Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Functional coupling of Tmem74 and HCN1 channels regulates anxiety-like behavior in BLA neurons

Abstract

Anxiety disorders are the most prevalent psychiatric disorders, but their pathogenic mechanism remains poorly understood. Here, we report that transmembrane protein 74 (TMEM74), which contains two putative transmembrane domains and exhibits high levels of mRNA in the brain, is closely associated with the pathogenesis of anxiety disorders. TMEM74 was decreased in the serum of patients with anxiety and the basolateral amygdaloid nucleus (BLA) in chronic stress mice. Furthermore, genetic deletion of Tmem74 or selective knockdown of Tmem74 in BLA pyramidal neurons resulted in anxiety-like behaviors in mice. Whole-cell recordings in BLA pyramidal neurons revealed lower hyperpolarization-activated cation current (Ih) and greater input resistance and excitability in Tmem74−/− neurons than in wild-type neurons. Accordingly, surface expression of hyperpolarization-activated cyclic nucleotide-gated 1 (HCN1) channels was also lower in the BLA of Tmem74−/− mice. The Ih current blocker ZD7288 mimicked these effects in BLA pyramidal neurons in wild-type mice but not in Tmem74−/− mice. Consistent with the improvement in anxiety-like behaviors, Tmem74 overexpression restored HCN1 channel trafficking and pyramidal neuron excitability in the BLA of Tmem74−/− and chronic stress mice. Mechanistically, we demonstrate that interactions between Tmem74 and HCN1 are physiologically relevant and that transmembrane domain 1 (TM1) is essential for the cellular membrane localization of Tmem74 to enhance Ih. Together, our findings suggest that Tmem74 coupling with HCN1 acts as a critical component in the pathophysiology of anxiety and is a potential target for new treatments of anxiety disorders.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Code availability

pCLAMP 10.3 software (Molecular Devices, Sunnyvale, CA, USA) and Matlab software (MathWorks, Natick, MA, USA) were used for electrophysiology data analysis. All codes are available from the authors upon reasonable request.

References

  1. Kessler RC, Petukhova M, Sampson NA, Zaslavsky AM, Wittchen HU. Twelve-month and lifetime prevalence and lifetime morbid risk of anxiety and mood disorders in the United States. Int J Methods Psychiatr Res. 2012;21:169–84.

    Article  Google Scholar 

  2. Medina-Mora ME, Borges G, Lara C, Benjet C, Blanco J, Fleiz C, et al. Prevalence, service use, and demographic correlates of 12-month DSM-IV psychiatric disorders in Mexico: results from the Mexican National Comorbidity Survey. Psychol Med. 2005;35:1773–83.

    Article  Google Scholar 

  3. Craske MG, Stein MB. Anxiety. Lancet. 2016;388:3048–59.

    Article  Google Scholar 

  4. Bluett EJ, Homan KJ, Morrison KL, Levin ME, Twohig MP. Acceptance and commitment therapy for anxiety and OCD spectrum disorders: an empirical review. J Anxiety Disord. 2014;28:612–24.

    Article  Google Scholar 

  5. Craske MG, Stein MB, Eley TC, Milad MR, Holmes A, Rapee RM, et al. Anxiety disorders. Nat Rev Dis Prim. 2017;3:17024.

    Article  Google Scholar 

  6. Tye KM, Prakash R, Kim SY, Fenno LE, Grosenick L, Zarabi H, et al. Amygdala circuitry mediating reversible and bidirectional control of anxiety. Nature. 2011;471:358–62.

    Article  CAS  Google Scholar 

  7. Terburg D, Morgan BE, Montoya ER, Hooge IT, Thornton HB, Hariri AR, et al. Hypervigilance for fear after basolateral amygdala damage in humans. Transl Psychiatry. 2012;2:e115.

    Article  CAS  Google Scholar 

  8. Janak PH, Tye KM. From circuits to behaviour in the amygdala. Nature. 2015;517:284–92.

    Article  CAS  Google Scholar 

  9. Davis M, Walker DL, Miles L, Grillon C. Phasic vs sustained fear in rats and humans: role of the extended amygdala in fear vs anxiety. Neuropsychopharmacol . 2010;35:105–35.

    Article  Google Scholar 

  10. Woodruff AR, Sah P. Networks of parvalbumin-positive interneurons in the basolateral amygdala. J Neurosci. 2007;27:553–63.

    Article  CAS  Google Scholar 

  11. Sharp BM. Basolateral amygdala and stress-induced hyperexcitability affect motivated behaviors and addiction. Transl Psychiatry. 2017;7:e1194.

    Article  CAS  Google Scholar 

  12. Pidoplichko VI, Aroniadou-Anderjaska V, Prager EM, Figueiredo TH, Almeida-Suhett CP, Miller SL, et al. ASIC1a activation enhances inhibition in the basolateral amygdala and reduces anxiety. J Neurosci. 2014;34:3130–41.

    Article  CAS  Google Scholar 

  13. Hill MN, Kumar SA, Filipski SB, Iverson M, Stuhr KL, Keith JM, et al. Disruption of fatty acid amide hydrolase activity prevents the effects of chronic stress on anxiety and amygdalar microstructure. Mol Psychiatry. 2013;18:1125–35.

    Article  CAS  Google Scholar 

  14. Rosenkranz JA, Venheim ER, Padival M. Chronic stress causes amygdala hyperexcitability in rodents. Biol Psychiatry. 2010;67:1128–36.

    Article  Google Scholar 

  15. Lin S, Li X, Chen YH, Gao F, Chen H, Hu NY, et al. Social isolation during adolescence induces anxiety behaviors and enhances firing activity in BLA pyramidal neurons via mGluR5 upregulation. Mol Neurobiol. 2018;55:5310–20.

    Article  CAS  Google Scholar 

  16. Felix-Ortiz AC, Beyeler A, Seo C, Leppla CA, Wildes CP, Tye KM. BLA to vHPC inputs modulate anxiety-related behaviors. Neuron. 2013;79:658–64.

    Article  CAS  Google Scholar 

  17. Bi LL, Sun XD, Zhang J, Lu YS, Chen YH, Wang J, et al. Amygdala NRG1-ErbB4 is critical for the modulation of anxiety-like behaviors. Neuropsychopharmacol . 2015;40:974–86.

    Article  CAS  Google Scholar 

  18. Rau AR, Chappell AM, Butler TR, Ariwodola OJ, Weiner JL. Increased basolateral amygdala pyramidal cell excitability may contribute to the anxiogenic phenotype induced by chronic early-life stress. J Neurosci. 2015;35:9730–40.

    Article  CAS  Google Scholar 

  19. Chen M, Yan HH, Shu S, Pei L, Zang LK, Fu Y, et al. Amygdalar endothelin-1 regulates pyramidal neuron excitability and affects anxiety. Sci Rep. 2017;7:2316.

    Article  Google Scholar 

  20. McClure EB, Monk CS, Nelson EE, Parrish JM, Adler A, Blair RJ, et al. Abnormal attention modulation of fear circuit function in pediatric generalized anxiety disorder. Arch Gen Psychiatry. 2007;64:97–106.

    Article  Google Scholar 

  21. Etkin A, Prater KE, Schatzberg AF, Menon V, Greicius MD. Disrupted amygdalar subregion functional connectivity and evidence of a compensatory network in generalized anxiety disorder. Arch Gen Psychiatry. 2009;66:1361–72.

    Article  Google Scholar 

  22. Reznikov R, Hamani C. Posttraumatic stress disorder: perspectives for the use of deep brain stimulation. Neuromodulation . 2017;20:7–14.

    Article  Google Scholar 

  23. Price JL, Drevets WC. Neurocircuitry of mood disorders. Neuropsychopharmacol. 2010;35:192–216.

    Article  Google Scholar 

  24. Sun Y, Li Q, Zhang J, Chen Z, He Q, Liu X, et al. Autophagy regulatory molecule, TMEM74, interacts with BIK and inhibits BIK-induced apoptosis. Cell Signal. 2017;36:34–41.

    Article  CAS  Google Scholar 

  25. Sun Y, Deng J, Xia P, Chen W, Wang L. The expression of TMEM74 in liver cancer and lung cancer correlating with survival outcomes. Appl Immunohistochem Mol Morphol. 2018. https://doi.org/10.1097/PAI.0000000000000659.

    Article  Google Scholar 

  26. Yu C, Wang L, Lv B, Lu Y, Zeng L, Chen Y, et al. TMEM74, a lysosome and autophagosome protein, regulates autophagy. Biochem Biophys Res Commun. 2008;369:622–9.

    Article  CAS  Google Scholar 

  27. Berglund L, Bjorling E, Oksvold P, Fagerberg L, Asplund A, Szigyarto CA, et al. A genecentric Human Protein Atlas for expression profiles based on antibodies. Mol Cell Proteom. 2008;7:2019–27.

    Article  CAS  Google Scholar 

  28. Benarroch EE. HCN channels: function and clinical implications. Neurology. 2013;80:304–10.

    Article  Google Scholar 

  29. Park K, Yi JH, Kim H, Choi K, Kang SJ, Shin KS. HCN channel activity-dependent modulation of inhibitory synaptic transmission in the rat basolateral amygdala. Biochem Biophys Res Commun. 2011;404:952–7.

    Article  CAS  Google Scholar 

  30. Postea O, Biel M. Exploring HCN channels as novel drug targets. Nat Rev Drug Discov. 2011;10:903–14.

    Article  CAS  Google Scholar 

  31. Biel M, Wahl-Schott C, Michalakis S, Zong X. Hyperpolarization-activated cation channels: from genes to function. Physiol Rev. 2009;89:847–85.

    Article  CAS  Google Scholar 

  32. Sartiani L, Mannaioni G, Masi A, Novella RM, Cerbai E. The hyperpolarization-activated cyclic nucleotide-gated channels: from biophysics to pharmacology of a unique family of ion channels. Pharmacol Rev. 2017;69:354–95.

    Article  CAS  Google Scholar 

  33. Kim CS, Brager DH, Johnston D. Perisomatic changes in h-channels regulate depressive behaviors following chronic unpredictable stress. Mol Psychiatry. 2018;23:892–903.

    Article  CAS  Google Scholar 

  34. DiFrancesco JC, DiFrancesco D. Dysfunctional HCN ion channels in neurological diseases. Front Cell Neurosci. 2015;6:174.

    Article  Google Scholar 

  35. Nolan MF, Malleret G, Dudman JT, Buhl DL, Santoro B, Gibbs E, et al. A behavioral role for dendritic integration: HCN1 channels constrain spatial memory and plasticity at inputs to distal dendrites of CA1 pyramidal neurons. Cell . 2004;119:719–32.

    CAS  PubMed  Google Scholar 

  36. Heuermann RJ, Jaramillo TC, Ying SW, Suter BA, Lyman KA, Han Y, et al. Reduction of thalamic and cortical Ih by deletion of TRIP8b produces a mouse model of human absence epilepsy. Neurobiol Dis. 2016;85:81–92.

    Article  CAS  Google Scholar 

  37. Nolan MF, Malleret G, Lee KH, Gibbs E, Dudman JT, Santoro B, et al. The hyperpolarization-activated HCN1 channel is important for motor learning and neuronal integration by cerebellar Purkinje cells. Cell . 2003;115:551–64.

    Article  CAS  Google Scholar 

  38. Lacerda-Pinheiro SF, Pinheiro JR, Pereira DLM, Lima DSC, Vieira DSMS, Teixeira JA, et al. Are there depression and anxiety genetic markers and mutations? A systematic review. J Affect Disord. 2014;168:387–98.

    Article  Google Scholar 

  39. Kelmendi B, Holsbach-Beltrame M, McIntosh AM, Hilt L, George ED, Kitchen RR, et al. Association of polymorphisms in HCN4 with mood disorders and obsessive compulsive disorder. Neurosci Lett. 2011;496:195–9.

    Article  CAS  Google Scholar 

  40. Park K, Lee S, Kang SJ, Choi S, Shin KS. Hyperpolarization-activated currents control the excitability of principal neurons in the basolateral amygdala. Biochem Biophys Res Commun. 2007;361:718–24.

    Article  CAS  Google Scholar 

  41. Kim CS, Chang PY, Johnston D. Enhancement of dorsal hippocampal activity by knockdown of HCN1 channels leads to anxiolytic- and antidepressant-like behaviors. Neuron. 2012;75:503–16.

    Article  CAS  Google Scholar 

  42. Qiu Z, Liu M, Chen Z, Shao Y, Pan H, Wei G, et al. High-efficiency and heritable gene targeting in mouse by transcription activator-like effector nucleases. Nucleic Acids Res. 2013;41:e120.

    Article  CAS  Google Scholar 

  43. Martinelli DC, Chew KS, Rohlmann A, Lum MY, Ressl S, Hattar S, et al. Expression of C1ql3 in discrete neuronal populations controls efferent synapse numbers and diverse behaviors. Neuron. 2016;91:1034–51.

    Article  CAS  Google Scholar 

  44. Liu ZP, Song C, Wang M, He Y, Xu XB, Pan HQ, et al. Chronic stress impairs GABAergic control of amygdala through suppressing the tonic GABAA receptor currents. Mol Brain. 2014;7:32.

    Article  Google Scholar 

  45. Jiang Q, Gao Y, Wang C, Tao R, Wu Y, Zhan K, et al. Nitration of TRPM2 as a molecular switch induces autophagy during brain pericyte injury. Antioxid Redox Signal. 2017;27:1297–316.

    Article  CAS  Google Scholar 

  46. Tao RR, Wang H, Hong LJ, Huang JY, Lu YM, Liao MH, et al. Nitrosative stress induces peroxiredoxin 1 ubiquitination during ischemic insult via E6AP activation in endothelial cells both in vitro and in vivo. Antioxid Redox Signal. 2014;21:1–16.

    Article  CAS  Google Scholar 

  47. Lu NN, Tan C, Sun NH, Shao LX, Liu XX, Gao YP, et al. Cholinergic Grb2-associated-binding protein 1 regulates cognitive function. Cereb Cortex. 2018;28:2391–404.

    Article  Google Scholar 

  48. Wang H, Hong LJ, Huang JY, Jiang Q, Tao RR, Tan C, et al. P2RX7 sensitizes Mac-1/ICAM-1-dependent leukocyte-endothelial adhesion and promotes neurovascular injury during septic encephalopathy. Cell Res. 2015;25:674–90.

    Article  CAS  Google Scholar 

  49. Yi F, Danko T, Botelho SC, Patzke C, Pak C, Wernig M, et al. Autism-associated SHANK3 haploinsufficiency causes Ih channelopathy in human neurons. Science. 2016;352:f2669.

    Article  Google Scholar 

  50. Guo M, Li C, Lei Y, Xu S, Zhao D, Lu XY. Role of the adipose PPARgamma-adiponectin axis in susceptibility to stress and depression/anxiety-related behaviors. Mol Psychiatry. 2017;22:1056–68.

    Article  CAS  Google Scholar 

  51. Seo JS, Zhong P, Liu A, Yan Z, Greengard P. Elevation of p11 in lateral habenula mediates depression-like behavior. Mol Psychiatry. 2018;23:1113–9.

    Article  CAS  Google Scholar 

  52. Buffalari DM, Grace AA. Chronic cold stress increases excitatory effects of norepinephrine on spontaneous and evoked activity of basolateral amygdala neurons. Int J Neuropsychopharmacol. 2009;12:95–107.

    Article  CAS  Google Scholar 

  53. Power JM, Sah P. Competition between calcium-activated K+ channels determines cholinergic action on firing properties of basolateral amygdala projection neurons. J Neurosci. 2008;28:3209–20.

    Article  CAS  Google Scholar 

  54. Hetzel A, Rosenkranz JA. Distinct effects of repeated restraint stress on basolateral amygdala neuronal membrane properties in resilient adolescent and adult rats. Neuropsychopharmacol . 2014;39:2114–30.

    Article  Google Scholar 

  55. Yamada-Hanff J, Bean BP. Activation of Ih and TTX-sensitive sodium current at subthreshold voltages during CA1 pyramidal neuron firing. J Neurophysiol. 2015;114:2376–89.

    Article  CAS  Google Scholar 

  56. Sun Z, Williams DJ, Xu B, Gogos JA. Altered function and maturation of primary cortical neurons from a 22q11.2 deletion mouse model of schizophrenia. Transl Psychiatry. 2018;8:85.

    Article  Google Scholar 

  57. Bender RA, Baram TZ. Hyperpolarization activated cyclic-nucleotide gated (HCN) channels in developing neuronal networks. Prog Neurobiol. 2008;86:129–40.

    Article  CAS  Google Scholar 

  58. Wang DV, Wang F, Liu J, Zhang L, Wang Z, Lin L. Neurons in the amygdala with response-selectivity for anxiety in two ethologically based tests. PLoS ONE. 2011;6:e18739.

    Article  CAS  Google Scholar 

  59. Felix-Ortiz AC, Burgos-Robles A, Bhagat ND, Leppla CA, Tye KM. Bidirectional modulation of anxiety-related and social behaviors by amygdala projections to the medial prefrontal cortex. Neuroscience. 2016;321:197–209.

    Article  CAS  Google Scholar 

  60. Reznikov LR, Reagan LP, Fadel JR. Activation of phenotypically distinct neuronal subpopulations in the anterior subdivision of the rat basolateral amygdala following acute and repeated stress. J Comp Neurol. 2008;508:458–72.

    Article  Google Scholar 

  61. Lee SC, Amir A, Haufler D, Pare D. Differential recruitment of competing valence-related amygdala networks during anxiety. Neuron. 2017;96:81–8.

    Article  CAS  Google Scholar 

  62. McEwen BS. Physiology and neurobiology of stress and adaptation: central role of the brain. Physiol Rev. 2007;87:873–904.

    Article  Google Scholar 

  63. Villas BG, Stefanello DSA, Feitosa FB, Lima CC, Arce E, Oesterreich SA. The ethanolic extract obtained from Campomanesia pubescens (D.C.) O.BERG fruits exerts anxiolytic and antidepressant effects on chronic mild stress model and on anxiety models in Wistar rats: Behavioral evidences. Nutr Neurosci. 2018. https://doi.org/10.1080/1028415X.2018.1466513.

  64. Sun W, Yang F, Wang Y, Fu H, Yang Y, Li CL, et al. Contribution of large-sized primary sensory neuronal sensitization to mechanical allodynia by upregulation of hyperpolarization-activated cyclic nucleotide gated channels via cyclooxygenase 1 cascade. Neuropharmacology. 2017;113:217–30.

    Article  CAS  Google Scholar 

  65. Han Y, Heuermann RJ, Lyman KA, Fisher D, Ismail QA, Chetkovich DM. HCN-channel dendritic targeting requires bipartite interaction with TRIP8b and regulates antidepressant-like behavioral effects. Mol Psychiatry. 2017;22:458–65.

    Article  CAS  Google Scholar 

  66. Gao SH, Wen HZ, Shen LL, Zhao YD, Ruan HZ. Activation of mGluR1 contributes to neuronal hyperexcitability in the rat anterior cingulate cortex via inhibition of HCN channels. Neuropharmacology. 2016;105:361–77.

    Article  CAS  Google Scholar 

  67. Silveira VH, Bompolaki M, Mackay JP, Miranda TA, Michaelson SD, Leitermann RJ, et al. NPY induces stress resilience via downregulation of ih in principal neurons of rat Basolateral Amygdala. J Neurosci. 2018;38:4505–20.

    Article  Google Scholar 

  68. Hou L, Qi Y, Sun H, Wang G, Li Q, Wang Y, et al. Applying ketamine to alleviate the PTSD-like effects by regulating the HCN1-related BDNF. Prog Neuropsychopharmacol Biol Psychiatry. 2018;86:313–21.

    Article  CAS  Google Scholar 

  69. Lewis AS, Vaidya SP, Blaiss CA, Liu Z, Stoub TR, Brager DH, et al. Deletion of the hyperpolarization-activated cyclic nucleotide-gated channel auxiliary subunit TRIP8b impairs hippocampal Ih localization and function and promotes antidepressant behavior in mice. J Neurosci. 2011;31:7424–40.

    Article  CAS  Google Scholar 

  70. Omrani A, van der Vaart T, Mientjes E, van Woerden GM, Hojjati MR, Li KW, et al. HCN channels are a novel therapeutic target for cognitive dysfunction in Neurofibromatosis type 1. Mol Psychiatry. 2015;20:1311–21.

    Article  CAS  Google Scholar 

  71. Kline CF, Mohler PJ. Defective interactions of protein partner with ion channels and transporters as alternative mechanisms of membrane channelopathies. Biochim Biophys Acta. 2014;1838:723–30.

    Article  CAS  Google Scholar 

  72. Amarouch MY, Kasimova MA, Tarek M, Abriel H. Functional interaction between S1 and S4 segments in voltage-gated sodium channels revealed by human channelopathies. Channels (Austin). 2014;8:414–20.

    Article  Google Scholar 

  73. Magby JP, Neal AP, Atchison WD, Pessah IP, Shafer TJ. Channelopathies: summary of the hot topic keynotes session. Neurotoxicology. 2011;32:661–5.

    Article  Google Scholar 

  74. Sun Y, Chen Y, Zhang J, Cao L, He M, Liu X, et al. TMEM74 promotes tumor cell survival by inducing autophagy via interactions with ATG16L1 and ATG9A. Cell Death Dis. 2017;8:e3031.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Key Research and Development Program of China (2016YFE0125400 to F.H.); The State Key Program of National Natural Science of China (grant 81730101 to F.H.); National Natural Science Foundations of China (81573411 to F.H., 81673415 to YM.L., 81601177 to QZ.C.); Science and Technology Commission Foundation of Hangzhou (20172016A05 to YM.L.). We thank the Human Protein Atlas for support with RNA and protein expression data.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhong Chen, Ying-Mei Lu or Feng Han.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shao, LX., Jiang, Q., Liu, XX. et al. Functional coupling of Tmem74 and HCN1 channels regulates anxiety-like behavior in BLA neurons. Mol Psychiatry 24, 1461–1477 (2019). https://doi.org/10.1038/s41380-019-0402-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41380-019-0402-8

This article is cited by

Search

Quick links