Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Expert Review
  • Published:

Neurobiology of rapid-acting antidepressants: convergent effects on GluA1-synaptic function

Abstract

Efforts to develop efficacious antidepressant agents with novel mechanisms have been largely unsuccessful since the 1950’s until the discovery of ketamine, an N-methyl-d-aspartate (NMDA) receptor antagonist that produces rapid and sustained antidepressant actions even in treatment-resistant patients. This finding has ushered in a new era for the development of novel rapid-acting antidepressants that act at the NMDA receptor complex, but without dissociative and psychotomimetic side effects of ketamine. Here, we review the current state of rapid-acting antidepressant drug development, including NMDA channel blockers, glycine site agents, and allosteric modulators, as well as ketamine stereoisomers and metabolites. In addition, we focus on the neurobiological mechanisms underlying the actions of these diverse agents and discuss evidence of convergent mechanisms including increased brain-derived neurotrophic factor signaling, increased synthesis of synaptic proteins, and most notably increased GluR1 and synaptic connectivity in the medial prefrontal cortex. These convergent mechanisms provide insight for potential additional novel targets for drug development (e.g., agents that increase synaptic protein synthesis and plasticity). Importantly, the convergent effects on synapse formation and plasticity also reverse the well-documented neuronal and synaptic deficits associated with stress and depression, and thereby target the underlying pathophysiology of major depressive disorder.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Kessler R. The costs of depression. Psychiatr Clin North Am. 2012;35:1–14.

    Article  PubMed  Google Scholar 

  2. Murray CJ, Atkinson C, Bhalla K, Birbeck G, Burstein R, Chou D, et al. The state of US health, 1990-2010: burden of diseases, injuries, and risk factors. JAMA. 2013;310:591–608.

    Article  CAS  PubMed  Google Scholar 

  3. WHO. Depression [Internet] 2017.

  4. Trivedi M, Rush AJ, Wisniewski SR, Nierenberg AA, Warden D, Ritz L, et al. Evaluation of outcomes with citalopram for depression using measurement-based care in STAR*D: implications for clinical practice. Am J Psychiatry. 2006;163:28–40.

    Article  PubMed  Google Scholar 

  5. Curtin SC, Warner M, Hedegaard H. Increase in suicide in the United States, 1999–2014. NCHS Data Brief. 2016;241:1–8.

    Google Scholar 

  6. Berman RM, Cappiello A, Anand A, Oren DA, Heninger GR, Charney DS, et al. Antidepressant effects of ketamine in depressed patients. Biol Psychiatry. 2000;47:351–4.

    Article  CAS  PubMed  Google Scholar 

  7. Sinner B, Graf BM. Modern Anesthetics. In: Schüttler J, Schwilden H, (eds). Handbook of Experimental Pharmacology. 182. Berlin, Heidelberg: Springer; 2008. p. 313–33.

    Google Scholar 

  8. Zarate CA Jr., Singh JB, Carlson PJ, Brutsche NE, Ameli R, Luckenbaugh DA, et al. A randomized trial of an N-methyl-D-aspartate antagonist in treatment-resistant major depression. Arch Gen Psychiatry. 2006;63:856–64.

    Article  CAS  PubMed  Google Scholar 

  9. Wilkinson S, Ballard E, Bloch M, Mathew S, Murrough J, Feder A, et al. The effect of a single dose of intravenous ketamine on suicidal ideation: a systematic review and individual participant data meta-analysis. Am J Psychiatry. 2018;175:150–8.

    Article  PubMed  Google Scholar 

  10. Diazgranados N, Ibrahim L, Brutsche NE, Newberg A, Kronstein P, Khalife S, et al. A randomized add-on trial of an N-methyl-D-aspartate antagonist in treatment-resistant bipolar depression. Arch Gen Psychiatry. 2010;67:793–802.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Newport D, Carpenter L, McDonald W, Potash J, Tohen M, Nemeroff C. Ketamine and other NMDA antagonists: early clinical trials and possible mechanisms in depression. Am J Psychiatry. 2015;172:10.

    Article  Google Scholar 

  12. Sanacora G, Frye MA, McDonald W, Mathew SJ, Turner MS, Schatzberg AF, et al. A Consensus Statement on the Use of Ketamine in the Treatment of Mood Disorders. JAMA Psychiatry. 2017;74:399–405.

    Article  PubMed  Google Scholar 

  13. Zanos P, Gould TD. Mechanisms of ketamine action as an antidepressant. Mol Psychiatry. 2018;23:801–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Moghaddam B, Krystal JH. Capturing the angel in “angel dust”: twenty years of translational neuroscience studies of NMDA receptor antagonists in animals and humans. Schizophr Bull. 2012;38:942–9.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Henter ID, de Sousa RT, Zarate CA, Jr. Glutamatergic Modulators in Depression. Harv Rev Psychiatry. 2018;26:307–19.

  16. Duman RS, Aghajanian GK, Sanacora G, Krystal JH. Synaptic plasticity and depression: new insights from stress and rapid-acting antidepressants. Nat Med. 2016;22:238–49.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Krystal JH, Sanacora G, Duman RS. Rapid-acting glutamatergic antidepressants: the path to ketamine and beyond. Biol Psychiatry. 2013;73:1133–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Zanos P, Moaddel R, Morris PJ, Georgiou P, Fischell J, Elmer GI, et al. NMDAR inhibition-independent antidepressant actions of ketamine metabolites. Nature. 2016;533:481–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Yang C, Qu Y, Abe M, Nozawa D, Chaki S, Hashimoto K. (R)-Ketamine shows greater potency and longer lasting antidepressant effects than its metabolite (2R,6R)-hydroxynorketamine. Biol Psych. 2017;85:e43–e44.

    Article  CAS  Google Scholar 

  20. Duman RS, Monteggia LM. A neurotrophic model for stress-related mood disorders. Biol Psychiatry. 2006;59:1116–27.

    Article  CAS  PubMed  Google Scholar 

  21. Bliss TV, Collingridge GL. A synaptic model of memory: long-term potentiation in the hippocampus. Nature. 1993;361:31–39.

    Article  CAS  PubMed  Google Scholar 

  22. Nicoll RA, Malenka RC. Contrasting properties of two forms of long-term potentiation in the hippocampus. Nature. 1995;377:115–8.

    Article  CAS  PubMed  Google Scholar 

  23. Ogden KK, Traynelis SF. New advances in NMDA receptor pharmacology. Trends Pharmacol Sci. 2011;32:726–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Hansen KB, Yi F, Perszyk RE, Furukawa H, Wollmuth LP, Gibb AJ, et al. Structure, function, and allosteric modulation of NMDA receptors. J Gen Physiol. 2018;150:1081–105.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Reisberg B, Doody R, Stoffler A, Schmitt F, Ferris S, Mobius HJ, et al. Memantine in moderate-to-severe Alzheimer’s disease. N Engl J Med. 2003;348:1333–41.

    Article  CAS  PubMed  Google Scholar 

  26. Zarate CA Jr., Singh JB, Quiroz JA, De Jesus G, Denicoff KK, Luckenbaugh DA, et al. A double-blind, placebo-controlled study of memantine in the treatment of major depression. Am J Psychiatry. 2006;163:153–5.

    Article  PubMed  Google Scholar 

  27. Sanacora G, Smith MA, Pathak S, Su HL, Boeijinga PH, McCarthy DJ, et al. Lanicemine: a low-trapping NMDA channel blocker produces sustained antidepressant efficacy with minimal psychotomimetic adverse effects. Mol Psychiatry. 2014;19:978–85.

    Article  CAS  PubMed  Google Scholar 

  28. Zarate CA Jr., Mathews D, Ibrahim L, Chaves JF, Marquardt C, Ukoh I, et al. A randomized trial of a low-trapping nonselective N-methyl-D-aspartate channel blocker in major depression. Biol Psychiatry. 2013;74:257–64.

    Article  CAS  PubMed  Google Scholar 

  29. Sanacora G, Johnson MR, Khan A, Atkinson SD, Riesenberg RR, Schronen JP, et al. Adjunctive lanicemine (AZD6765) in patients with major depressive disorder and history of inadequate response to antidepressants: a randomized, placebo-controlled study. Neuropsychopharmacology. 2017;42:844–53.

    Article  CAS  PubMed  Google Scholar 

  30. Williams NR, Heifets BD, Blasey C, Sudheimer K, Pannu J, Pankow H, et al. Attenuation of antidepressant effects of ketamine by opioid receptor antagonism. Am J Psychiatry. 2018;175:1205–15.

  31. Mealing GA, Lanthorn TH, Murray CL, Small DL, Morley P. Differences in degree of trapping of low-affinity uncompetitive N-methyl-D-aspartic acid receptor antagonists with similar kinetics of block. J Pharmacol Exp Ther. 1999;288:204–10.

    CAS  PubMed  Google Scholar 

  32. Blanpied TA, Boeckman FA, Aizenman E, Johnson JW. Trapping channel block of NMDA-activated responses by amantadine and memantine. J Neurophysiol. 1997;77:309–23.

    Article  CAS  PubMed  Google Scholar 

  33. Maeng S, Zarate CA Jr., Du J, Schloesser RJ, McCammon J, Chen G, et al. Cellular mechanisms underlying the antidepressant effects of ketamine: role of alpha-amino-3-hydroxy-5-methylisoxazole-4-propionic acid receptors. Biol Psychiatry. 2008;63:349–52.

    Article  CAS  PubMed  Google Scholar 

  34. Autry AE, Adachi M, Nosyreva E, Na ES, Los MF, Cheng PF, et al. NMDA receptor blockade at rest triggers rapid behavioural anatidepressant responses. Nature. 2011;475:91–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Moghaddam B, Adams B, Verma A, Daly D. Activation of glutamatergic neurotransmission by ketamine: a novel step in the pathway from NMDA receptor blockade to dopaminergic and cognitive disruptions associated with the prefrontal cortex. J Neurosci. 1997;17:2921–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Li N, Lee B, Liu RJ, Banasr M, Dwyer JM, Iwata M, et al. mTOR-dependent synapse formation underlies the rapid antidepressant effects of NMDA antagonists. Science. 2010;329:959–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Duman RS, Aghajanian GK. Synaptic dysfunction in depression: potential therapeutic targets. Science. 2012;338:68–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. McEwen BS, Morrison JH. The brain on stress: vulnerability and plasticity of the prefrontal cortex over the life course. Neuron. 2013;79:16–29.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. McEwen BS, Bowles NP, Gray JD, Hill MN, Hunter RG, Karatsoreos IN, et al. Mechanisms of stress in the brain. Nat Neurosci. 2015;18:1353–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. MacQueen G, Frodl T. The hippocampus in major depression: evidence for the convergence of the bench and bedside in psychiatric research? Mol Psychiatry. 2011;16:252–64.

    Article  CAS  PubMed  Google Scholar 

  41. Li N, Liu RJ, Dwyer JM, Banasr M, Lee B, Son H, et al. Glutamate N-methyl-D-aspartate receptor antagonists rapidly reverse behavioral and synaptic deficits caused by chronic stress exposure. Biol Psychiatry. 2011;69:754–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Liu RJ, Lee FS, Li XY, Bambico F, Duman RS, Aghajanian GK. Brain-derived neurotrophic factor Val66Met allele impairs basal and ketamine-stimulated synaptogenesis in prefrontal cortex. Biol Psychiatry. 2012;71:996–1005.

    Article  CAS  PubMed  Google Scholar 

  43. Liu RJ, Aghajanian GK. Stress blunts serotonin- and hypocretin-evoked EPSCs in prefrontal cortex: role of corticosterone-mediated apical dendritic atrophy. Proc Natl Acad Sci USA. 2008;105:359–64.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Radley JJ, Rocher AB, Miller M, Janssen WG, Liston C, Hof PR, et al. Repeated stress induces dendritic spine loss in the rat medial prefrontal cortex. Cereb Cortex. 2006;16:313–20.

    Article  PubMed  Google Scholar 

  45. Chen MK, Mecca AP, Naganawa M, Finnema SJ, Toyonaga T, Lin SF, et al. Assessing synaptic density in alzheimer disease with synaptic vesicle glycoprotein 2A positron emission tomographic imaging. JAMA Neurol. 2018;75:1215–24.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Citri A, Malenka RC. Synaptic plasticity: multiple forms, functions, and mechanisms. Neuropsychopharmacology. 2008;33:18–41.

    Article  PubMed  Google Scholar 

  47. Huber KM, Klann E, Costa-Mattioli M, Zukin RS. Dysregulation of mammalian target of rapamycin signaling in mouse models of autism. J Neurosci. 2015;35:13836–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Richter JD, Bassell GJ, Klann E. Dysregulation and restoration of translational homeostasis in fragile X syndrome. Nat Rev Neurosci. 2015;16:595–605.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Hoeffer CA, Klann E. mTOR signaling: at the crossroads of plasticity, memory and disease. Trends Neurosci. 2010;33:67–75.

    Article  CAS  PubMed  Google Scholar 

  50. Carrier N, Kabbaj M. Sex differences in the antidepressant-like effects of ketamine. Neuropharmacology. 2013;70:27–34.

    Article  CAS  PubMed  Google Scholar 

  51. Miller OH, Yang L, Wang CC, Hargroder EA, Zhang Y, Delpire E, et al. GluN2B-containing NMDA receptors regulate depression-like behavior and are critical for the rapid antidepressant actions of ketamine. eLife. 2014;3:e03581.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Pazini F, Cunha M, Rosa J, Colla A, Lieberknecht V, Oliveira A, et al. Creatine, similar to ketamine, counteracts depressive-like behavior induced by corticosterone via PI3K/Akt/mTOR pathway. Mol Neurobiol. 2016;53:6818–34.

    Article  CAS  PubMed  Google Scholar 

  53. Harraz M, Tyagi R, Cortés P, Snyder S. Antidepressant action of ketamine via mTOR is mediated by inhibition of nitrergic Rheb degradation. Mol Psych. 2016;21:313–9.

    Article  CAS  Google Scholar 

  54. Yang C, Kobayashi S, Nakao K, Dong C, Han M, Qu Y, et al. AMPA receptor activation-independent antidepressant actions of ketamine metabolite (S)-norketamine. Biol Psychiatry. 2018;84:591–600.

    Article  CAS  PubMed  Google Scholar 

  55. Zhou W, Wang N, Yang C, Li XM, Zhou ZQ, Yang JJ. Ketamine-induced antidepressant effects are associated with AMPA receptors-mediated upregulation of mTOR and BDNF in rat hippocampus and prefrontal cortex. Eur Psychiatryr. 2014;29:419–23.

    Article  CAS  Google Scholar 

  56. Sutton MA, Taylor AM, Ito HT, Pham A, Schuman EM. Postsynaptic decoding of neural activity: eEF2 as a biochemical sensor coupling miniature synaptic transmission to local protein synthesis. Neuron. 2007;55:648–61.

    Article  CAS  PubMed  Google Scholar 

  57. Fuchikami M, Thomas A, Liu R, Wohleb ES, Land BB, DiLeone RJ, et al. Optogenetic stimulation of infralimbic PFC reproduces ketamine’s rapid and sustained antidepressant actions. Proc Natl Acad Sci. 2015;112:8106–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Zagrebelsky M, Korte M. Form follows function: BDNF and its involvement in sculpting the function and structure of synapses. Neuropharmacology. 2014;76:628–38.

    Article  CAS  PubMed  Google Scholar 

  59. Hill JL, Martinowich K. Activity-dependent signaling: influence on plasticity in circuits controlling fear-related behavior. Curr Opin Neurobiol. 2016;36:59–65.

    Article  CAS  PubMed  Google Scholar 

  60. Smith MA, Makino S, Kvetnansky R, Post RM. Stress and glucocorticoids affect the expression of brain-derived neurotrophic factor and neurotrophin-3 mRNAs in the hippocampus. J Neurosci. 1995;15):1768–77.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Karege F, Vaudan G, Schwald M, Perroud N, La Harpe R. Neurotrophin levels in postmortem brains of suicide victims and the effects of antemortem diagnosis and psychotropic drugs. Brain Res Mol Brain Res. 2005;136:29–37.

    Article  CAS  PubMed  Google Scholar 

  62. Dwivedi Y, Rizavi HS, Conley RR, Roberts RC, Tamminga CA, Pandey GN. Altered gene expression of brain-derived neurotrophic factor and receptor tyrosine kinase B in postmortem brain of suicide subjects. Arch Gen Psychiatry. 2003;60:804–15.

    Article  CAS  PubMed  Google Scholar 

  63. Chen B, Dowlatshahi D, MacQueen GM, Wang JF, Young LT. Increased hippocampal BDNF immunoreactivity in subjects treated with antidepressant medication. Biol Psychiatry. 2001;50:260–5.

    Article  CAS  PubMed  Google Scholar 

  64. Zakharenko SS, Patterson SL, Dragatsis I, Zeitlin SO, Siegelbaum SA, Kandel ER, et al. Presynaptic BDNF required for a presynaptic but not postsynaptic component of LTP at hippocampal CA1-CA3 synapses. Neuron. 2003;39:975–90.

    Article  CAS  PubMed  Google Scholar 

  65. Egan MF, Kojima M, Callicott JH, Goldberg TE, Kolachana BS, Bertolino A, et al. The BDNF val66met polymorphism affects activity-dependent secretion of BDNF and human memory and hippocampal function. Cell. 2003;112:257–69.

    Article  CAS  PubMed  Google Scholar 

  66. Chen ZY, Jing D, Bath KG, Ieraci A, Khan T, Siao CJ, et al. Genetic variant BDNF (Val66Met) polymorphism alters anxiety-related behavior. Science. 2006;314:140–3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Lepack A, Fuchikami M, Dwyer J, Banasr M, Aghajanian G, Duman R. BDNF release is required for the behavioral actions of ketamine. Int J Neuropsychopharmacol. 2014;18:1.

    Google Scholar 

  68. Lepack AE, Bang E, Lee B, Dwyer JM, Duman RS. Fast-acting antidepressants rapidly stimulate ERK signaling and BDNF release in primary neuronal cultures. Neuropharmacology. 2016;111:242–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Nibuya M, Morinobu S, Duman RS. Regulation of BDNF and trkB mRNA in rat brain by chronic electroconvulsive seizure and antidepressant drug treatments. J Neurosci. 1995;15:7539–47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Laje G, Lally N, Mathews D, Brutsche N, Chemerinski A, Akula N, et al. Brain-derived neurotrophic factor Val66Met polymorphism and antidepressant efficacy of ketamine in depressed patients. Biol Psychiatry. 2012;72:e27–e28.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Su TP, Chen MH, Li CT, Lin WC, Hong CJ, Gueorguieva R, et al. Dose-related effects of adjunctive ketamine in taiwanese patients with treatment-resistant depression. Neuropsychopharmacology. 2017;42:2482–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Miller OH, Moran JT, Hall BJ. Two cellular hypotheses explaining the initiation of ketamine’s antidepressant actions: direct inhibition and disinhibition. Neuropharmacology. 2016;100:17–26.

    Article  CAS  PubMed  Google Scholar 

  73. Duman RS. Ketamine and rapid-acting antidepressants: a new era in the battle against depression and suicide. F1000Research. 2018; 7:659.

  74. Homayoun H, Moghaddam B. NMDA receptor hypofunction produces opposite effects on prefrontal cortex interneurons and pyramidal neurons. J Neurosci. 2007;27:11496–500.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Widman AJ, McMahon LL. Disinhibition of CA1 pyramidal cells by low-dose ketamine and other antagonists with rapid antidepressant efficacy. Proc Natl Acad Sci USA. 2018;115:E3007–E3016.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Fan LZ, Nehme R, Adam Y, Jung ES, Wu H, Eggan K, et al. All-optical synaptic electrophysiology probes mechanism of ketamine-induced disinhibition. Nat Methods. 2018;15:823–31.

  77. Preskorn S, Baker B, Kolluri S, Menniti FS, Krams M, Landen JW. An innovative design to establish proof of concept of the antidepressant effects of the NR2B subunit selective N-methyl-D-asparate antagonist, CP-101, 606, in patients with treatment-refractory major depressive dosorder. J Clin Psychopharmacol. 2008;28:631–7.

    Article  CAS  PubMed  Google Scholar 

  78. Gerhard DM, Duman RS. Role of GABAergic interneuron GluN2B subunits on the antidepressant actions of ketamine in male and female mice. Society for Neuroscience, San Diego, CA, 2018.

  79. Furey ML, Drevets WC. Antidepressant efficacy of the antimuscarinic drug scopolamine: a randomized, placebo-controlled clinical trial. Arch Gen Psychiatry. 2006;63:1121–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Drevets WC, Furey ML. Replication of scopolamine’s antidepressant efficacy in major depressive disorder: a randomized, placebo-controlled clinical trial. Biol Psychiatry. 2010;67:432–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Park L, Furey M, Nugent AC, Farmer C, Ellis J, Szczepanik J, et al. Neurophysiological changes associated with antidepressant response to ketamine not observed in a negative trial of scopolamine in major depressive disorder. Int J Neuropsychopharmacol. 2019;22:10–8.

    Article  CAS  PubMed  Google Scholar 

  82. Voleti B, Navarria A, Liu RJ, Banasr M, Li N, Terwilliger R, et al. Scopolamine rapidly increases mammalian target of rapamycin complex 1 signaling, synaptogenesis, and antidepressant behavioral responses. Biol Psychiatry. 2013;74:742–9.

    Article  CAS  PubMed  Google Scholar 

  83. Wohleb ES, Wu M, Gerhard DM, Taylor S, Picciotto M, Alreja M, et al. M1-type muscarinic acetylcholine receptors on prefrontal cortex interneurons mediate the rapid antidepressant effects of scopolamin. J Clin Invest. 2016; Under revision.

  84. Pozzi L, Pollak Dorocic I, Wang X, Carlen M, Meletis K. Mice lacking NMDA receptors in parvalbumin neurons display normal depression-related behavior and response to antidepressant action of NMDAR antagonists. PLoS ONE. 2014;9:e83879.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Wang CC, Held RG, Chang SC, Yang L, Delpire E, Ghosh A, et al. A critical role for GluN2B-containing NMDA receptors in cortical development and function. Neuron. 2011;72:789–805.

    Article  CAS  PubMed  Google Scholar 

  86. Yang C, Shirayama Y, Zhang JC, Ren Q, Yao W, Ma M, et al. R-ketamine: a rapid-onset and sustained antidepressant without psychotomimetic side effects. Transl Psychiatry. 2015;5:9.

    Article  CAS  Google Scholar 

  87. Yang C, Ren Q, Qu Y, Zhang J, Ma M, Dong C, et al. Mechanistic target of rapamycin-independent antidepressant effects of (R)-ketamine in a social defeat stress model. Biol Psych. 2018;83:1.

    Article  CAS  Google Scholar 

  88. Pham TH, Defaix C, Xu X, Deng SX, Fabresse N, Alvarez JC, et al. Common neurotransmission recruited in (R,S)-ketamine and (2R,6R)-hydroxynorketamine-induced sustained antidepressant-like effects. Biol Psychiatry. 2018;84:e3–e6.

    Article  CAS  PubMed  Google Scholar 

  89. Fukumoto K, Fogaca M, Liu R, Duman C, Kato T, Li X et al. Activity-dependent BDNF signaling is required for the antidepressant actions of (2R, 6R)-Hydroxynorketamine. PNAS. 2018; in revision.

  90. Zhang K, Toki H, Fujita Y, Ma M, Chang L, Qu Y, et al. Lack of deuterium isotope effects in the antidepressant effects of (R)-ketamine in a chronic social defeat stress model. Psychopharmacol (Berl). 2018;235:3177–85.

    Article  CAS  Google Scholar 

  91. Shirayama Y, Hashimoto K. Lack of antidepressant effects of (2R,6R)-hydroxynorketamine in a rat learned helplessness Model:comparison with (R)-ketamine. Int J Neuropsychopharmacol. 2018;21:84–8.

    Article  CAS  PubMed  Google Scholar 

  92. Suzuki K, Nosyreva E, Hunt K, Kavalai E, Monteggia L. Effects of a ketamine metabolite on synaptic NMDAR function. Nature. 2017;546:7659.

    Article  CAS  Google Scholar 

  93. Ibrahim L, Granados ND, Jolkovsky L, Brutsche N, Luckenbaugh D, Herring W, et al. A Randomized, placebo-controlled, crossover pilot trial of the oral selective NR2B antagonist MK-0657 in patients with treatment-resistant major depressive disorder. J Clin Psychopharmacol. 2012;32:1231–42.

    Article  CAS  Google Scholar 

  94. Clements JD, Westbrook GL. Activation kinetics reveal the number of glutamate and glycine binding sites on the N-methyl-D-aspartate receptor. Neuron. 1991;7:605–13.

    Article  CAS  PubMed  Google Scholar 

  95. Zanos P, Piantadosi SC, Wu HQ, Pribut HJ, Dell MJ, Can A, et al. The prodrug 4-chlorokynurenine causes ketamine-like antidepressant effects, but not side effects, by NMDA/glycineB-site inhibition. J Pharmacol Exp Ther. 2015;355:76–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Wallace M, White A, Grako KA, Lane R, Cato AJ, Snodgrass HR. Randomized, double-blind, placebo-controlled, dose-escalation study: Investigation of the safety, pharmacokinetics, and antihyperalgesic activity of l-4-chlorokynurenine in healthy volunteers. Scand J Pain. 2017;17:243–51.

    Article  PubMed  Google Scholar 

  97. Papp M, Moryl E. Antidepressant-like effects of 1-aminocyclopropanecarboxylic acid and D-cycloserine in an animal model of depression. Eur J Pharmacol. 1996;316:145–51.

    Article  CAS  PubMed  Google Scholar 

  98. Heresco-Levy U, Gelfin G, Bloch B, Levin R, Edelman S, Javitt DC, et al. A randomized add-on trial of high-dose D-cycloserine for treatment-resistant depression. Int J Neuropsychopharmacol. 2013;16:501–6.

    Article  CAS  PubMed  Google Scholar 

  99. Mataix-Cols D, Fernandez de la Cruz L, Monzani B, Rosenfield D, Andersson E, Perez-Vigil A, et al. D-cycloserine augmentation of exposure-based cognitive behavior therapy for anxiety, obsessive-compulsive, and posttraumatic stress disorders: a systematic review and meta-analysis of individual participant data. JAMA Psychiatry. 2017;74:501–10.

    Article  PubMed  Google Scholar 

  100. Davis M, Ressler K, Rothbaum BO, Richardson R. Effects of D-cycloserine on extinction: translation from preclinical to clinical work. Biol Psychiatry. 2006;60:369–75.

    Article  CAS  PubMed  Google Scholar 

  101. Malkesman O, Austin DR, Tragon T, Wang G, Rompala G, Hamidi AB, et al. Acute D-serine treatment produces antidepressant-like effects in rodents. Int J Neuropsychopharmacol. 2012;15:1135–48.

    Article  CAS  PubMed  Google Scholar 

  102. Huang CC, Wei IH, Huang CL, Chen KT, Tsai MH, Tsai P, et al. Inhibition of glycine transporter-I as a novel mechanism for the treatment of depression. Biol Psychiatry. 2013;74:734–41.

    Article  CAS  PubMed  Google Scholar 

  103. Chen KT, Tsai MH, Wu CH, Jou MJ, Wei IH, Huang CC. AMPA receptor-mTOR activation is required for the antidepressant-like effects of sarcosine during the forced swim test in rats: insertion of ampa receptor may play a role. Front Behav Neurosci. 2015;9:162.

    PubMed  PubMed Central  Google Scholar 

  104. Moskal JR, Burgdorf JS, Stanton PK, Kroes RA, Disterhoft JF, Burch RM, et al. The development of rapastinel (Formerly GLYX-13); a rapid acting and long lasting antidepressant. Curr Neuropharmacol. 2017;15:47–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Burgdorf J, Zhang XL, Weiss C, Gross A, Boikess SR, Kroes RA, et al. The long-lasting antidepressant effects of rapastinel (GLYX-13) are associated with a metaplasticity process in the medial prefrontal cortex and hippocampus. Neuroscience. 2015;308:202–11.

    Article  CAS  PubMed  Google Scholar 

  106. Burgdorf J, Zhang XL, Nicholson KL, Balster RL, Leander JD, Stanton PK, et al. GLYX-13, a NMDA receptor glycine-site functional partial agonist, induces antidepressant-like effects without ketamine-like side effects. Neuropsychopharmacology. 2013;38:729–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Liu RJ, Duman C, Kato T, Hare B, Lopresto D, Bang E, et al. GLYX-13 produces rapid antidepressant responses with key synaptic and behavioral effects distinct from ketamine. Neuropsychopharmacology. 2017;42:1231–42.

    Article  CAS  PubMed  Google Scholar 

  108. Preskorn S, Macaluso M, Mehra DO, Zammit G, Moskal JR, Burch RM, et al. Randomized proof of concept trial of GLYX-13, an N-methyl-D-aspartate receptor glycine site partial agonist, in major depressive disorder nonresponsive to a previous antidepressant agent. J Psychiatr Pract. 2015;21:140–9.

    Article  PubMed  Google Scholar 

  109. Rajagopal L, Huang M, Li J, He W, Soni D, Banerjee P et al. Rapastinel, a novel NMDA receptor modulator, produces prolonged rescue of subchronic phencyclidine - induced deficits in episodic memory as well as other beneficial effects on cognitive function in a rapamycin sensitive manner. Society for Neuroscience, Washington, DC, 2017.

  110. (Glyx-13), A rapid acting antidepressant, does not increase extracellular levels of dopamine and glutamate in rat medial prefrontal cortex. Proceedings of the American College of Neuropsychopharmacology, Hollywood, Florida, 2016.

  111. Abdallah CG, Sanacora G, Duman RS, Krystal JH. The neurobiology of depression, ketamine and rapid-acting antidepressants: Is it glutamate inhibition or activation? Pharmacol Ther. 2018;190:148–58.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Hascup ER, Hascup KN, Stephens M, Pomerleau F, Huettl P, Gratton A, et al. Rapid microelectrode measurements and the origin and regulation of extracellular glutamate in rat prefrontal cortex. J Neurochem. 2010;115:1608–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Xi ZX, Baker DA, Shen H, Carson DS, Kalivas PW. Group II metabotropic glutamate receptors modulate extracellular glutamate in the nucleus accumbens. J Pharmacol Exp Ther. 2002;300:162–71.

    Article  CAS  PubMed  Google Scholar 

  114. Koike H, Chaki S. Requirement of AMPA receptor stimulation for the sustained antidepressant activity of ketamine and LY341495 during the forced swim test in rats. Behav Brain Res. 2014;271:111–5.

    Article  CAS  PubMed  Google Scholar 

  115. Koike H, Iijima M, Chaki S. Involvement of the mammalian target of rapamycin signaling in the antidepressant-like effect of group II metabotropic glutamate receptor antagonists. Neuropharmacology. 2011;61:1419–23.

    Article  CAS  PubMed  Google Scholar 

  116. Dwyer JM, Lepack AE, Duman RS. mTOR activation is required for the antidepressant effects of mGluR(2)/(3) blockade. Int J Neuropsychopharmacol. 2012;15:429–34.

    Article  CAS  PubMed  Google Scholar 

  117. Dwyer JM, Lepack AE, Duman RS. mGluR2/3 blockade produces rapid and long-lasting reversal of anhedonia caused by chronic stress exposure. J Mol Psychiatry. 2013;1:15.

    Article  PubMed  PubMed Central  Google Scholar 

  118. Joffe ME, Conn PJ. Antidepressant potential of metabotropic glutamate receptor mGlu2 and mGlu3 negative allosteric modulators. Neuropsychopharmacology. 2018;44:214–36.

  119. Engers JL, Rodriguez AL, Konkol LC, Morrison RD, Thompson AD, Byers FW, et al. Discovery of a selective and CNS penetrant negative allosteric modulator of metabotropic glutamate receptor subtype 3 with antidepressant and anxiolytic activity in rodents. J Med Chem. 2015;58:7485–500.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Fukumoto K, Iijima M, Funakoshi T, Chaki S. Role of 5-HT1A receptor stimulation in the medial prefrontal cortex in the sustained antidepressant effects of ketamine. Int J Neuropsychopharmacol. 2018;21:371–81.

    Article  CAS  PubMed  Google Scholar 

  121. Ghosal S, Bang E, Yue W, Hare BD, Lepack AE, Girgenti MJ, et al. Activity-dependent brain-derived neurotrophic factor release is required for the rapid antidepressant actions of scopolamine. Biol Psychiatry. 2018;83:29–37.

    Article  CAS  PubMed  Google Scholar 

  122. Efeyan A, Comb W, Sabatini D. Nutrient-sensing mechanisms and pathways. Nature. 2015;517:302–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Kato T, Fogaca M, Deyama S, Li X, Fukumoto K, Duman R. BDNF release and signaling are required for the antidepressant actions of GLYX-13. Mol Psych. 2017;23:2007–17.

  124. Bjorkholm C, Marcus MM, Konradsson-Geuken A, Jardemark K, Svensson TH. The novel antipsychotic drug brexpiprazole, alone and in combination with escitalopram, facilitates prefrontal glutamatergic transmission via a dopamine D1 receptor-dependent mechanism. Eur Neuropsychopharmacol. 2017;27:411–7.

    Article  CAS  PubMed  Google Scholar 

  125. Sun X, Zhao Y, Wolf ME. Dopamine receptor stimulation modulates AMPA receptor synaptic insertion in prefrontal cortex neurons. J Neurosci. 2005;25:7342–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Arnsten AF. Stress weakens prefrontal networks: molecular insults to higher cognition. Nat Neurosci. 2015;18:1376–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Shinohara R, Taniguchi M, Ehrlich AT, Yokogawa K, Deguchi Y, Cherasse Y, et al. Dopamine D1 receptor subtype mediates acute stress-induced dendritic growth in excitatory neurons of the medial prefrontal cortex and contributes to suppression of stress susceptibility in mice. Mol Psychiatry. 2018;23:1717–30.

    Article  CAS  PubMed  Google Scholar 

  128. D’Aquila PS, Collu M, Pani L, Gessa GL, Serra G. Antidepressant-like effect of selective dopamine D1 receptor agonists in the behavioural despair animal model of depression. Eur J Pharmacol. 1994;262:107–11.

    Article  PubMed  Google Scholar 

  129. Hare B, Duman R Photostimulation of D1 but not D2 neurons in the medial PFC produces rapid, ketamine-like antidepressant effects. Nat Commun. 2018, in revision.

  130. Fukumoto K, Iijima M, Chaki S. The antidepressant effects of an mGlu2/3 receptor antagonist and ketamine require AMPA receptor stimulation in the mPFC and subsequent activation of the 5-HT neurons in the DRN. Neuropsychopharmacology. 2016;41:1046–56.

    Article  CAS  PubMed  Google Scholar 

  131. Fukumoto K, Iijima M, Chaki S. Serotonin-1A receptor stimulation mediates effects of a metabotropic glutamate 2/3 receptor antagonist, 2S-2-amino-2-(1S,2S-2-carboxycycloprop-1-yl)-3-(xanth-9-yl)propanoic acid (LY341495), and an N-methyl-D-aspartate receptor antagonist, ketamine, in the novelty-suppressed feeding test. Psychopharmacol (Berl). 2014;231:2291–8.

    Article  CAS  Google Scholar 

  132. Hirota K, Okawa H, Appadu BL, Grandy DK, Devi LA, Lambert DG. Stereoselective interaction of ketamine with recombinant mu, kappa, and delta opioid receptors expressed in Chinese hamster ovary cells. Anesthesiology. 1999;90:174–82.

    Article  CAS  PubMed  Google Scholar 

  133. Pacheco DD, Romero TRL, Duarte IDG. Central antinociception induced by ketamine is mediated by endogenous opioids and mu- and delta-opioid receptors. Brain Res. 2014;1562:69–75.

    Article  CAS  Google Scholar 

  134. Yoon G, Petrakis IL, Krystal JH. Preliminary evidence against a role for opiate receptor signaling in the antidepressant effects of R/S-ketamine. JAMA Psychiatry. 2018;554:317–22.

  135. Sanacora G. Caution against over-interpreting opiate receptor stimulation as mediating antidepressant effects of ketamine. Am J Psychiatry. 2018, in press.

  136. Northoff G, Sibille E. Cortical GABA neurons and self-focus in depression: a model linking cellular, biochemical and neural network findings. Mol Psychiatry. 2014;19:959.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Sanacora G, Chen A, Shin K and RS Duman RS. Influence of ketamine on ECS induction of BDNF and sprouting in rat hippocampus. J Neurochem, 1999, submitted.

  138. Fee C, Banasr M, Sibille E. Somatostatin-positive gamma-aminobutyric acid interneuron deficits in depression: cortical microcircuit and therapeutic perspectives. Biol Psychiatry. 2017;82:549–59.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Banasr M, Lepack A, Fee C, Duric V, Maldonado-Aviles J, DiLeone R et al. Characterization of GABAergic marker expression in the chronic unpredictable stress model of depression. Chronic Stress (Thousand Oaks) 2017;1: https://doi.org/10.1177/2470547017720459.

  140. Lin LC, Sibille E. Transcriptome changes induced by chronic psychosocial/environmental or neuroendocrine stressors reveal a selective cellular vulnerability of cortical somatostatin (SST) neurons, compared with pyramidal (PYR) neurons. Mol Psychiatry. 2015;20:285.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Czéh B, Vardya I, Varga Z, Febbraro F, Csabai D, Martis L-S, et al. Long-term stress disrupts the structural and functional integrity of GABAergic neuronal networks in the medial prefrontal cortex of rats. Front Cell Neurosci. 2018;12:148.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Piantadosi SC, French BJ, Poe MM, Timic T, Markovic BD, Pabba M, et al. Sex-dependent anti-stress effect of an alpha5 subunit containing GABAA receptor positive allosteric modulator. Front Pharmacol. 2016;7:446.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Fuchs T, Jefferson SJ, Hooper A, Yee P-HP, Maguire J, Luscher B. Disinhibition of somatostatin-positive GABAergic interneurons results in an anxiolytic and antidepressant-like brain state. Mol Psychiatry. 2017;22:920–30.

    Article  CAS  PubMed  Google Scholar 

  144. Bloch M, Schmidt PJ, Danaceau M, Murphy J, Nieman L, Rubinow DR. Effects of gonadal steroids in women with a history of postpartum depression. Am J Psychiatry. 2000;157:924–30.

    Article  CAS  PubMed  Google Scholar 

  145. Schiller CE, Meltzer-Brody S, Rubinow DR. The role of reproductive hormones in postpartum depression. CNS Spectr. 2015;20:48–59.

    Article  PubMed  Google Scholar 

  146. MacKenzie G, Maguire J. Neurosteroids and GABAergic signaling in health and disease. Biomol Concepts. 2013;4:29–42.

    Article  CAS  PubMed  Google Scholar 

  147. Zorumski CF, Paul SM, Izumi Y, Covey DF, Mennerick S. Neurosteroids, stress and depression: potential therapeutic opportunities. Neurosci Biobehav Rev. 2013;37:109–22.

    Article  CAS  PubMed  Google Scholar 

  148. Kanes S, Colquhoun H, Gunduz-Bruce H, Raines S, Arnold R, Schacterle A, et al. Brexanolone (SAGE-547 injection) in post-partum depression: a randomised controlled trial. Lancet. 2017;390:480–9.

    Article  CAS  PubMed  Google Scholar 

  149. Zanos P, Nelson ME, Highland JN, Krimmel SR, Georgiou P, Gould TD et al. A negative allosteric modulator for alpha5 subunit-containing GABA receptors exerts a rapid and persistent antidepressant-like action without the side effects of the NMDA receptor antagonist ketamine in mice. eNeuro 2017;4: ENEURO.0285-16.2017.

  150. Fischell J, Van Dyke AM, Kvarta MD, LeGates TA, Thompson SM. Rapid antidepressant action and restoration of excitatory synaptic strength after chronic stress by negative modulators of Alpha5-containing GABAA receptors. Neuropsychopharmacology. 2015;40:2499–509.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. De Simoni S, Schwarz AJ, O’Daly OG, Marquand AF, Brittain C, Gonzales C, et al. Test-retest reliability of the BOLD pharmacological MRI response to ketamine in healthy volunteers. Neuroimage. 2013;64:75–90.

    Article  PubMed  Google Scholar 

  152. Deakin JF, Lees J, McKie S, Hallak JE, Williams SR, Dursun SM. Glutamate and the neural basis of the subjective effects of ketamine: a pharmaco-magnetic resonance imaging study. Arch Gen Psychiatry. 2008;65:154–64.

    Article  PubMed  Google Scholar 

  153. Driesen NR, McCarthy G, Bhagwagar Z, Bloch M, Calhoun V, D’Souza DC, et al. Relationship of resting brain hyperconnectivity and schizophrenia-like symptoms produced by the NMDA receptor antagonist ketamine in humans. Mol Psychiatry. 2013;18:1199–204.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Abdallah CG, Averill LA, Collins KA, Geha P, Schwartz J, Averill C, et al. Ketamine treatment and global brain connectivity in major depression. Neuropsychopharmacology. 2017;42:1210–9.

    Article  CAS  PubMed  Google Scholar 

  155. Evans JW, Szczepanik J, Brutsche N, Park LT, Nugent AC, Zarate CA Jr. Default mode connectivity in major depressive disorder measured up to 10 days after ketamine administration. Biol Psychiatry. 2018;84:582–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Carreno FR, Donegan JJ, Boley AM, Shah A, DeGuzman M, Frazer A, et al. Activation of a ventral hippocampus-medial prefrontal cortex pathway is both necessary and sufficient for an antidepressant response to ketamine. Mol Psychiatry. 2016;21:1298–308.

    Article  CAS  PubMed  Google Scholar 

  157. Yang Y, Cui Y, Sang K, Dong Y, Ni Z, Ma S, et al. Ketamine blocks bursting in the lateral habenula to rapidly relieve depression. Nature. 2018;554:317–22.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This research was supported by NIMH Grants MH045481 and MH093897 and the State of CT.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ronald S. Duman.

Ethics declarations

Conflict of interest

Dr. Duman has received consulting fees from Taisho, Johnson & Johnson, and Naurex, and grant support from Taisho, Johnson & Johnson, Naurex, Allergan, Navitor, Lundbeck, Relmada, and Lilly.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Duman, R.S., Shinohara, R., Fogaça, M.V. et al. Neurobiology of rapid-acting antidepressants: convergent effects on GluA1-synaptic function. Mol Psychiatry 24, 1816–1832 (2019). https://doi.org/10.1038/s41380-019-0400-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41380-019-0400-x

This article is cited by

Search

Quick links