Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Chronic sleep fragmentation enhances habenula cholinergic neural activity

Abstract

Sleep is essential to emotional health. Sleep disturbance, particularly REM sleep disturbance, profoundly impacts emotion regulation, but the underlying neural mechanisms remain elusive. Here we show that chronic REM sleep disturbance, achieved in mice by chronic sleep fragmentation (SF), enhanced neural activity in the medial habenula (mHb), a brain region increasingly implicated in negative affect. Specifically, after a 5-day SF procedure that selectively fragmented REM sleep, cholinergic output neurons (ChNs) in the mHb exhibited increased spontaneous firing rate and enhanced firing regularity in brain slices. The SF-induced firing changes remained intact upon inhibition of glutamate, GABA, acetylcholine, and histamine receptors, suggesting cell-autonomous mechanisms independent of synaptic transmissions. Moreover, the SF-induced hyperactivity was not because of enhanced intrinsic membrane excitability, but was accompanied by depolarized resting membrane potential in mHb ChNs. Furthermore, inhibition of TASK-3 (KCNK9) channels, a subtype of two-pore domain K+ channels, mimicked the SF effects by increasing the firing rate and regularity, as well as depolarizing the resting membrane potential in mHb ChNs in control-sleep mice. These effects of TASK-3 inhibition were absent in SF mice, suggesting reduced TASK-3 activity following SF. By contrast, inhibition of small-conductance Ca2+-activated K+ (SK) channels did not produce similar effects. Thus, SF compromised TASK-3 function in mHb ChNs, which likely led to depolarized resting membrane potential and increased spontaneous firing. These results not only demonstrate that selective REM sleep disturbance leads to hyperactivity of mHb ChNs, but also identify a key molecular substrate through which REM sleep disturbance may alter affect regulation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Purchase on Springer Link

Instant access to full article PDF

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Medic G, Wille M, Hemels ME. Short- and long-term health consequences of sleep disruption. Nat Sci Sleep. 2017;9:151–61.

    PubMed  PubMed Central  Google Scholar 

  2. Finan PH, Quartana PJ, Smith MT. The effects of sleep continuity disruption on positive mood and sleep architecture in healthy adults. Sleep. 2015;38:1735–42.

    PubMed  PubMed Central  Google Scholar 

  3. Logan RW, Hasler BP, Forbes EE, Franzen PL, Torregrossa MM, Huang YH, et al. Impact of sleep and circadian rhythms on addiction vulnerability in adolescents. Biol Psychiatry. 2018;83:987–96.

    PubMed  Google Scholar 

  4. Meerlo P, Havekes R, Steiger A. Chronically restricted or disrupted sleep as a causal factor in the development of depression. Curr Top Behav Neurosci. 2015;25:459–81.

    PubMed  Google Scholar 

  5. Krystal AD. Psychiatric disorders and sleep. Neurol Clin. 2012;30:1389–413.

    PubMed  PubMed Central  Google Scholar 

  6. Anderson KN, Bradley AJ. Sleep disturbance in mental health problems and neurodegenerative disease. Nat Sci Sleep. 2013;5:61–75.

    PubMed  PubMed Central  Google Scholar 

  7. Palmer CA, Alfano CA. Sleep and emotion regulation: an organizing, integrative review. Sleep Med Rev. 2017;31:6–16.

    PubMed  Google Scholar 

  8. Goldstein AN, Walker MP. The role of sleep in emotional brain function. Annu Rev Clin Psychol. 2014;10:679–708.

    PubMed  PubMed Central  Google Scholar 

  9. Krause AJ, Simon EB, Mander BA, Greer SM, Saletin JM, Goldstein-Piekarski AN, et al. The sleep-deprived human brain. Nat Rev Neurosci. 2017;18:404–18.

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Hall M, Levenson J, Hasler B. Sleep and Emotion. In: Morin CM, Espie CA, editors. The Oxford handbook of sleep and sleep disorders. Oxford University Press, New York, NY, 2012.

  11. Gruber R, Cassoff J. The interplay between sleep and emotion regulation: conceptual framework empirical evidence and future directions. Curr Psychiatry Rep. 2014;16:500.

    PubMed  Google Scholar 

  12. Minkel JD, McNealy K, Gianaros PJ, Drabant EM, Gross JJ, Manuck SB, et al. Sleep quality and neural circuit function supporting emotion regulation. Biol Mood Anxiety Disord. 2012;2:22.

    PubMed  PubMed Central  Google Scholar 

  13. Simon EB, Oren N, Sharon H, Kirschner A, Goldway N, Okon-Singer H, et al. Losing Neutrality: The Neural Basis of Impaired Emotional Control without Sleep. J Neurosci. 2015;35:13194–205.

    PubMed  PubMed Central  Google Scholar 

  14. Viswanath H, Carter AQ, Baldwin PR, Molfese DL, Salas R. The medial habenula: still neglected. Front Hum Neurosci. 2013;7:931.

    PubMed  Google Scholar 

  15. Zhang J, Tan L, Ren Y, Liang J, Lin R, Feng Q, et al. Presynaptic excitation via gabab receptors in habenula cholinergic neurons regulates fear memory expression. Cell. 2016;166:716–28.

    CAS  PubMed  Google Scholar 

  16. Kobayashi Y, Sano Y, Vannoni E, Goto H, Suzuki H, Oba A, et al. Genetic dissection of medial habenula-interpeduncular nucleus pathway function in mice. Front Behav Neurosci. 2013;7:17.

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Lopez AJ, Jia Y, White AO, Kwapis JL, Espinoza M, Hwang P, et al. Medial habenula cholinergic signaling regulates cocaine-associated relapse-like behavior. Addict Biol. 2018. [Epub ahead of print]

  18. Fowler CD, Lu Q, Johnson PM, Marks MJ, Kenny PJ. Habenular alpha5 nicotinic receptor subunit signalling controls nicotine intake. Nature. 2011;471:597–601.

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Frahm S, Slimak MA, Ferrarese L, Santos-Torres J, Antolin-Fontes B, Auer S, et al. Aversion to nicotine is regulated by the balanced activity of beta4 and alpha5 nicotinic receptor subunits in the medial habenula. Neuron. 2011;70:522–35.

    CAS  PubMed  Google Scholar 

  20. Han S, Yang SH, Kim JY, Mo S, Yang E, Song KM, et al. Down-regulation of cholinergic signaling in the habenula induces anhedonia-like behavior. Sci Rep. 2017;7:900.

    PubMed  PubMed Central  Google Scholar 

  21. Yamaguchi T, Danjo T, Pastan I, Hikida T, Nakanishi S. Distinct roles of segregated transmission of the septo-habenular pathway in anxiety and fear. Neuron. 2013;78:537–44.

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Tallini YN, Shui B, Greene KS, Deng KY, Doran R, Fisher PJ, et al. BAC transgenic mice express enhanced green fluorescent protein in central and peripheral cholinergic neurons. Physiol Genomics. 2006;27:391–7.

    CAS  PubMed  Google Scholar 

  23. Chen B, Wang Y, Liu X, Liu Z, Dong Y, Huang YH. Sleep Regulates Incubation of Cocaine Craving. J Neurosci. 2015;35:13300–10.

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Liu Z, Wang Y, Cai L, Li Y, Chen B, Dong Y, et al. Prefrontal cortex to accumbens projections in sleep regulation of reward. J Neurosci. 2016;36:7897–910.

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Winters BD, Huang YH, Dong Y, Krueger JM. Sleep loss alters synaptic and intrinsic neuronal properties in mouse prefrontal cortex. Brain Res. 2011;1420:1–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Ting JT, Daigle TL, Chen Q, Feng G. Acute brain slice methods for adult and aging animals: application of targeted patch clamp analysis and optogenetics. Methods Mol Biol. 2014;1183:221–42.

    PubMed  PubMed Central  Google Scholar 

  27. Colavito V, Fabene PF, Grassi-Zucconi G, Pifferi F, Lamberty Y, Bentivoglio M, et al. Experimental sleep deprivation as a tool to test memory deficits in rodents. Front Syst Neurosci. 2013;7:106.

    PubMed  PubMed Central  Google Scholar 

  28. Malisch JL, Breuner CW, Gomes FR, Chappell MA, Garland T Jr. Circadian pattern of total and free corticosterone concentrations, corticosteroid-binding globulin, and physical activity in mice selectively bred for high voluntary wheel-running behavior. Gen Comp Endocrinol. 2008;156:210–7.

    CAS  PubMed  Google Scholar 

  29. Aizawa H, Kobayashi M, Tanaka S, Fukai T, Okamoto H. Molecular characterization of the subnuclei in rat habenula. J Comp Neurol. 2012;520:4051–66.

    CAS  PubMed  Google Scholar 

  30. Cuello AC, Emson PC, Paxinos G, Jessell T. Substance P containing and cholinergic projections from the habenula. Brain Res. 1978;149:413–29.

    CAS  PubMed  Google Scholar 

  31. Choi K, Lee Y, Lee C, Hong S, Lee S, Kang SJ, et al. Optogenetic activation of septal GABAergic afferents entrains neuronal firing in the medial habenula. Sci Rep. 2016;6:34800.

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Shih PY, Engle SE, Oh G, Deshpande P, Puskar NL, Lester HA, et al. Differential expression and function of nicotinic acetylcholine receptors in subdivisions of medial habenula. J Neurosci. 2014;34:9789–802.

    PubMed  PubMed Central  Google Scholar 

  33. Dao DQ, Perez EE, Teng Y, Dani JA, De Biasi M. Nicotine enhances excitability of medial habenular neurons via facilitation of neurokinin signaling. J Neurosci. 2014;34:4273–84.

    PubMed  PubMed Central  Google Scholar 

  34. Bell MI, Richardson PJ, Lee K. Histamine depolarizes cholinergic interneurones in the rat striatum via a H(1)-receptor mediated action. Br J Pharmacol. 2000;131:1135–42.

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Gorelova N, Reiner PB. Histamine depolarizes cholinergic septal neurons. J Neurophysiol. 1996;75:707–14.

    CAS  PubMed  Google Scholar 

  36. Palacios JM, Wamsley JK, Kuhar MJ. The distribution of histamine H1-receptors in the rat brain: an autoradiographic study. Neuroscience. 1981;6:15–37.

    CAS  PubMed  Google Scholar 

  37. Pillot C, Heron A, Cochois V, Tardivel-Lacombe J, Ligneau X, Schwartz JC, et al. A detailed mapping of the histamine H(3) receptor and its gene transcripts in rat brain. Neuroscience. 2002;114:173–93.

    CAS  PubMed  Google Scholar 

  38. Vizuete ML, Traiffort E, Bouthenet ML, Ruat M, Souil E, Tardivel-Lacombe J, et al. Detailed mapping of the histamine H2 receptor and its gene transcripts in guinea-pig brain. Neuroscience. 1997;80:321–43.

    CAS  PubMed  Google Scholar 

  39. Sheffield EB, Quick MW, Lester RA. Nicotinic acetylcholine receptor subunit mRNA expression and channel function in medial habenula neurons. Neuropharmacology. 2000;39:2591–603.

    CAS  PubMed  Google Scholar 

  40. Bischoff S, Leonhard S, Reymann N, Schuler V, Shigemoto R, Kaupmann K, et al. Spatial distribution of GABA(B)R1 receptor mRNA and binding sites in the rat brain. J Comp Neurol. 1999;412:1–16.

    CAS  PubMed  Google Scholar 

  41. Stocker M, Pedarzani P. Differential distribution of three Ca(2 + )-activated K( + ) channel subunits, SK1, SK2, and SK3, in the adult rat central nervous system. Mol Cell Neurosci. 2000;15:476–93.

    CAS  PubMed  Google Scholar 

  42. Sakhi K, Belle MD, Gossan N, Delagrange P, Piggins HD. Daily variation in the electrophysiological activity of mouse medial habenula neurones. J Physiol. 2014;592:587–603.

    CAS  PubMed  Google Scholar 

  43. O’Connell AD, Morton MJ, Hunter M. Two-pore domain K + channels-molecular sensors. Biochim Biophys Acta. 2002;1566:152–61.

    PubMed  Google Scholar 

  44. Braun AP. Two-pore domain potassium channels: variation on a structural theme. Channels (Austin). 2012;6:139–40.

    CAS  Google Scholar 

  45. Talley EM, Solorzano G, Lei Q, Kim D, Bayliss DA. Cns distribution of members of the two-pore-domain (KCNK) potassium channel family. J Neurosci. 2001;21:7491–505.

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Lesage F, Barhanin J. Molecular physiology of pH-sensitive background K(2P) channels. Physiology. 2011;26:424–37.

    CAS  PubMed  Google Scholar 

  47. Bayliss DA, Barhanin J, Gestreau C, Guyenet PG. The role of pH-sensitive TASK channels in central respiratory chemoreception. Pflugers Arch. 2015;467:917–29.

    CAS  PubMed  Google Scholar 

  48. Meadows HJ, Randall AD. Functional characterisation of human TASK-3, an acid-sensitive two-pore domain potassium channel. Neuropharmacology. 2001;40:551–9.

    CAS  PubMed  Google Scholar 

  49. Chatelain FC, Bichet D, Douguet D, Feliciangeli S, Bendahhou S, Reichold M, et al. TWIK1, a unique background channel with variable ion selectivity. Proc Natl Acad Sci USA. 2012;109:5499–504.

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Baglioni C, Regen W, Teghen A, Spiegelhalder K, Feige B, Nissen C, et al. Sleep changes in the disorder of insomnia: a meta-analysis of polysomnographic studies. Sleep Med Rev. 2014;18:195–213.

    PubMed  Google Scholar 

  51. Ermis U, Krakow K, Voss U. Arousal thresholds during human tonic and phasic REM sleep. J Sleep Res. 2010;19:400–6.

    PubMed  Google Scholar 

  52. Gulyani S, Majumdar S, B.N. M. Rapid eye movement sleep and significance of its deprivation studies - a review. Sleep and Hypnosis. 2000;2:49–68.

    Google Scholar 

  53. Tuesta LM, Chen Z, Duncan A, Fowler CD, Ishikawa M, Lee BR, et al. GLP-1 acts on habenular avoidance circuits to control nicotine intake. Nat Neurosci. 2017;20:708–16.

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Kim Y, Bang H, Kim D. TASK-3, a new member of the tandem pore K( + ) channel family. J Biol Chem. 2000;275:9340–7.

    CAS  PubMed  Google Scholar 

  55. Talley EM, Bayliss DA. Modulation of TASK-1 (Kcnk3) and TASK-3 (Kcnk9) potassium channels: volatile anesthetics and neurotransmitters share a molecular site of action. J Biol Chem. 2002;277:17733–42.

    CAS  PubMed  Google Scholar 

  56. Vu MT, Du G, Bayliss DA, Horner RL. TASK Channels on Basal Forebrain Cholinergic Neurons Modulate Electrocortical Signatures of Arousal by Histamine. J Neurosci. 2015;35:13555–67.

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Berg AP, Bayliss DA. Striatal cholinergic interneurons express a receptor-insensitive homomeric TASK-3-like background K + current. J Neurophysiol. 2007;97:1546–52.

    CAS  PubMed  Google Scholar 

  58. Cho CH, Hwang EM, Park JY. Emerging Roles of TWIK-1 Heterodimerization in the Brain. Int J Mol Sci. 2017;19:1.

    Google Scholar 

  59. Plant LD, Zuniga L, Araki D, Marks JD, Goldstein SA. SUMOylation silences heterodimeric TASK potassium channels containing K2P1 subunits in cerebellar granule neurons. Sci Signal. 2012;5:ra84.

    PubMed  Google Scholar 

  60. Brickley SG, Aller MI, Sandu C, Veale EL, Alder FG, Sambi H, et al. TASK-3 two-pore domain potassium channels enable sustained high-frequency firing in cerebellar granule neurons. J Neurosci. 2007;27:9329–40.

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Goldstein SA, Bockenhauer D, O’Kelly I, Zilberberg N. Potassium leak channels and the KCNK family of two-P-domain subunits. Nat Rev Neurosci. 2001;2:175–84.

    CAS  PubMed  Google Scholar 

  62. Bennett BD, Callaway JC, Wilson CJ. Intrinsic membrane properties underlying spontaneous tonic firing in neostriatal cholinergic interneurons. J Neurosci. 2000;20:8493–503.

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Murkar ALA, De Koninck J. Consolidative mechanisms of emotional processing in REM sleep and PTSD. Sleep Med Rev. 2018;41:173–84.

  64. Groch S, Wilhelm I, Diekelmann S, Born J. The role of REM sleep in the processing of emotional memories: evidence from behavior and event-related potentials. Neurobiol Learn Mem. 2013;99:1–9.

    CAS  PubMed  Google Scholar 

  65. Mathis V, Kenny PJ. From controlled to compulsive drug-taking: The role of the habenula in addiction. Neurosci Biobehav Rev. 2018. [Epub ahead of print]

  66. Zhao-Shea R, DeGroot SR, Liu L, Vallaster M, Pang X, Su Q, et al. Increased CRF signalling in a ventral tegmental area-interpeduncular nucleus-medial habenula circuit induces anxiety during nicotine withdrawal. Nat Commun. 2015;6:6770.

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank Rachel L. Hines and Fei Wang for assistance with sleep scoring. Research reported in this publication was supported by the National Institute on Drug Abuse of the National Institutes of Health under Award Numbers DA035805 (YH), MH101147 (YH), DA047108 (YH), DA043826 (YH), DA023206 (YD), DA040620 (YD), DA044538 (YD).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yanhua H. Huang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Disclaimer

The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ge, F., Mu, P., Guo, R. et al. Chronic sleep fragmentation enhances habenula cholinergic neural activity. Mol Psychiatry 26, 941–954 (2021). https://doi.org/10.1038/s41380-019-0419-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41380-019-0419-z

This article is cited by

Search

Quick links