Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Mid-life microbiota crises: middle age is associated with pervasive neuroimmune alterations that are reversed by targeting the gut microbiome

Abstract

Male middle age is a transitional period where many physiological and psychological changes occur leading to cognitive and behavioural alterations, and a deterioration of brain function. However, the mechanisms underpinning such changes are unclear. The gut microbiome has been implicated as a key mediator in the communication between the gut and the brain, and in the regulation of brain homeostasis, including brain immune cell function. Thus, we tested whether targeting the gut microbiome by prebiotic supplementation may alter microglia activation and brain function in ageing. Male young adult (8 weeks) and middle-aged (10 months) C57BL/6 mice received diet enriched with a prebiotic (10% oligofructose-enriched inulin) or control chow for 14 weeks. Prebiotic supplementation differentially altered the gut microbiota profile in young and middle-aged mice with changes correlating with faecal metabolites. Functionally, this translated into a reversal of stress-induced immune priming in middle-aged mice. In addition, a reduction in ageing-induced infiltration of Ly-6Chi monocytes into the brain coupled with a reversal in ageing-related increases in a subset of activated microglia (Ly-6C+) was observed. Taken together, these data highlight a potential pathway by which targeting the gut microbiome with prebiotics can modulate the peripheral immune response and alter neuroinflammation in middle age. Our data highlight a novel strategy for the amelioration of age-related neuroinflammatory pathologies and brain function.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Lynch SV, Pedersen O. The human intestinal microbiome in health and disease. N Engl J Med. 2016;375:2369–79.

    Article  CAS  PubMed  Google Scholar 

  2. Fung TC, Olson CA, Hsiao EY. Interactions between the microbiota, immune and nervous systems in health and disease. Nat Neurosci. 2017;20:145–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Miquel S, Champ C, Day J, Aarts E, Bahr BA, Bakker M, et al. Poor cognitive ageing: vulnerabilities, mechanisms and the impact of nutritional interventions. Ageing Res Rev. 2018;42:40–55.

    Article  PubMed  Google Scholar 

  4. Sandhu KV, Sherwin E, Schellekens H, Stanton C, Dinan TG, Cryan JF. Feeding the microbiota–gut–brain axis: diet, microbiome, and neuropsychiatry. Transl Res. 2017;179:223–44.

    Article  CAS  PubMed  Google Scholar 

  5. David LA, Maurice CF, Carmody RN, Gootenberg DB, Button JE, Wolfe BE, et al. Diet rapidly and reproducibly alters the human gut microbiome. Nature. 2014;505:559–63.

    Article  CAS  PubMed  Google Scholar 

  6. Donovan SM. Introduction to the special focus issue on the impact of diet on gut microbiota composition and function and future opportunities for nutritional modulation of the gut microbiome to improve human health. Gut Microbes. 2017;8:75–81.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Ennaceur A, Michalikova S, van Rensburg R, Chazot PL. Detailed analysis of the behavior and memory performance of middle-aged male and female CD-1 mice in a 3D maze. Behav Brain Res. 2008;187:312–26.

    Article  CAS  PubMed  Google Scholar 

  8. Bensalem J, Servant L, Alfos S, Gaudout D, Laye S, Pallet V, et al. Dietary polyphenol supplementation prevents alterations of spatial navigation in middle-aged mice. Front Behav Neurosci. 2016;10:9.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. Duarte JM, Do KQ, Gruetter R. Longitudinal neurochemical modifications in the aging mouse brain measured in vivo by 1H magnetic resonance spectroscopy. Neurobiol Aging. 2014;35:1660–8.

    Article  CAS  PubMed  Google Scholar 

  10. Francia N, Cirulli F, Chiarotti F, Antonelli A, Aloe L, Alleva E. Spatial memory deficits in middle-aged mice correlate with lower exploratory activity and a subordinate status: role of hippocampal neurotrophins. Eur J Neurosci. 2006;23:711–28.

    Article  CAS  PubMed  Google Scholar 

  11. Shoji H, Takao K, Hattori S, Miyakawa T. Age-related changes in behavior in C57BL/6J mice from young adulthood to middle age. Mol Brain. 2016;9:11.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Prenderville JA, Kennedy PJ, Dinan TG, Cryan JF. Adding fuel to the fire: the impact of stress on the ageing brain. Trends Neurosci. 2015;38:13–25.

    Article  CAS  PubMed  Google Scholar 

  13. Sparkman NL, Johnson RW. Neuroinflammation associated with aging sensitizes the brain to the effects of infection or stress. Neuroimmunomodulation. 2008;15:323–30.

    Article  CAS  PubMed  Google Scholar 

  14. Franceschi C, Salvioli S, Garagnani P, de Eguileor M, Monti D, Capri M. Immunobiography and the heterogeneity of immune responses in the elderly: a focus on inflammaging and trained immunity. Front Immunol. 2017;8:982.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Norden DM, Godbout JP. Review: microglia of the aged brain: primed to be activated and resistant to regulation. Neuropathol Appl Neurobiol. 2013;39:19–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Hickman S, Izzy S, Sen P, Morsett L, El Khoury J. Microglia in neurodegeneration. Nat Neurosci. 2018;21:1359–69.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Tay TL, Savage JC, Hui CW, Bisht K, Tremblay ME. Microglia across the lifespan: from origin to function in brain development, plasticity and cognition. J Physiol. 2017;595:1929–45.

    Article  CAS  PubMed  Google Scholar 

  18. Perry VH, Newman TA, Cunningham C. The impact of systemic infection on the progression of neurodegenerative disease. Nat Rev Neurosci. 2003;4:103–12.

    Article  CAS  PubMed  Google Scholar 

  19. Streit WJ, Sammons NW, Kuhns AJ, Sparks DL. Dystrophic microglia in the aging human brain. Glia. 2004;45:208–12.

    Article  PubMed  Google Scholar 

  20. Nimmerjahn A, Kirchhoff F, Helmchen F. Resting microglial cells are highly dynamic surveillants of brain parenchyma in vivo. Science. 2005;308:1314–8.

    Article  CAS  PubMed  Google Scholar 

  21. Hickman SE, Kingery ND, Ohsumi TK, Borowsky ML, Wang LC, Means TK, et al. The microglial sensome revealed by direct RNA sequencing. Nat Neurosci. 2013;16:1896–905.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Scott KA, Ida M, Peterson VL, Prenderville JA, Moloney GM, Izumo T, et al. Revisiting Metchnikoff: age-related alterations in microbiota–gut–brain axis in the mouse. Brain Behav Immunity. 2017;65:20–32.

    Article  Google Scholar 

  23. van der Lugt B, Rusli F, Lute C, Lamprakis A, Salazar E, Boekschoten MV, et al. Integrative analysis of gut microbiota composition, host colonic gene expression and intraluminal metabolites in aging C57BL/6J mice. Aging (Albany NY). 2018;10:930–50.

    Article  Google Scholar 

  24. Biagi E, Franceschi C, Rampelli S, Severgnini M, Ostan R, Turroni S, et al. Gut microbiota and extreme longevity. Curr Biol. 2016;26:1480–5.

    Article  CAS  PubMed  Google Scholar 

  25. Biagi E, Nylund L, Candela M, Ostan R, Bucci L, Pini E, et al. Through ageing, and beyond: gut microbiota and inflammatory status in seniors and centenarians. PLoS ONE. 2010;5:e10667.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Fransen F, van Beek AA, Borghuis T, Aidy SE, Hugenholtz F, van der Gaast-de Jongh C, et al. Aged gut microbiota contributes to systemical inflammaging after transfer to germ-free mice. Front Immunol. 2017;8:1385.

  27. Thevaranjan N, Puchta A, Schulz C, Naidoo A, Szamosi JC, Verschoor CP, et al. Age-associated microbial dysbiosis promotes intestinal permeability, systemic inflammation, and macrophage dysfunction. Cell Host Microbe. 2017;21:455–66 e4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Smith P, Willemsen D, Popkes M, Metge F, Gandiwa E, Reichard M, et al. Regulation of life span by the gut microbiota in the short-lived African turquoise killifish. Elife. 2017;6:e27014.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Gibson GR, Hutkins R, Sanders ME, Prescott SL, Reimer RA, Salminen SJ, et al. Expert consensus document: The International Scientific Association for Probiotics and Prebiotics (ISAPP) consensus statement on the definition and scope of prebiotics. Nat Rev Gastroenterol Hepatol. 2017;14:491.

    Article  PubMed  Google Scholar 

  30. Vulevic J, Drakoularakou A, Yaqoob P, Tzortzis G, Gibson GR. Modulation of the fecal microflora profile and immune function by a novel trans-galactooligosaccharide mixture (B-GOS) in healthy elderly volunteers. Am J Clin Nutr. 2008;88:1438–46.

    CAS  PubMed  Google Scholar 

  31. Schiffrin EJ, Thomas DR, Kumar VB, Brown C, Hager C, Van’t Hof MA, et al. Systemic inflammatory markers in older persons: the effect of oral nutritional supplementation with prebiotics. J Nutr Health Aging. 2007;11:475–9.

    CAS  PubMed  Google Scholar 

  32. Burokas A, Arboleya S, Moloney RD, Peterson VL, Murphy K, Clarke G, et al. Targeting the microbiota–gut–brain axis: prebiotics have anxiolytic and antidepressant-like effects and reverse the impact of chronic stress in mice. Biol Psychiatry. 2017;82:472–87.

    Article  CAS  PubMed  Google Scholar 

  33. Matt SM, Allen JM, Lawson MA, Mailing LJ, Woods JA, Johnson RW. Butyrate and dietary soluble fiber improve neuroinflammation associated with aging in mice. Front Immunol. 2018;9:1832.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Faul F, Erdfelder E, Lang AG, Buchner A. G*Power 3: a flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behav Res Methods. 2007;39:175–91.

    Article  PubMed  Google Scholar 

  35. van de Wouw M, Boehme M, Lyte JM, Wiley N, Strain C, O’Sullivan O, et al. Short-chain fatty acids: microbial metabolites that alleviate stress-induced brain-gut axis alterations. J Physiol. 2018;596:4923–44.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. Messaoudi M, Rozan P, Nejdi A, Hidalgo S, Desor D. Behavioural and cognitive effects of oligofructose-enriched inulin in rats. Br J Nutr. 2005;93 Suppl 1:S27–30.

    Article  CAS  PubMed  Google Scholar 

  37. Rozan P, Nejdi A, Hidalgo S, Bisson JF, Desor D, Messaoudi M. Effects of lifelong intervention with an oligofructose-enriched inulin in rats on general health and lifespan. Br J Nutr. 2008;100:1192–9.

    Article  CAS  PubMed  Google Scholar 

  38. Rault-Nania MH, Gueux E, Demougeot C, Demigne C, Rock E, Mazur A. Inulin attenuates atherosclerosis in apolipoprotein E-deficient mice. Br J Nutr. 2006;96:840–4.

    Article  CAS  PubMed  Google Scholar 

  39. Savignac HM, Tramullas M, Kiely B, Dinan TG, Cryan JF. Bifidobacteria modulate cognitive processes in an anxious mouse strain. Behav Brain Res. 2015;287:59–72.

    Article  CAS  PubMed  Google Scholar 

  40. Vorhees CV, Williams MT. Morris water maze: procedures for assessing spatial and related forms of learning and memory. Nat Protocols. 2006;1:848–58.

    Article  PubMed  Google Scholar 

  41. Izquierdo A, Wellman CL, Holmes A. Brief uncontrollable stress causes dendritic retraction in infralimbic cortex and resistance to fear extinction in mice. J Neurosci. 2006;26:5733–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Desbonnet L, O’Tuathaigh C, Clarke G, O’Leary C, Petit E, Clarke N, et al. Phenotypic effects of repeated psychosocial stress during adolescence in mice mutant for the schizophrenia risk gene neuregulin-1: a putative model of gene x environment interaction. Brain Behav Immunity. 2012;26:660–71.

    Article  CAS  Google Scholar 

  43. Porsolt RD, Bertin A, Jalfre M. Behavioral despair in mice: a primary screening test for antidepressants. Arch Int Pharmacodyn Ther. 1977;229:327–36.

    CAS  PubMed  Google Scholar 

  44. Cryan JF, Mombereau C. In search of a depressed mouse: utility of models for studying depression-related behavior in genetically modified mice. Mol Psychiatry. 2004;9:326–57.

    Article  CAS  PubMed  Google Scholar 

  45. Schellekens H, Clarke G, Jeffery IB, Dinan TG, Cryan JF. Dynamic 5-HT2C receptor editing in a mouse model of obesity. PLoS ONE. 2012;7:e32266.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(−Delta Delta C(T)) Method. Methods (San Diego, CA). 2001;25:402–8.

    Article  CAS  Google Scholar 

  47. Edgar RC. Search and clustering orders of magnitude faster than BLAST. Bioinformatics. 2010;26:2460–1.

    Article  CAS  PubMed  Google Scholar 

  48. Caporaso JG, Kuczynski J, Stombaugh J, Bittinger K, Bushman FD, Costello EK, et al. QIIME allows analysis of high-throughput community sequencing data. Nat Methods. 2010;7:335–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Smart KF, Aggio RB, Van Houtte JR, Villas-Boas SG. Analytical platform for metabolome analysis of microbial cells using methyl chloroformate derivatization followed by gas chromatography-mass spectrometry. Nat Protoc. 2010;5:1709–29.

    Article  CAS  PubMed  Google Scholar 

  50. Johnsen LG, Skou PB, Khakimov B, Bro R. Gas chromatography-mass spectrometry data processing made easy. J Chromatogr A. 2017;1503:57–64.

    Article  CAS  PubMed  Google Scholar 

  51. Grubbs FE. Procedures for detecting outlying observations in samples. Technometrics. 1969;11:1–21.

    Article  Google Scholar 

  52. Dhabhar FS, Malarkey WB, Neri E, McEwen BS. Stress-induced redistribution of immune cells—from barracks to boulevards to battlefields: a tale of three hormones—Curt Richter Award winner. Psychoneuroendocrinology. 2012;37:1345–68.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Nikodemova M, Small AL, Kimyon RS, Watters JJ. Age-dependent differences in microglial responses to systemic inflammation are evident as early as middle age. Physiol Genomics. 2016;48:336–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Bardou I, Brothers HM, Kaercher RM, Hopp SC, Wenk GL. Differential effects of duration and age on the consequences of neuroinflammation in the hippocampus. Neurobiol Aging. 2013;34:2293–301.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Lee DC, Ruiz CR, Lebson L, Selenica ML, Rizer J, Hunt JB Jr., et al. Aging enhances classical activation but mitigates alternative activation in the central nervous system. Neurobiol Aging. 2013;34:1610–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Culshaw S, Millington OR, Brewer JM, McInnes IB. Murine neutrophils present class II restricted antigen. Immunol Lett. 2008;118:49–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Vono M, Lin A, Norrby-Teglund A, Koup RA, Liang F, Loré K. Neutrophils acquire the capacity for antigen presentation to memory CD4(+) T cells in vitro and ex vivo. Blood. 2017;129:1991–2001.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Dinan TG, Cryan JF. Gut instincts: microbiota as a key regulator of brain development, ageing and neurodegeneration. J Physiol. 2017;595:489–503.

    Article  CAS  PubMed  Google Scholar 

  59. Leung K, Thuret S. Gut microbiota: a modulator of brain plasticity and cognitive function in ageing. Healthcare (Basel). 2015;3:898–916.

    Article  Google Scholar 

  60. Miyajima M, Zhang B, Sugiura Y, Sonomura K, Guerrini MM, Tsutsui Y, et al. Metabolic shift induced by systemic activation of T cells in PD-1-deficient mice perturbs brain monoamines and emotional behavior. Nat Immunol. 2017;18:1342–52.

    Article  CAS  PubMed  Google Scholar 

  61. Derecki NC, Cardani AN, Yang CH, Quinnies KM, Crihfield A, Lynch KR, et al. Regulation of learning and memory by meningeal immunity: a key role for IL-4. J Exp Med. 2010;207:1067–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Filiano AJ, Xu Y, Tustison NJ, Marsh RL, Baker W, Smirnov I, et al. Unexpected role of interferon-γ in regulating neuronal connectivity and social behaviour. Nature. 2016;535:425–9. advance online publication.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Sinclair LV, Rolf J, Emslie E, Shi YB, Taylor PM, Cantrell DA. Control of amino-acid transport by antigen receptors coordinates the metabolic reprogramming essential for T cell differentiation. Nat Immunol. 2013;14:500–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Lin R, Liu W, Piao M, Zhu H. A review of the relationship between the gut microbiota and amino acid metabolism. Amino Acids. 2017;49:2083–90.

    Article  CAS  PubMed  Google Scholar 

  65. Shen X, Miao J, Wan Q, Wang S, Li M, Pu F, et al. Possible correlation between gut microbiota and immunity among healthy middle-aged and elderly people in southwest China. Gut Pathog. 2018;10:4.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  66. Varvel NH, Neher JJ, Bosch A, Wang W, Ransohoff RM, Miller RJ, et al. Infiltrating monocytes promote brain inflammation and exacerbate neuronal damage after status epilepticus. Proc Natl Acad Sci USA. 2016;113:E5665–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Möhle L, Mattei D, Heimesaat Markus M, Bereswill S, Fischer A, Alutis M, et al. Ly6Chi monocytes provide a link between antibiotic-induced changes in gut microbiota and adult hippocampal neurogenesis. Cell Rep. 2016;15:1945–56.

    Article  PubMed  CAS  Google Scholar 

  68. Korin B, Ben-Shaanan TL, Schiller M, Dubovik T, Azulay-Debby H, Boshnak NT, et al. High-dimensional, single-cell characterization of the brain’s immune compartment. Nat Neurosci. 2017;20:1300–9. advance online publication.

    Article  CAS  PubMed  Google Scholar 

  69. Mrdjen D, Pavlovic A, Hartmann FJ, Schreiner B, Utz SG, Leung BP, et al. High-dimensional single-cell mapping of central nervous system immune cells reveals distinct myeloid subsets in health, aging, and disease. Immunity. 2018;48:380–95 e6.

    Article  CAS  PubMed  Google Scholar 

  70. Getts DR, Terry RL, Getts MT, Müller M, Rana S, Shrestha B, et al. Ly6c(+) “inflammatory monocytes” are microglial precursors recruited in a pathogenic manner in West Nile virus encephalitis. J Exp Med. 2008;205:2319–37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Wohleb ES, Powell ND, Godbout JP, Sheridan JF. Stress-induced recruitment of bone marrow-derived monocytes to the brain promotes anxiety-like behavior. J Neurosci. 2013;33:13820–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Sawicki CM, McKim DB, Wohleb ES, Jarrett BL, Reader BF, Norden DM, et al. Social defeat promotes a reactive endothelium in a brain region-dependent manner with increased expression of key adhesion molecules, selectins and chemokines associated with the recruitment of myeloid cells to the brain. Neuroscience. 2015;302:151–64.

    Article  CAS  PubMed  Google Scholar 

  73. Mildner A, Schmidt H, Nitsche M, Merkler D, Hanisch UK, Mack M, et al. Microglia in the adult brain arise from Ly-6ChiCCR2+monocytes only under defined host conditions. Nat Neurosci. 2007;10:1544–53.

    Article  CAS  PubMed  Google Scholar 

  74. Grabert K, Michoel T, Karavolos MH, Clohisey S, Baillie JK, Stevens MP, et al. Microglial brain region-dependent diversity and selective regional sensitivities to aging. Nat Neurosci. 2016;19:504–16. advance online publication.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Stirling DP, Cummins K, Mishra M, Teo W, Yong VW, Stys P. Toll-like receptor 2-mediated alternative activation of microglia is protective after spinal cord injury. Brain. 2014;137:707–23.

    Article  PubMed  Google Scholar 

  76. Erny D, Hrabe de Angelis AL, Jaitin D, Wieghofer P, Staszewski O, David E, et al. Host microbiota constantly control maturation and function of microglia in the CNS. Nat Neurosci. 2015;18:965–77.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Rea K, Dinan TG, Cryan JF. The microbiome: a key regulator of stress and neuroinflammation. Neurobiol Stress. 2016;4:23–33.

    Article  PubMed  PubMed Central  Google Scholar 

  78. Vuong HE, Yano JM, Fung TC, Hsiao EY. The microbiome and host behavior. Annu Rev Neurosci. 2017;40:21–49.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Ang Z, Er JZ, Tan NS, Lu J, Liou YC, Grosse J, et al. Human and mouse monocytes display distinct signalling and cytokine profiles upon stimulation with FFAR2/FFAR3 short-chain fatty acid receptor agonists. Sci Rep. 2016;6:34145.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Wohleb ES, McKim DB, Sheridan JF, Godbout JP. Monocyte trafficking to the brain with stress and inflammation: a novel axis of immune-to-brain communication that influences mood and behavior. Front Neurosci. 2014;8:447.

    PubMed  Google Scholar 

  81. Vazquez E, Barranco A, Ramirez M, Gruart A, Delgado-Garcia JM, Martinez-Lara E, et al. Effects of a human milk oligosaccharide, 2’-fucosyllactose, on hippocampal long-term potentiation and learning capabilities in rodents. J Nutr Biochem. 2015;26:455–65.

    Article  CAS  PubMed  Google Scholar 

  82. Mika A, Gaffney M, Roller R, Hills A, Bouchet CA, Hulen KA, et al. Feeding the developing brain: juvenile rats fed diet rich in prebiotics and bioactive milk fractions exhibit reduced anxiety-related behavior and modified gene expression in emotion circuits. Neurosci Lett. 2018;677:103–9.

    Article  CAS  PubMed  Google Scholar 

  83. Tarr AJ, Galley JD, Fisher Sydney E, Chichlowski M, Berg BM, Bailey MT. The prebiotics 3′ Sialyllactose and 6′ Sialyllactose diminish stressor-induced anxiety-like behavior and colonic microbiota alterations: evidence for effects on the gut–brain axis. Brain Behav Immunity. 2015;50:166–77.

    Article  CAS  Google Scholar 

  84. Beilharz JE, Kaakoush NO, Maniam J, Morris MJ. Cafeteria diet and probiotic therapy: cross talk among memory, neuroplasticity, serotonin receptors and gut microbiota in the rat. Mol Psychiatry. 2017;23:351.

    Article  PubMed  CAS  Google Scholar 

  85. Fonken LK, Frank MG, D’Angelo HM, Heinze JD, Watkins LR, Lowry CA, et al. Mycobacterium vaccae immunization protects aged rats from surgery-elicited neuroinflammation and cognitive dysfunction. Neurobiol Aging. 2018;71:105–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Zhang S, Yang J, Henning SM, Lee R, Hsu M, Grojean E, et al. Dietary pomegranate extract and inulin affect gut microbiome differentially in mice fed an obesogenic diet. Anaerobe. 2017;48:184–93.

    Article  CAS  PubMed  Google Scholar 

  87. Vinolo MA, Rodrigues HG, Nachbar RT, Curi R. Regulation of inflammation by short chain fatty acids. Nutrients. 2011;3:858–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Huuskonen J, Suuronen T, Nuutinen T, Kyrylenko S, Salminen A. Regulation of microglial inflammatory response by sodium butyrate and short-chain fatty acids. Br J Pharmacol. 2004;141:874–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Odamaki T, Kato K, Sugahara H, Hashikura N, Takahashi S, Xiao JZ, et al. Age-related changes in gut microbiota composition from newborn to centenarian: a cross-sectional study. BMC Microbiol. 2016;16:90.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  90. Yatsunenko T, Rey FE, Manary MJ, Trehan I, Dominguez-Bello MG, Contreras M, et al. Human gut microbiome viewed across age and geography. Nature. 2012;486:222.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Claesson MJ, Jeffery IB, Conde S, Power SE, O’Connor EM, Cusack S, et al. Gut microbiota composition correlates with diet and health in the elderly. Nature. 2012;488:178–84.

    Article  CAS  PubMed  Google Scholar 

  92. Claesson MJ, Cusack S, O’Sullivan O, Greene-Diniz R, de Weerd H, Flannery E, et al. Composition, variability, and temporal stability of the intestinal microbiota of the elderly. Proc Natl Acad Sci USA. 2011;108 Suppl 1:4586–91.

    Article  CAS  PubMed  Google Scholar 

  93. Gibson GR, Beatty ER, Wang X, Cummings JH. Selective stimulation of bifidobacteria in the human colon by oligofructose and inulin. Gastroenterology. 1995;108:975–82.

    Article  CAS  PubMed  Google Scholar 

  94. Hopkins MJ, Sharp R, Macfarlane GT. Age and disease related changes in intestinal bacterial populations assessed by cell culture, 16S rRNA abundance, and community cellular fatty acid profiles. Gut. 2001;48:198–205.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Everard A, Belzer C, Geurts L, Ouwerkerk JP, Druart C, Bindels LB, et al. Cross-talk between <em>Akkermansia muciniphila </em> and intestinal epithelium controls diet-induced obesity. Proc Natl Acad Sci USA. 2013;110:9066–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Bodogai M, O’Connell J, Kim K, Kim Y, Moritoh K, Chen C, et al. Commensal bacteria contribute to insulin resistance in aging by activating innate B1a cells. Sci Transl Med. 2018;10:eaat4271.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  97. Cryan JF, Dinan TG. Mind-altering microorganisms: the impact of the gut microbiota on brain and behaviour. Nat Rev Neurosci. 2012;13:701–12.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We gratefully thank the Teagasc sequencing facility, Dr. Fiona Crispie, Laura Finnegan and Dr. Paul Cotter; the APC Flow cytometry platform, Dr. Panagiota Stamou and Dr. Ken Nally; as well as MS-Omics (Copenhagen, Denmark) for faecal metabolites analysis. We also thank Pat Fitzgerald, Colette Manley, Dr. Kieran Rea, Veronica Peterson, Marta Neto, and Dr. Emanuela Morelli for their invaluable help.

Funding

APC Microbiome Ireland is a research centre funded by Science Foundation Ireland (SFI), through the Irish Government’s National Development Plan (grant no. 12/RC/2273). In addition, this study was supported through the Joint Programming Initiative - a healthy diet for a healthy life (JPI-HDHL) – investigating Nutrition and Cognitive Function (NutriCog) by a Science Foundation Ireland (SFI) grant ‘AMBROSIAC – A Menu for Brain Responses Opposing Stress-Induced Alterations in Cognition’ (15/JP-HDHL/3270).

Author information

Authors and Affiliations

Authors

Contributions

MB, GC, CS, TGD, HS and JFC have contributed to the conception and design of the work. Acquisition, analysis and interpretation of data were performed by MB, MvDW, TFSB, LO-R, KL, FF, AVG, GMM, CM, KVS and KAS. MB and JFC wrote the manuscript. MB, MvDW, TFSB, FF, AVG, GMM, KVS, KAS, GC, CS, TGD, HS and JFC critically revised the manuscript. All authors approve the final version of the manuscript and agree to be accountable for all aspects of the work.

Corresponding author

Correspondence to John F. Cryan.

Ethics declarations

Conflict of interest

JFC, TGD & CS have research funding from Dupont Nutrition Biosciences APS, Cremo SA, Alkermes Inc, 4D Pharma PLC, Mead Johnson Nutrition, Nutricia Danone, Suntory Wellness. JFC, TGD, CS & GC have spoken at meetings sponsored by food and pharmaceutical companies. All other authors report no financial interests or potential conflicts of interest

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Boehme, M., van de Wouw, M., Bastiaanssen, T.F.S. et al. Mid-life microbiota crises: middle age is associated with pervasive neuroimmune alterations that are reversed by targeting the gut microbiome. Mol Psychiatry 25, 2567–2583 (2020). https://doi.org/10.1038/s41380-019-0425-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41380-019-0425-1

This article is cited by

Search

Quick links