Balanced
Concordance

Internal
Training
Dataset

Model 1 82.02% 88.89% 81.63% 87.50% 54.55% 0.7393 0.7838 0.9404 78.92%

Model 2 84.72% 81.25% 72.73% 100.00% 78.57% 0.7448 0.8188 0.9547 83.45%

Model 3 82.95% 94.12% 67.31% 86.67% 77.78% 0.7294 0.7775 0.9473 81.76%

Mean 83.23% 88.09% 73.89% 91.39% 70.30% 0.7378 0.7934 0.9475 81.38%

External
Test
Dataset

Model 1 93.55% 100.00% 50.00% 100.00% 80.00% 0.7985 0.8377 0.9599 84.71%

Model 2 77.42% 100.00% 40.00% 100.00% 80.00% 0.6669 0.7124 0.9223 79.48%

Model 3 93.55% 100.00% 70.00% 50.00% 80.00% 0.7988 0.8022 0.9586 78.71%

Mean 88.17% 100.00% 53.33% 83.33% 80.00% 0.7547 0.7841 0.9469 80.97%

Ensemble
Model

93.55% 100.00% 50.00% 75.00% 80.00% 0.7722 0.8085 0.9592 79.71%

For the Internal Training Dataset, Models 1–3 refer to the models trained and tested on the three cross-validation splits of the Internal Training Dataset. For the
External Test Dataset, Models 1–3 refer to the three models trained based on the cross-validation splits on the Internal Dataset and tested with the External
Test Dataset.
Bolded values refer to either the mean or ensemble results across Models 1–3.

Table 4. Patient-level results of 1STL with color normalization and partially balanced dataset.

HGSC
Concordance

CCOC
Concordance

ENOC
Concordance

LGSC
Concordance

MUC
Concordance

Cohen’s Kappa Balanced
Concordance

Internal Training
Dataset

Model 1 86.66% 86.67% 78.94% 100.00% 57.14% 0.7607 81.88%

Model 2 90.00% 100.00% 77.78% 100.00% 85.71% 0.8494 90.70%

Model 3 87.50% 100.00% 78.95% 83.33% 85.71% 0.8300 87.10%

Mean 88.05% 95.56% 78.56% 94.44% 76.19% 0.8134 86.56%

Models 1–3 refer to the models trained and tested on the three cross-validation splits of the Internal Training Dataset.
Bolded values refer to the mean results across Models 1–3.

Table 2. Comparison of mean slide-level diagnostic concordance of four different deep learning architectures.

1STL DeepMIL VarMIL 2STL

Internal Training Dataset 81.38 ± 0.02% 79.55 ± 0.05% 80.65 ± 0.04% 85.27 ± 0.02%

External Test Dataset 80.97 ± 0.03% 72.09 ± 0.05% 72.52 ± 0.03% 64.08 ± 0.09%

The bolded value highlights the best performing model as measured on the External Test Dataset.
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are examples of the differential diagnosis between MUC and
ENOC; when there is depletion of intracellular mucin, or slides
showing the borderline areas are not available for review, this
differential diagnosis is indeed challenging and IHC may be
needed. Of these 3 cases, Case C additionally demonstrates the
difficulty in distinction between CCOC and ENOC; this case was
morphologically considered to be CCOC on independent review,
and the IHC results, principally PR-, would support this view,
although the reference and cancer registry diagnoses are of ENOC.
In Case F, the differential diagnosis rests between CCOC and HGSC
with clear cell change, a diagnostic challenge that can be resolved
with IHC. For these 7 cases, the independent pathologist review
agreed with the AI diagnosis in 4 cases, highlighting how
histotypes of ovarian carcinoma can exhibit morphological
mimicry, showing features on H&E that mimic other histotypes
with respect to architecture and cytological features, at least
focally. Only case E was a clear error by AI classification, with two
of three models diagnosing HGSC when it is a classic low-grade
ENOC.
This phenomenon of morphological mimicry is further demon-

strated in Fig. 4, which visually illustrates the best-performing 1STL
model on patch-level data. The predicted class of each patch
generally makes sense, even for the incorrectly predicted tiles. For
example, in Fig. 4D, the chosen patch that was misclassified as
MUC has a structure that could be misconstrued for mucin, the
defining morphological feature of MUC.

Table 5. Comparison of 3 AI models from 3 cross-validation splits in 1STL algorithm against gynecological pathologists’ diagnoses.

Case AI predicted diagnosis Reference
diagnosis

Independent study
review diagnosis

Cancer Registry
diagnosis

COSPv3 histotype
prediction

Immunophenotype

Model 1 Model 2 Model 3 Overall Majority
of models

A HGSC HGSC HGSC HGSC ENOC HGSC with transitional
differentiation

Endometrioid ENOC WT1-;p53wt; PR−

B HGSC HGSC ENOC HGSC ENOC HGSC NOS carcinoma HGSC WT1-;p53abn;PR−

C MUC MUC CCOC MUC ENOC CCOC; IHC needed for
diagnosis

Endometrioid ENOC WT1-;p53wt;
PR-;NapsinA−

D ENOC ENOC ENOC ENOC HGSC HGSC with transitional
differentiation

Serous HGSC WT1+;p53abn;PR+

E HGSC HGSC ENOC HGSC ENOC ENOC Endometrioid ENOC WT1-;p53wt; PR+

F CCOC CCOC CCOC CCOC HGSC CCOC; IHC needed for
diagnosis

Clear cell HGSC WT1-;p53abn;
PR-;NapsinA−

G ENOC ENOC ENOC ENOC MUC ENOC Mucinous MUC PR−

H MUC MUC MUC MUC ENOC ENOC Endometrioid ENOC PR−

The eight discrepant cases were independently reviewed by 2 of the authors (CBG, NS) blinded to the reference and AI diagnoses. COSPv3 Calculator
of ovarian carcinoma subtype/histotype probability version 3, p53wt wild type immunostaining pattern for p53, p53abn mutant pattern immunostaining
pattern for p53.

Fig. 3 Snapshots of the H&E slides for the 8 misclassified cases. Figures A–H correspond to the 8 discordant cases from the external dataset
that were misclassified by AI; details of these cases are listed in Table 5.

Fig. 2 Confusion matrix of the overall histotype prediction of 1STL
(by Ensemble Model) with color normalization and partially
balanced dataset for the External Test Dataset.
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We also tested the best performing 1STL model on 21 WSI samples
of ovarian tumors that do not fall within the five common histotypes;
although the prediction confidence was lower for these cases (see
Supplementary Results and Supplementary Table S19), further work is
needed to reliably detect and classify these other tumor types,
however, this is outside the scope of the current investigation.

DISCUSSION
Our main objective in this work was to elucidate a generalizable
(i.e., applicable to slides prepared in different laboratories)

machine learning-based strategy for improving ovarian carci-
noma histotype diagnosis. We trained four different machine
learning architectures with a variety of data engineering
strategies and evaluated their performance on an external
dataset. To the best of our knowledge, our training dataset of
948 WSIs is the largest collection of labelled ovarian carcinoma
histotype images in published machine learning studies. Our
chosen metric for comparing methods is average diagnostic
concordance with expert integrated histotype diagnosis, based
on consideration of both H&E morphology and IHC, using
an external dataset from a different hospital to prove the

Fig. 4 Examples of predicted patches. A and C are original slides. B and D show the pathologist annotations overlayed with colors
corresponding to the predicted class for each extracted patch.
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generalizability of our results on an independent test set
different from the training set.
Our proposed models achieved a mean slide-level diagnostic

concordance of 80.97 ± 0.03% using a one-stage deep transfer
learning network (1STL). Based on our training set results, we expect
the patient-level concordance (if given a test set with multiple slides
per patient, which is typical of clinical diagnostic work) to be higher
than the slide-level concordance. Our 1STL model also out-
performed our implementations of DeepMIL22, VarMIL21, and a
two-stage deep transfer learning network, which was previously
used for ovarian cancer classification on a single dataset, trained
and tested on 305 WSIs17. When using such a large dataset for
training, we found that balancing the histotypes helps to prevent
overfitting on any overrepresented classes. We also found that color
normalization is essential for making a model generalizable for H&E
images processed at different hospitals. We used a color normal-
ization strategy that utilizes multiple normalization methods to
create sets of images that are similar enough but variable enough to
make the network robust26, a promising strategy for overcoming
the color inconsistencies of H&E images that has been a persistent
problem for computer-aided diagnostics.
Wang et al. previously reported a high level of interobserver

agreement using the two-stage transfer learning network, with
better performance than general pathologists17. However, their
ovarian cancer classifier performance was trained and tested on a
single dataset of 305 WSIs. We have achieved an overall Cohen’s
kappa of 0.7722 on a test set stained and processed in a
completely different location than the training set; this exceeds
the inter-rater reliability by general pathologists (0.54–0.67
kappa)10,11 and approaches the level of expert pathologists with
gynecologic pathology training (0.73–0.97 kappa)23,33. Our gen-
eralizable strategy, which yields high performance on histopathol-
ogy slides originating from other centers, is a further step towards
the implementation of deep learning tools as a diagnostic adjunct
for pathologists in diagnosing ovarian carcinoma histotype.
The “gold standard” for ovarian carcinoma histotype diagnosis

is the integrated expert diagnosis, taking into account H&E
morphology across all slides showing tumor, and using select
molecular markers23. There remain challenges in histotype
diagnosis, however, as there can be discrepancy between H&E
morphology and molecular markers, as assessed by immunohis-
tochemistry25. This is especially true for ENOC, where the
differential diagnosis includes CCOC, MUC and HGSC25, and where
IHC data may be necessary for accurate histotype diagnosis. It is
encouraging that the challenges in histotype diagnosis by AI are
identical to those encountered by expert pathologists. Indeed, in 4
of 8 cases from the external dataset, the expert review
pathologists rendered diagnoses, based on blind review of the
WSIs classified by AI, that were in agreement with AI rather than
the integrated reference diagnosis. Based on this we believe that,
opportunities for improvement notwithstanding, the diagnostic
algorithm presented is ready for validation studies in clinical
practice, performing at a level comparable to an expert
gynecological pathologist in formulating a favored histotype
diagnosis based on H&E morphology. It is important to note,
however, that the algorithm will misclassify cases, and these are
exactly those cases that surgical pathologists must be aware of
and resort to IHC in order to accurately diagnose histotype, e.g.,
cases with unusual features where ENOC is in the differential
diagnosis. This algorithm cannot replace the function of diagnostic
surgical pathologists to take into account all information in a case,
beyond that present on the H&E stained slide, but can formulate a
favored diagnosis with a high degree of diagnostic concordance,
within seconds. We envision that such a tool could be used
routinely in the setting of a fully digital surgical pathology service,
as a diagnostic adjunct.
In conclusion, we demonstrate a deep learning strategy for

ovarian carcinoma histotype classification based only on

histological features that is generalizable even on an externally
stained test set. The performance is at a level that it could be
implemented into practice, for validation. This approach holds
potential as an adjunct for informing histotype diagnosis and in
supporting histotype-specific ovarian cancer treatment.

DATA AVAILABILITY
The color normalization and deep learning codebase developed for this study will be
made available through the following address upon publication: https://github.com/
AIMLab-UBC/.
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