Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Hippocampal mossy cell involvement in behavioral and neurogenic responses to chronic antidepressant treatment

Abstract

Most antidepressants, including selective serotonin reuptake inhibitors (SSRIs), initiate their drug actions by rapid elevation of serotonin, but they take several weeks to achieve therapeutic onset. This therapeutic delay suggests slow adaptive changes in multiple neuronal subtypes and their neural circuits over prolonged periods of drug treatment. Mossy cells are excitatory neurons in the dentate hilus that regulate dentate gyrus activity and function. Here we show that neuronal activity of hippocampal mossy cells is enhanced by chronic, but not acute, SSRI administration. Behavioral and neurogenic effects of chronic treatment with the SSRI, fluoxetine, are abolished by mossy cell-specific knockout of p11 or Smarca3 or by an inhibition of the p11/AnxA2/SMARCA3 heterohexamer, an SSRI-inducible protein complex. Furthermore, simple chemogenetic activation of mossy cells using Gq-DREADD is sufficient to elevate the proliferation and survival of the neural stem cells. Conversely, acute chemogenetic inhibition of mossy cells using Gi-DREADD impairs behavioral and neurogenic responses to chronic administration of SSRI. The present data establish that mossy cells play a crucial role in mediating the effects of chronic antidepressant medication. Our results indicate that compounds that target mossy cell activity would be attractive candidates for the development of new antidepressant medications.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Duman RS, Aghajanian GK. Synaptic dysfunction in depression: potential therapeutic targets. Science. 2012;338:68–72.

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Nestler EJ, Barrot M, DiLeone RJ, Eisch AJ, Gold SJ, Monteggia LM. Neurobiology of depression. Neuron. 2002;34:13–25.

    CAS  PubMed  Google Scholar 

  3. Berton O, Nestler EJ. New approaches to antidepressant drug discovery: beyond monoamines. Nat Rev Neurosci. 2006;7:137–51.

    CAS  PubMed  Google Scholar 

  4. Holtzheimer PE, Mayberg HS. Stuck in a rut: rethinking depression and its treatment. Trends Neurosci. 2011;34:1–9.

    CAS  PubMed  Google Scholar 

  5. Krishnan V, Nestler EJ. Linking molecules to mood: new insight into the biology of depression. Am J Psychiatry. 2010;167:1305–20.

    PubMed  PubMed Central  Google Scholar 

  6. Covington HE 3rd, Vialou V, Nestler EJ. From synapse to nucleus: novel targets for treating depression. Neuropharmacology. 2010;58:683–93.

    CAS  PubMed  Google Scholar 

  7. Duman RS, Aghajanian GK, Sanacora G, Krystal JH. Synaptic plasticity and depression: new insights from stress and rapid-acting antidepressants. Nat Med. 2016;22:238–49.

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Rush AJ, Trivedi MH, Wisniewski SR, Nierenberg AA, Stewart JW, Warden D, et al. Acute and longer-term outcomes in depressed outpatients requiring one or several treatment steps: a STAR*D report. Am J Psychiat. 2006;163:1905–17.

    PubMed  Google Scholar 

  9. Amaral DG. A Golgi study of cell types in the hilar region of the hippocampus in the rat. J Comp Neurol. 1978;182:851–914.

    CAS  PubMed  Google Scholar 

  10. Scharfman HE. Electrophysiological evidence that dentate hilar mossy cells are excitatory and innervate both granule cells and interneurons. J Neurophysiol. 1995;74:179–94.

    CAS  PubMed  Google Scholar 

  11. Blasco-Ibanez JM, Freund TF. Distribution, ultrastructure, and connectivity of calretinin-immunoreactive mossy cells of the mouse dentate gyrus. Hippocampus. 1997;7:307–20.

    CAS  PubMed  Google Scholar 

  12. Henze DA, Buzsaki G. Hilar mossy cells: functional identification and activity in vivo. Prog Brain Res. 2007;163:199–216.

    PubMed  Google Scholar 

  13. Scharfman HE. The enigmatic mossy cell of the dentate gyrus. Nat Rev Neurosci. 2016;17:562–75.

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Jinde S, Zsiros V, Nakazawa K. Hilar mossy cell circuitry controlling dentate granule cell excitability. Front Neural Circuits. 2013;7:14.

    PubMed  PubMed Central  Google Scholar 

  15. Sun Y, Grieco SF, Holmes TC, Xu X. Local and long-range circuit connections to hilar mossy cells in the dentate gyrus. eNeuro. 2017;4. https://doi.org/10.1523/ENEURO.0097-17.2017.

    PubMed  PubMed Central  Google Scholar 

  16. Gage FH, Thompson RG. Differential distribution of norepinephrine and serotonin along the dorsal-ventral axis of the hippocampal formation. Brain Res Bull. 1980;5:771–3.

    CAS  PubMed  Google Scholar 

  17. Lisman JE, Grace AA. The hippocampal-VTA loop: controlling the entry of information into long-term memory. Neuron. 2005;46:703–13.

    CAS  PubMed  Google Scholar 

  18. Patel A, Bulloch K. Type II glucocorticoid receptor immunoreactivity in the mossy cells of the rat and the mouse hippocampus. Hippocampus. 2003;13:59–66.

    Google Scholar 

  19. Danielson NB, Turi GF, Ladow M, Chavlis S, Petrantonakis PC, Poirazi P, et al. In vivo imaging of dentate gyrus mossy cells in behaving mice. Neuron. 2017;93:552–59.

    PubMed  PubMed Central  Google Scholar 

  20. GoodSmith D, Chen X, Wang C, Kim SH, Song H, Burgalossi A, et al. Spatial representations of granule cells and mossy cells of the dentate gyrus. Neuron. 2017;93:677–90.

    PubMed  PubMed Central  Google Scholar 

  21. Senzai Y, Buzsaki G. Physiological properties and behavioral correlates of hippocampal granule cells and mossy cells. Neuron. 2017;93:691–704.

    PubMed  PubMed Central  Google Scholar 

  22. Nakazawa K. Dentate mossy cell and pattern separation. Neuron. 2017;93:465–7.

    CAS  PubMed  Google Scholar 

  23. Jinde S, Zsiros V, Jiang Z, Nakao K, Pickel J, Kohno K, et al. Hilar mossy cell degeneration causes transient dentate granule cell hyperexcitability and impaired pattern separation. Neuron. 2012;76:1189–200.

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Svenningsson P, Chergui K, Rachleff I, Flajolet M, Zhang X, El Yacoubi M, et al. Alterations in 5-HT1B receptor function by p11 in depression-like states. Science. 2006;311:77–80.

    CAS  PubMed  Google Scholar 

  25. Svenningsson P, Kim Y, Warner-Schmidt J, Oh YS, Greengard P. p11 and its role in depression and therapeutic responses to antidepressants. Nat Rev Neurosci. 2013;14:673–80.

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Alexander B, Warner-Schmidt J, Eriksson T, Tamminga C, Arango-Lievano M, Ghose S, et al. Reversal of depressed behaviors in mice by p11 gene therapy in the nucleus accumbens. Sci Transl Med. 2010;2:54ra76.

    PubMed  PubMed Central  Google Scholar 

  27. Anisman H, Du L, Palkovits M, Faludi G, Kovacs GG, Szontagh-Kishazi P, et al. Serotonin receptor subtype and p11 mRNA expression in stress-relevant brain regions of suicide and control subjects. J Psychiatry Neurosci. 2008;33:131–41.

    PubMed  PubMed Central  Google Scholar 

  28. Alexander B, Warner-Schmidt J, Eriksson T, Tamminga C, Arango-Lievano M, Ghose S, et al. Reversal of depressed behaviors in mice by p11 gene therapy in the nucleus accumbens. Sci Transl Med. 2010;2:54ra76.

    PubMed  PubMed Central  Google Scholar 

  29. Egeland M, Warner-Schmidt J, Greengard P, Svenningsson P. Neurogenic effects of fluoxetine are attenuated inp11 (S100A10) knockout mice. Biol Psychiatry. 2010;67:1048–56.

    CAS  PubMed  Google Scholar 

  30. Warner-Schmidt JL, Chen EY, Zhang X, Marshall JJ, Morozov A, Svenningsson P, et al. A role for p11 in the antidepressant action of brain-derived neurotrophic factor. Biol Psychiatry. 2010;68:528–35.

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Schmidt EF, Warner-Schmidt JL, Otopalik BG, Pickett SB, Greengard P, Heintz N. Identification of the cortical neurons that mediate antidepressant responses. Cell. 2012;149:1152–63.

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Warner-Schmidt JL, Schmidt EF, Marshall JJ, Rubin AJ, Arango-Lievano M, Kaplitt MG, et al. Cholinergic interneurons in the nucleus accumbens regulate depression-like behavior. Proc Natl Acad Sci USA. 2012;109:11360–5.

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Eriksson TM, Alvarsson A, Stan TL, Zhang X, Hascup KN, Hascup ER, et al. Bidirectional regulation of emotional memory by 5-HT1B receptors involves hippocampalp11. Mol Psychiatry. 2013;18:1096–105.

    CAS  PubMed  Google Scholar 

  34. Oh YS, Gao P, Lee KW, Ceglia I, Seo JS, Zhang X, et al. SMARCA3, a chromatin-remodeling factor, is required for p11-dependent antidepressant action. Cell. 2013;152:831–43.

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Lee KW, Westin L, Kim J, Chang JC, Oh YS, Amreen B, et al. Alteration by p11 of mGluR5 localization regulates depression-like behaviors. Mol Psychiatry. 2015;20:1546–56.

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Milosevic A, Liebmann T, Knudsen M, Schintu N, Svenningsson P, Greengard P. Cell- and region-specific expression of depression-related proteinp11 (S100a10) in the brain. J Comp Neurol. 2017;525:955–75.

    CAS  PubMed  Google Scholar 

  37. Seo JS, Zhong P, Liu A, Yan Z, Greengard P. Elevation of p11 in lateral habenula mediates depression-like behavior. Mol Psychiatry 2017;23:1113.

    PubMed  PubMed Central  Google Scholar 

  38. Gerke V, Creutz CE, Moss SE. Annexins: linking Ca2+ signalling to membrane dynamics. Nat Rev Mol Cell Biol. 2005;6:449–61.

    CAS  PubMed  Google Scholar 

  39. Medrihan L, Sagi Y, Inde Z, Krupa O, Daniels C, Peyrache A, et al. Initiation of behavioral response to antidepressants by cholecystokinin neurons of the dentate gyrus. Neuron 2017;95:564–76.

    PubMed  Google Scholar 

  40. Gangarossa G, Longueville S, De Bundel D, Perroy J, Herve D, Girault JA, et al. Characterization of dopamine D1 and D2 receptor-expressing neurons in the mouse hippocampus. Hippocampus. 2012;22:2199–207.

    CAS  PubMed  Google Scholar 

  41. Puighermanal E, Biever A, Espallergues J, Gangarossa G, De Bundel D, Valjent E. drd2-cre:ribotag mouse line unravels the possible diversity of dopamine d2 receptor-expressing cells of the dorsal mouse hippocampus. Hippocampus. 2015;25:858–75.

    CAS  PubMed  Google Scholar 

  42. Lucassen PJ, Meerlo P, Naylor AS, van Dam AM, Dayer AG, Fuchs E, et al. Regulation of adult neurogenesis by stress, sleep disruption, exercise and inflammation: implications for depression and antidepressant action. Eur Neuropsychopharmacol. 2010;20:1–17.

    CAS  PubMed  Google Scholar 

  43. Duman RS, Malberg J, Nakagawa S, D’Sa C. Neuronal plasticity and survival in mood disorders. Biol Psychiatry. 2000;48:732–9.

    CAS  PubMed  Google Scholar 

  44. Santarelli L, Saxe M, Gross C, Surget A, Battaglia F, Dulawa S, et al. Requirement of hippocampal neurogenesis for the behavioral effects of antidepressants. Science. 2003;301:805–9.

    CAS  PubMed  Google Scholar 

  45. Couillard-Despres S, Winner B, Schaubeck S, Aigner R, Vroemen M, Weidner N, et al. Doublecortin expression levels in adult brain reflect neurogenesis. Eur J Neurosci. 2005;21:1–14.

    PubMed  Google Scholar 

  46. Scharfman HE, Myers CE. Hilar mossy cells of the dentate gyrus: a historical perspective. Front Neural Circuits. 2012;6:106.

    PubMed  Google Scholar 

  47. Moretto JN, Duffy AM, Scharfman HE. Acute restraint stress decreases c-fos immunoreactivity in hilar mossy cells of the adult dentate gyrus. Brain Struct Funct. 2017;222:2405–19.

    CAS  PubMed  Google Scholar 

  48. Willner P. Chronic mild stress (CMS) revisited: consistency and behavioural-neurobiological concordance in the effects of CMS. Neuropsychobiology. 2005;52:90–110.

    CAS  PubMed  Google Scholar 

  49. Dragunow M, Robertson HA. Kindling stimulation induces c-fos protein(s) in granule cells of the rat dentate gyrus. Nature. 1987;329:441–2.

    CAS  PubMed  Google Scholar 

  50. Das S, Shetty P, Valapala M, Dasgupta S, Gryczynski Z, Vishwanatha JK. Signal transducer and activator of transcription 6 (STAT6) is a novel interactor of annexin A2 in prostate cancer cells. Biochemistry. 2010;49:2216–26.

    CAS  PubMed  Google Scholar 

  51. Liu J, Vishwanatha JK. Regulation of nucleo-cytoplasmic shuttling of human annexin A2: a proposed mechanism. Mol Cell Biochem. 2007;303:211–20.

    CAS  PubMed  Google Scholar 

  52. Wang JW, David DJ, Monckton JE, Battaglia F, Hen R. Chronic fluoxetine stimulates maturation and synaptic plasticity of adult-born hippocampal granule cells. J Neurosci. 2008;28:1374–84.

    CAS  PubMed  PubMed Central  Google Scholar 

  53. David DJ, Samuels BA, Rainer Q, Wang JW, Marsteller D, Mendez I, et al. Neurogenesis-dependent and -independent effects of fluoxetine in an animal model of anxiety/depression. Neuron. 2009;62:479–93.

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Karpova NN, Pickenhagen A, Lindholm J, Tiraboschi E, Kulesskaya N, Agustsdottir A, et al. Fear erasure in mice requires synergy between antidepressant drugs and extinction training. Science. 2011;334:1731–4.

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Castrén E. Is mood chemistry? Nat Rev Neurosci. 2005;6:241.

    PubMed  Google Scholar 

  56. Shuto T, Kuroiwa M, Sotogaku N, Kawahara Y, Oh Y-S, Jang J-H, et al. Obligatory roles of dopamine D1 receptors in the dentate gyrus in antidepressant actions of a selective serotonin reuptake inhibitor, fluoxetine. Mol Psychiatry. 2018 https://doi.org/10.1038/s41380-018-0316-x. [EPub ahead of print].

  57. Krishnan V, Nestler EJ. The molecular neurobiology of depression. Nature. 2008;455:894–902.

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Scharfman HE, Schwartzkroin PA. Electrophysiology of morphologically identified mossy cells of the dentate hilus recorded in guinea pig hippocampal slices. J Neurosci. 1988;8:3812–21.

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Bui AD, Nguyen TM, Limouse C, Kim HK, Szabo GG, Felong S, et al. Dentate gyrus mossy cells control spontaneous convulsive seizures and spatial memory. Science. 2018;359:787–90.

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Chancey JH, Poulsen DJ, Wadiche JI, Overstreet-Wadiche L. Hilar mossy cells provide the first glutamatergic synapses to adult-born dentate granule cells. J Neurosci. 2014;34:2349–54.

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Imoto Y, Kira T, Sukeno M, Nishitani N, Nagayasu K, Nakagawa T, et al. Role of the 5-HT4 receptor in chronic fluoxetine treatment-induced neurogenic activity and granule cell dematuration in the dentate gyrus. Mol Brain. 2015;8:29.

    PubMed  PubMed Central  Google Scholar 

  62. Samuels BA, Anacker C, Hu A, Levinstein MR, Pickenhagen A, Tsetsenis T, et al. 5-HT1A receptors on mature dentate gyrus granule cells are critical for the antidepressant response. Nat Neurosci. 2015;18:1606–16.

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Segi-Nishida E. The effect of serotonin-targeting antidepressants on neurogenesis and neuronal maturation of the hippocampus mediated via 5-HT1A and 5-HT4 receptors. Front Cell Neurosci. 2017;11:142.

    PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We are grateful to Dr. Helen Scharfman (New York University, USA) for helpful advice and discussion and also to Dr. Kazu Nakazawa (University of Alabama, USA) for kindly sharing [Calcrl]-Cre transgenic mice. This research was supported by the Brain Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Science, ICT (NRF-2017M3C7A1048448 to YSO); the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (NRF-2016R1D1A1B03935615 to YSO); the Bio & Medical Technology Development Program (NRF-2017M3A9G8084463 to YSO); the DGIST R&D Program of the Ministry of Science, ICT and Future Planning (18-BD-0402 to YSO); KBRI basic research program through Korea Brain Research Institute funded by Ministry of Science and ICT (18-BR-04-03 to YSO); 2014 NARSAD YI AWARD (Grant No. 20695 to YSO). In addition, this work was supported by the United States Army Medical Research and Material Command (USAMRMC) under Award No.W81XWH-16-1-0681 (to PG), funds received from The JPB Foundation, Award No. 475 (to PG) and funds received from the Black Family Foundation (to PG).

Author information

Authors and Affiliations

Authors

Contributions

SO, JC, PG, and YSO designed the experiments. SO and JA performed and analyzed the behavior test. JC performed and analyzed electrophysiology experiments. SO performed and analyzed immunofluorescence data. SO, JC, PG, and YSO wrote the paper.

Corresponding author

Correspondence to Yong-Seok Oh.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Oh, SJ., Cheng, J., Jang, JH. et al. Hippocampal mossy cell involvement in behavioral and neurogenic responses to chronic antidepressant treatment. Mol Psychiatry 25, 1215–1228 (2020). https://doi.org/10.1038/s41380-019-0384-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41380-019-0384-6

This article is cited by

Search

Quick links