Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Peripheral cytokine levels and response to antidepressant treatment in depression: a systematic review and meta-analysis

Abstract

Predicting antidepressant treatment response has been a clinical challenge for major depressive disorder (MDD). The inflammation hypothesis of depression suggests that cytokines play a key role in the pathophysiology of MDD and alterations in peripheral cytokine levels are associated with antidepressant treatment outcome. Present meta-analysis aimed to examine the association between baseline peripheral cytokine levels and the response to antidepressant treatment and to evaluate whether changes of cytokine levels were associated with the response to antidepressant treatment in patients with MDD. Human-based studies published in any language in peer-reviewed journals were systematically searched from the PubMed, Embase and Web of Science databases, from inception up to October 2018. The search terms included cytokine, depressive disorder and antidepressant and their synonyms. Case–control or case–case studies reporting on levels of IL-1β, IL-2, IL-4, IL-5, IL-6, IL-8, IL-10, IL-12, CRP, TNF-α, IFN-γ, GM-CSF, MIP-1α, and Eotaxin-1 in patients with MDD based on validated depression scales both before and after antidepressant treatment were included. Of 7408 identified records, 44 studies met inclusion. Standardized mean differences in each cytokine were evaluated, and random-effects meta-analyses were performed. MDD patients who responded to antidepressant treatment had lower baseline IL-8 levels than the nonresponders (Hedge’s g = −0.28; 95%CI, −0.43 to −0.13; P = 0.0003; FDR = 0.004). Antidepressant treatment significantly decreased levels of TNF-α (Hedge’s g = 0.60; 95%CI, 0.26–0.94; P= 0.0006; FDR = 0.004) only in responders, and responders showed significantly more decreased TNF-α levels compared with nonresponders (P = 0.046). These findings suggested that alterations in peripheral cytokine levels were associated with antidepressant treatment outcomes in MDD. Further investigations are warranted to elucidate sources of heterogeneity and examine the potentiality of using inflammatory cytokines as novel predictive markers for the pharmacological treatment of MDD.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Kessler RC, Bromet EJ. The epidemiology of depression across cultures. Annu Rev Public Health. 2013;34:119–38.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Trivedi MH, Rush AJ, Wisniewski SR, Nierenberg AA, Warden D, Ritz L, et al. Evaluation of outcomes with citalopram for depression using measurement-based care in STAR*D: implications for clinical practice. Am J Psychiatry. 2006;163:28–40.

    Article  PubMed  Google Scholar 

  3. Maes M. Evidence for an immune response in major depression: a review and hypothesis. Prog Neuro-Psychopharmacol Biol Psychiatry. 1995;19:11–38.

    Article  CAS  Google Scholar 

  4. Raison CL, Capuron L, Miller AH. Cytokines sing the blues: inflammation and the pathogenesis of depression. Trends Immunol. 2006;27:24–31.

    Article  CAS  PubMed  Google Scholar 

  5. Miller AH, Maletic V, Raison CL. Inflammation and its discontents: the role of cytokines in the pathophysiology of major depression. Biol Psychiatry. 2009;65:732–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Dowlati Y, Herrmann N, Swardfager W, Liu H, Sham L, Reim EK, et al. A meta-analysis of cytokines in major depression. Biol Psychiatry. 2010;67:446–57.

    Article  CAS  PubMed  Google Scholar 

  7. Hiles SA, Baker AL, de Malmanche T, Attia J. A meta-analysis of differences in IL-6 and IL-10 between people with and without depression: exploring the causes of heterogeneity. Brain Behav Immun. 2012;26:1180–8.

    Article  CAS  PubMed  Google Scholar 

  8. Sutcigil L, Oktenli C, Musabak U, Bozkurt A, Cansever A, Uzun O, et al. Pro- and anti-inflammatory cytokine balance in major depression: effect of sertraline therapy. Clin Dev Immunol. 2007;2007:76396.

    Article  PubMed  Google Scholar 

  9. Hannestad J, DellaGioia N, Bloch M. The effect of antidepressant medication treatment on serum levels of inflammatory cytokines: a meta-analysis. Neuropsychopharmacology. 2011;36:2452–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Yoshimura R, Hori H, Ikenouchi-Sugita A, Umene-Nakano W, Ueda N, Nakamura J. Higher plasma interleukin-6 (IL-6) level is associated with SSRI- or SNRI-refractory depression. Prog Neuro-Psychopharmacol Biol Psychiatry. 2009;33:722–6.

    Article  CAS  Google Scholar 

  11. Lanquillon S, Krieg JC, Bening-Abu-Shach U, Vedder H. Cytokine production and treatment response in major depressive disorder. Neuropsychopharmacology. 2000;22:370–9.

    Article  CAS  PubMed  Google Scholar 

  12. Kohler CA, Freitas TH, Maes M, de Andrade NQ, Liu CS, Fernandes BS, et al. Peripheral cytokine and chemokine alterations in depression: a meta-analysis of 82 studies. Acta Psychiatr Scand. 2017;135:373–87.

    Article  CAS  PubMed  Google Scholar 

  13. Strawbridge R, Arnone D, Danese A, Papadopoulos A, Herane Vives A, Cleare AJ. Inflammation and clinical response to treatment in depression: a meta-analysis. Eur Neuropsychopharmacol. 2015;25:1532–43.

    Article  CAS  PubMed  Google Scholar 

  14. Higgins JP, White IR, Anzures-Cabrera J. Meta-analysis of skewed data: combining results reported on log-transformed or raw scales. Stat Med. 2008;27:6072–92.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Engauge Digitizer Software. 2018. https://markummitchell.github.io/engauge-digitizer/ (2018). Accessed 2018.

  16. Stang A. Critical evaluation of the Newcastle-Ottawa scale for the assessment of the quality of nonrandomized studies in meta-analyses. Eur J Epidemiol. 2010;25:603–5.

    Article  PubMed  Google Scholar 

  17. Hedges LV. Distribution theory for Glass’s estimator of effect size and related estimators. J Educ Stat. 1981;6:107–28.

    Article  Google Scholar 

  18. Higgins JP, Thompson SG, Deeks JJ, Altman DG. Measuring inconsistency in meta-analyses. BMJ. 2003;327:557–60.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Cohen J. A power primer. Psychol Bull. 1992;112:155–9.

    Article  CAS  PubMed  Google Scholar 

  20. Egger M, Davey Smith G, Schneider M, Minder C. Bias in meta-analysis detected by a simple, graphical test. BMJ. 1997;315:629–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Duval S, Tweedie R. Trim and fill: a simple funnel-plot-based method of testing and adjusting for publication bias in meta-analysis. Biometrics. 2000;56:455–63.

    Article  CAS  PubMed  Google Scholar 

  22. R Core Team. R: a language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing; 2014.

    Google Scholar 

  23. Viechtbauer W. Conducting meta-analyses in {R} with the {metafor} package. J Stat Softw. 2010;36:1–48.

    Article  Google Scholar 

  24. Zoga M, Oulis P, Chatzipanagiotou S, Masdrakis VG, Pliatsika P, Boufidou F, et al. Indoleamine 2,3-dioxygenase and immune changes under antidepressive treatment in major depression in females. In Vivo. 2014;28:633–8.

    CAS  PubMed  Google Scholar 

  25. Piletz JE, Halaris A, Iqbal O, Hoppensteadt D, Fareed J, Zhu H, et al. Pro-inflammatory biomakers in depression: treatment with venlafaxine. World J Biol Psychiatry. 2009;10:313–23.

    Article  PubMed  Google Scholar 

  26. Tuglu C, Kara SH, Caliyurt O, Vardar E, Abay E. Increased serum tumor necrosis factor-alpha levels and treatment response in major depressive disorder. Psychopharmacology. 2003;170:429–33.

    Article  CAS  PubMed  Google Scholar 

  27. Hernandez ME, Mendieta D, Martinez-Fong D, Loria F, Moreno J, Estrada I, et al. Variations in circulating cytokine levels during 52 week course of treatment with SSRI for major depressive disorder. Eur Neuropsychopharmacol. 2008;18:917–24.

    Article  CAS  PubMed  Google Scholar 

  28. Frommberger UH, Bauer J, Haselbauer P, Fraulin A, Riemann D, Berger M. Interleukin-6-(IL-6) plasma levels in depression and schizophrenia: comparison between the acute state and after remission. Eur Arch Psychiatry Clin Neurosci. 1997;247:228–33.

    Article  CAS  PubMed  Google Scholar 

  29. Hernandez ME, Mendieta D, Perez-Tapia M, Bojalil R, Estrada-Garcia I, Estrada-Parra S, et al. Effect of selective serotonin reuptake inhibitors and immunomodulator on cytokines levels: an alternative therapy for patients with major depressive disorder. Clin Dev Immunol. 2013;2013:267871.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Marques-Deak AH, Neto FL, Dominguez WV, Solis AC, Kurcgant D, Sato F, et al. Cytokine profiles in women with different subtypes of major depressive disorder. J Psychiatr Res. 2007;41:152–9.

    Article  CAS  PubMed  Google Scholar 

  31. Reininghaus B, Riedrich K, Dalkner N, Bengesser SA, Birner A, Platzer M, et al. Changes in the tryptophan-kynurenine axis in association to therapeutic response in clinically depressed patients undergoing psychiatric rehabilitation. Psychoneuroendocrinology. 2018;94:25–30.

    Article  CAS  PubMed  Google Scholar 

  32. Eller T, Vasar V, Shlik J, Maron E. Effects of bupropion augmentation on pro-inflammatory cytokines in escitalopram-resistant patients with major depressive disorder. J Psychopharmacol. 2009;23:854–8.

    Article  CAS  PubMed  Google Scholar 

  33. Ricken R, Busche M, Schlattmann P, Himmerich H, Bopp S, Bschor T, et al. Cytokine serum levels remain unchanged during lithium augmentation of antidepressants in major depression. J Psychiatr Res. 2018;96:203–8.

    Article  PubMed  Google Scholar 

  34. Hasebe K, Gray L, Bortolasci C, Panizzutti B, Mohebbi M, Kidnapillai S, et al. Adjunctive N-acetylcysteine in depression: exploration of interleukin-6, C-reactive protein and brain-derived neurotrophic factor. Acta Neuropsychiatr. 2017;29:337–46.

    Article  PubMed  Google Scholar 

  35. Brunoni AR, Padberg F, Vieira ELM, Teixeira AL, Carvalho AF, Lotufo PA, et al. Plasma biomarkers in a placebo-controlled trial comparing tDCS and escitalopram efficacy in major depression. Prog Neuro-Psychopharmacol Biol Psychiatry. 2018;86:211–7.

    Article  CAS  Google Scholar 

  36. Chen CY, Yeh YW, Kuo SC, Liang CS, Ho PS, Huang CC, et al. Differences in immunomodulatory properties between venlafaxine and paroxetine in patients with major depressive disorder. Psychoneuroendocrinology. 2018;87:108–18.

    Article  CAS  PubMed  Google Scholar 

  37. Gadad BS, Jha MK, Grannemann BD, Mayes TL, Trivedi MH. Proteomics profiling reveals inflammatory biomarkers of antidepressant treatment response: findings from the CO-MED trial. J Psychiatr Res. 2017;94:1–6.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Ormstad H, Dahl J, Verkerk R, Andreassen OA, Maes M. Increased plasma levels of competing amino acids, rather than lowered plasma tryptophan levels, are associated with a non-response to treatment in major depression. Eur Neuropsychopharmacol. 2016;26:1286–96.

    Article  CAS  PubMed  Google Scholar 

  39. Myung W, Lim SW, Woo HI, Park JH, Shim S, Lee SY, et al. Serum cytokine levels in major depressive disorder and its role in antidepressant response. Psychiatry Investig. 2016;13:644–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Eller T, Vasar V, Shlik J, Maron E. Pro-inflammatory cytokines and treatment response to escitaloprsam in major depressive disorder. Prog Neuro-Psychopharmacol Biol Psychiatry. 2008;32:445–50.

    Article  CAS  Google Scholar 

  41. Mikova O, Yakimova R, Bosmans E, Kenis G, Maes M. Increased serum tumor necrosis factor alpha concentrations in major depression and multiple sclerosis. Eur Neuropsychopharmacol. 2001;11:203–8.

    Article  CAS  PubMed  Google Scholar 

  42. Lindqvist D, Dhabhar FS, James SJ, Hough CM, Jain FA, Bersani FS, et al. Oxidative stress, inflammation and treatment response in major depression. Psychoneuroendocrinology. 2017;76:197–205.

    Article  CAS  PubMed  Google Scholar 

  43. Mocking RJT, Nap TS, Westerink AM, Assies J, Vaz FM, Koeter MWJ, et al. Biological profiling of prospective antidepressant response in major depressive disorder: associations with (neuro)inflammation, fatty acid metabolism, and amygdala-reactivity. Psychoneuroendocrinology. 2017;79:84–92.

    Article  CAS  PubMed  Google Scholar 

  44. Schmidt FM, Schroder T, Kirkby KC, Sander C, Suslow T, Holdt LM, et al. Pro- and anti-inflammatory cytokines, but not CRP, are inversely correlated with severity and symptoms of major depression. Psychiatry Res. 2016;239:85–91.

    Article  CAS  PubMed  Google Scholar 

  45. Uher R, Tansey KE, Dew T, Maier W, Mors O, Hauser J, et al. An inflammatory biomarker as a differential predictor of outcome of depression treatment with escitalopram and nortriptyline. Am J Psychiatry. 2014;171:1278–86.

    Article  PubMed  Google Scholar 

  46. Dome P, Halmai Z, Dobos J, Lazary J, Gonda X, Kenessey I, et al. Investigation of circulating endothelial progenitor cells and angiogenic and inflammatory cytokines during recovery from an episode of major depression. J Affect Disord. 2012;136:1159–63.

    Article  CAS  PubMed  Google Scholar 

  47. Chang HH, Lee IH, Gean PW, Lee SY, Chi MH, Yang YK, et al. Treatment response and cognitive impairment in major depression: association with C-reactive protein. Brain Behav Immun. 2012;26:90–5.

    Article  CAS  PubMed  Google Scholar 

  48. Harley J, Luty S, Carter J, Mulder R, Joyce P. Elevated C-reactive protein in depression: a predictor of good long-term outcome with antidepressants and poor outcome with psychotherapy. J Psychopharmacol. 2010;24:625–6.

    Article  CAS  PubMed  Google Scholar 

  49. El-Haggar SM, Eissa MA, Mostafa TM, El-Attar KS, Abdallah MS. The phosphodiesterase inhibitor pentoxifylline as a novel adjunct to antidepressants in major depressive disorder patients: a proof-of-concept, randomized, double-blind, placebo-controlled trial. Psychother Psychosom. 2018;87:331–9.

  50. Muthuramalingam A, Menon V, Rajkumar RP, Negi VS. Effect of fluoxetine on inflammatory cytokines in drug-naive major depression: a short-term prospective study from South India. J Clin Psychopharmacol. 2016;36:726–8.

    Article  PubMed  Google Scholar 

  51. Manoharan A, Rajkumar RP, Shewade DG, Sundaram R, Muthuramalingam A, Paul A. Evaluation of interleukin-6 and serotonin as biomarkers to predict response to fluoxetine. Hum Psychopharmacol. 2016;31:178–84.

    Article  CAS  PubMed  Google Scholar 

  52. Brunoni AR, Machado-Vieira R, Zarate CA, Valiengo L, Vieira EL, Benseñor IM, et al. Cytokines plasma levels during antidepressant treatment with sertraline and transcranial direct current stimulation (tDCS): results from a factorial, randomized, controlled trial. Psychopharmacology. 2014;231:1315–23.

    Article  CAS  PubMed  Google Scholar 

  53. Fornaro M, Martino M, Battaglia F, Colicchio S, Perugi G. Increase in IL-6 levels among major depressive disorder patients after a 6-week treatment with duloxetine 60 mg/day: A preliminary observation. Neuropsychiatr Dis Treat. 2011;7:51–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Basterzi AD, Aydemir C, Kisa C, Aksaray S, Tuzer V, Yazici K, et al. IL-6 levels decrease with SSRI treatment in patients with major depression. Hum Psychopharmacol. 2005;20:473–6.

    Article  CAS  PubMed  Google Scholar 

  55. Yoshimura R, Hori H, Ikenouchi-Sugita A, Umene-Nakano W, Katsuki A, Atake K, et al. Plasma levels of interleukin-6 and selective serotonin reuptake inhibitor response in patients with major depressive disorder. Hum Psychopharmacol. 2013;28:466–70.

    Article  CAS  PubMed  Google Scholar 

  56. Sun H, Zhao H, Zhang J, Bao F, Wei J, Wang DH, et al. Effect of acupuncture at Baihui (GV 20) and Zusanli (ST 36) on the level of serum inflammatory cytokines in patients with depression. Zhongguo zhen jiu = Chin Acupunct moxibustion. 2010;30:195–9.

    CAS  Google Scholar 

  57. Liu Y, Feng H, Mao H, Mo Y, Yin Y, Liu W, et al. Impact on serum 5-HT and TH1/TH2 in patients of depressive disorder at acute stage treated with acupuncture and western medication. Zhongguo zhen jiu = Chin Acupunct moxibustion. 2015;35:539–43.

    Google Scholar 

  58. Gupta K, Gupta R, Bhatia MS, Tripathi AK, Gupta LK. Effect of agomelatine and fluoxetine on HAM-D score, serum brain-derived neurotrophic factor, and tumor necrosis factor- level in patients with major depressive disorder with severe depression. J Clin Pharmacol. 2017;57:1519–26.

    Article  CAS  PubMed  Google Scholar 

  59. Gupta R, Gupta K, Tripathi AK, Bhatia MS, Gupta LK. Effect of mirtazapine treatment on serum levels of brain-derived neurotrophic factor and tumor necrosis factor-α in patients of major depressive disorder with severe depression. Pharmacology. 2016;97:184–8.

    Article  CAS  PubMed  Google Scholar 

  60. Fornaro M, Rocchi G, Escelsior A, Contini P, Martino M. Might different cytokine trends in depressed patients receiving duloxetine indicate differential biological backgrounds. J Affect Disord. 2013;145:300–7.

    Article  CAS  PubMed  Google Scholar 

  61. Li Z, Qi D, Chen J, Zhang C, Yi Z, Yuan C, et al. Venlafaxine inhibits the upregulation of plasma tumor necrosis factor-alpha (TNF-α) in the Chinese patients with major depressive disorder: a prospective longitudinal study. Psychoneuroendocrinology. 2013;38:107–14.

    Article  CAS  PubMed  Google Scholar 

  62. Himmerich H, Binder EB, Künzel HE, Schuld A, Lucae S, Uhr M, et al. Successful antidepressant therapy restores the disturbed interplay between TNF-α system and HPA axis. Biol Psychiatry. 2006;60:882–8.

    Article  CAS  PubMed  Google Scholar 

  63. Huang R, Xu S, Fang Q, Wu X, Guan C, Qiao H, et al. The changes of serum levels of neuropeptide and cytokines before and after citalopram treatment in the depressive patients with the first episode. J Nanjing Med Univ Nat Sci Ed. 2014;34:641–4.

    CAS  Google Scholar 

  64. Yoshimura T, Matsushima K, Oppenheim JJ, Leonard EJ. Neutrophil chemotactic factor produced by lipopolysaccharide (LPS)-stimulated human blood mononuclear leukocytes: partial characterization and separation from interleukin 1 (IL 1). J Immunol. 1987;139:788–93.

    CAS  PubMed  Google Scholar 

  65. Garin EH, Blanchard DK, Matsushima K, Djeu JY. IL-8 production by peripheral blood mononuclear cells in nephrotic patients. Kidney Int. 1994;45:1311–7.

    Article  CAS  PubMed  Google Scholar 

  66. Smyth MJ, Zachariae CO, Norihisa Y, Ortaldo JR, Hishinuma A, Matsushima K. IL-8 gene expression and production in human peripheral blood lymphocyte subsets. J Immunol. 1991;146:3815–23.

    CAS  PubMed  Google Scholar 

  67. Dantzer R, O’Connor JC, Freund GG, Johnson RW, Kelley KW. From inflammation to sickness and depression: when the immune system subjugates the brain. Nat Rev Neurosci. 2008;9:46–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Kronfol Z, Remick DG. Cytokines and the brain: implications for clinical psychiatry. Am J Psychiatry. 2000;157:683–94.

    Article  CAS  PubMed  Google Scholar 

  69. Benedetti F, Poletti S, Hoogenboezem TA, Locatelli C, de Wit H, Wijkhuijs AJM, et al. Higher baseline proinflammatory cytokines mark poor antidepressant response in bipolar disorder. J Clin Psychiatry. 2017;78:e986–e993.

    Article  PubMed  Google Scholar 

  70. Kohler CA, Freitas TH, Stubbs B, Maes M, Solmi M, Veronese N, et al. Peripheral alterations in cytokine and chemokine levels after antidepressant drug treatment for major depressive disorder: systematic review and meta-analysis. Mol Neurobiol. 2018;55:4195–206.

    CAS  PubMed  Google Scholar 

  71. Martensson U, Nassberger L. Influence of antidepressants on mitogen stimulation of human lymphocytes. Toxicol Vitro. 1993;7:241–5.

    Article  CAS  Google Scholar 

  72. Xia Z, DePierre JW, Nassberger L. Tricyclic antidepressants inhibit IL-6, IL-1 beta and TNF-alpha release in human blood monocytes and IL-2 and interferon-gamma in T cells. Immunopharmacology. 1996;34:27–37.

    Article  CAS  PubMed  Google Scholar 

  73. Tynan RJ, Weidenhofer J, Hinwood M, Cairns MJ, Day TA, Walker FR. A comparative examination of the anti-inflammatory effects of SSRI and SNRI antidepressants on LPS stimulated microglia. Brain Behav Immun. 2012;26:469–79.

    Article  CAS  PubMed  Google Scholar 

  74. Uher R, Perroud N, Ng MY, Hauser J, Henigsberg N, Maier W, et al. Genome-wide pharmacogenetics of antidepressant response in the GENDEP project. Am J Psychiatry. 2010;167:555–64.

    Article  PubMed  Google Scholar 

  75. Levite M. Neurotransmitters activate T-cells and elicit crucial functions via neurotransmitter receptors. Curr Opin Pharmacol. 2008;8:460–71.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

JJL was supported by the National Natural Science Foundation of China (No. 81801344), Postdoctoral Fellowship of Peking-Tsinghua Center for Life Sciences and China Postdoctoral Science Foundation (No. 189826). YBW was supported by the Swedish Research Council (Reg no. 2015-06372). RS was supported by the UK’s National Institute for Health Research (NIHR) Biomedical Research Centre (BRC) at South London and Maudsley NHS Foundation Trust (SLaM) and King’s College London (KCL). JRK was supported by grants from the NIMH (U01 MH92758) and the Department of Veterans Affairs. LL was supported by the grants from the National Natural Science Foundation of China (Nos. 81761128036 and 81821092), and 973 Program (Nos. 2015CB856400 and 2015CB553503). We thank all the authors who contributed their data to this study. We also appreciate Prof. Peng Guan and Naixue Cui for their suggestions on improving the paper.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to John R. Kelsoe or Lin Lu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, J.J., Wei, Y.B., Strawbridge, R. et al. Peripheral cytokine levels and response to antidepressant treatment in depression: a systematic review and meta-analysis. Mol Psychiatry 25, 339–350 (2020). https://doi.org/10.1038/s41380-019-0474-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41380-019-0474-5

This article is cited by

Search

Quick links