Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Expert Review
  • Published:

The complement system in schizophrenia: where are we now and what’s next?

Abstract

The complement system is a set of immune proteins involved in first-line defense against pathogens and removal of waste materials. Recent evidence has implicated the complement cascade in diseases involving the central nervous system, including schizophrenia. Here, we provide an up-to-date narrative review and critique of the literature on the relationship between schizophrenia and complement gene polymorphisms, gene expression, protein concentration, and pathway activity. A literature search identified 23 new studies since the first review on this topic in 2008. Overall complement pathway activity appears to be elevated in schizophrenia. Recent studies have identified complement component 4 (C4) and CUB and Sushi Multiple Domains 1 (CSMD1) as potential genetic markers of schizophrenia. In particular, there is some evidence of higher rates of C4B/C4S deficiency, reduced peripheral C4B concentration, and elevated brain C4A mRNA expression in schizophrenia patients compared to controls. To better elucidate the additive effects of multiple complement genotypes, we also conducted gene- and gene-set analysis through MAGMA which supported the role of Human Leukocyte Antigen class (HLA) III genes and, to a lesser extent, CSMD1 in schizophrenia; however, the HLA-schizophrenia association was likely driven by the C4 gene. Lastly, we identified several limitations of the literature on the complement system and schizophrenia, including: small sample sizes, inconsistent methodologies, limited measurements of neural concentrations of complement proteins, little exploration of the link between complement and schizophrenia phenotype, and lack of studies exploring schizophrenia treatment response. Overall, recent findings highlight complement components-in particular, C4 and CSMD1—as potential novel drug targets in schizophrenia. Given the growing availability of complement-targeted therapies, future clinical studies evaluating their efficacy in schizophrenia hold the potential to accelerate treatment advances.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1

Similar content being viewed by others

References

  1. American Psychiatric Association. Diagnostic and statistical manual of mental disorders. 5th ed. Arlington: American Psychiatric Publishing; 2013.

  2. Benros ME, Mortensen PB, Eaton WW. Autoimmune diseases and infections as risk factors for schizophrenia. Ann N Y Acad Sci. 2012;1262:56–66.

    PubMed  Google Scholar 

  3. Benros ME, Nielsen PR, Nordentoft M, Eaton WW, Dalton SO, Mortensen PB. Autoimmune diseases and severe infections as risk factors for schizophrenia: a 30-year population-based register study. Am J Psychiatry. 2011;168:1303–10.

    PubMed  Google Scholar 

  4. Eaton WW, Byrne M, Ewald H, Mors O, Chen C-Y, Agerbo E, et al. Association of Schizophrenia and autoimmune diseases: linkage of Danish national registers. Am J Psychiatry. 2006;163:521–8.

    PubMed  Google Scholar 

  5. Khandaker GM, Zimbron J, Dalman C, Lewis G, Jones PB. Childhood infection and adult schizophrenia: a meta-analysis of population-based studies. Schizophr Res. 2012;139:161–8.

    PubMed  PubMed Central  Google Scholar 

  6. Khandaker GM, Zimbron J, Lewis G, Jones PB. Prenatal maternal infection, neurodevelopment and adult schizophrenia: a systematic review of population-based studies. Psychol Med. 2013;43:239–57.

    CAS  PubMed  Google Scholar 

  7. Miller BJ, Buckley P, Seabolt W, Mellor A, Kirkpatrick B. Meta-analysis of cytokine alterations in schizophrenia: clinical status and antipsychotic effects. Biol Psychiatry. 2011;70:663–71.

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Upthegrove R, Manzanares-Teson N, Barnes NM. Cytokine function in medication-naive first episode psychosis: a systematic review and meta-analysis. Schizophr Res. 2014;155:101–8.

    PubMed  Google Scholar 

  9. Fernandes BS, Steiner J, Bernstein H-G, Dodd S, Pasco JA, Dean OM, et al. C-reactive protein is increased in schizophrenia but is not altered by antipsychotics: meta-analysis and implications. Mol Psychiatry. 2016;21:554–64.

    CAS  PubMed  Google Scholar 

  10. Howes OD, McCutcheon R. Inflammation and the neural diathesis-stress hypothesis of schizophrenia: a reconceptualization. Transl Psychiatry. 2017;7:e1024. 07

    CAS  PubMed  PubMed Central  Google Scholar 

  11. International Schizophrenia Consortium, Purcell SM, Wray NR, Stone JL, Visscher PM, O’Donovan MC, et al. Common polygenic variation contributes to risk of schizophrenia and bipolar disorder. Nature. 2009;460:748–52.

    PubMed Central  Google Scholar 

  12. Shi J, Levinson DF, Duan J, Sanders AR, Zheng Y, Pe’er I, et al. Common variants on chromosome 6p22.1 are associated with schizophrenia. Nature. 2009;460:753–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Schizophrenia Working Group of the Psychiatric Genomics Consortium. Biological insights from 108 schizophrenia-associated genetic loci. Nature. 2014;511:421–7.

    PubMed Central  Google Scholar 

  14. Irish Schizophrenia Genomics Consortium and the Wellcome Trust Case Control Consortium 2. Genome-wide association study implicates HLA-C*01:02 as a risk factor at the major histocompatibility complex locus in schizophrenia. Biol Psychiatry. 2012;72:620–8.

    PubMed Central  Google Scholar 

  15. Ripke S, O’Dushlaine C, Chambert K, Moran JL, Kähler AK, Akterin S, et al. Genome-wide association analysis identifies 13 new risk loci for schizophrenia. Nat Genet. 2013;45:1150–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Schizophrenia Psychiatric Genome-Wide Association Study (GWAS) Consortium. Genome-wide association study identifies five new schizophrenia loci. Nat Genet. 2011;43:969–76.

    Google Scholar 

  17. Stefansson H, Ophoff RA, Steinberg S, Andreassen OA, Cichon S, Rujescu D, et al. Common variants conferring risk of schizophrenia. Nature. 2009;460:744–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Pouget JG, Gonçalves VF, Schizophrenia Working Group of the Psychiatric Genomics Consortium, Spain SL, Finucane HK, Raychaudhuri S, et al. Genome-wide association studies suggest limited immune gene enrichment in Schizophrenia compared to 5 autoimmune diseases. Schizophr Bull. 2016;42:1176–84.

    PubMed  PubMed Central  Google Scholar 

  19. Sekar A, Bialas AR, de Rivera H, Davis A, Hammond TR, Kamitaki N, et al. Schizophrenia risk from complex variation of complement component 4. Nature. 2016;530:177–83.

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Escudero-Esparza A, Kalchishkova N, Kurbasic E, Jiang WG, Blom AM. The novel complement inhibitor human CUB and Sushi multiple domains 1 (CSMD1) protein promotes factor I-mediated degradation of C4b and C3b and inhibits the membrane attack complex assembly. FASEB J Publ Fed Am Soc Exp Biol. 2013;27:5083–93.

    CAS  Google Scholar 

  21. Mayilyan KR, Weinberger DR, Sim RB. The complement system in Schizophrenia. Drug News Perspect. 2008;21:200–10.

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Arakelyan A, Zakharyan R, Khoyetsyan A, Poghosyan D, Aroutiounian R, Mrazek F, et al. Functional characterization of the complement receptor type 1 and its circulating ligands in patients with schizophrenia. BMC Clin Pathol. 2011;11:10.

    PubMed  PubMed Central  Google Scholar 

  23. Soria L, dos S, Gubert C, de M, Cereser KM, Gama CS, Kapczinski F. Increased serum levels of C3 and C4 in patients with schizophrenia compared to eutymic patients with bipolar disorder and healthy controls. Rev Bras Psiquiatr. 2012;34:119–20.

    Google Scholar 

  24. Boyajyan A, Khoyetsyan A, Chavushyan A. Alternative complement pathway in schizophrenia. Neurochem Res. 2010;35:894–8.

    CAS  PubMed  Google Scholar 

  25. Nimgaonkar VL, Prasad KM, Chowdari KV, Severance EG, Yolken RH. The complement system: a gateway to gene–environment interactions in schizophrenia pathogenesis. Mol Psychiatry. 2017;22:1554.

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Charles A, Janeway J, Travers P, Walport M, Shlomchik MJ The complement system and innate immunity. In: Immunobiology: The Immune System in Health and Disease. 5th ed. New York: Garland Science; 2001.

  27. Sarma JV, Ward PA. The Complement System. Cell Tissue Res. 2011;343:227–35.

    CAS  PubMed  Google Scholar 

  28. Ricklin D, Hajishengallis G, Yang K, Lambris JD. Complement: a key system for immune surveillance and homeostasis. Nat Immunol. 2010;11:785–97.

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Hajishengallis G, Reis ES, Mastellos DC, Ricklin D, Lambris JD. Novel mechanisms and functions of complement. Nat Immunol. 2017;18:1288–98.

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Ahearn JM, Fearon DT. Structure and function of the complement receptors, CR1 (CD35) and CR2 (CD21). Adv Immunol. 1989;46:183–219.

    CAS  PubMed  Google Scholar 

  31. Rodríguez de Córdoba S, Esparza-Gordillo J, Goicoechea de Jorge E, Lopez-Trascasa M, Sánchez-Corral P. The human complement factor H: functional roles, genetic variations and disease associations. Mol Immunol. 2004;41:355–67.

    PubMed  Google Scholar 

  32. Lachmann PJ, Müller-Eberhard HJ. The demonstration in human serum of “conglutinogen-activating factor” and its effect on the third component of complement. J Immunol Balt Md 1950. 1968;100:691–8.

    CAS  Google Scholar 

  33. Kraus DM, Elliott GS, Chute H, Horan T, Pfenninger KH, Sanford SD, et al. CSMD1 is a novel multiple domain complement-regulatory protein highly expressed in the central nervous system and epithelial tissues. J Immunol. 2006;176:4419–30.

    CAS  PubMed  Google Scholar 

  34. Gorelik A, Sapir T, Haffner-Krausz R, Olender T, Woodruff TM, Reiner O. Developmental activities of the complement pathway in migrating neurons. Nat Commun. 2017;8:15096.

    PubMed  PubMed Central  Google Scholar 

  35. Niculescu T, Weerth S, Niculescu F, Cudrici C, Rus V, Raine CS, et al. Effects of complement C5 on apoptosis in experimental autoimmune encephalomyelitis. J Immunol Balt 1950. 2004;172:5702–6.

    CAS  Google Scholar 

  36. van Beek J, Nicole O, Ali C, Ischenko A, MacKenzie ET, Buisson A, et al. Complement anaphylatoxin C3a is selectively protective against NMDA-induced neuronal cell death. Neuroreport. 2001;12:289–93.

    PubMed  Google Scholar 

  37. Cudrici C, Niculescu F, Jensen T, Zafranskaia E, Fosbrink M, Rus V, et al. C5b-9 terminal complex protects oligodendrocytes from apoptotic cell death by inhibiting caspase-8 processing and up-regulating FLIP. J Immunol Balt 1950. 2006;176:3173–80.

    CAS  Google Scholar 

  38. Soane L, Cho HJ, Niculescu F, Rus H, Shin ML. C5b-9 terminal complement complex protects oligodendrocytes from death by regulating Bad through phosphatidylinositol 3-kinase/Akt pathway. J Immunol Balt 1950. 2001;167:2305–11.

    CAS  Google Scholar 

  39. Zwaka TP, Torzewski J, Hoeflich A, Déjosez M, Kaiser S, Hombach V, et al. The terminal complement complex inhibits apoptosis in vascular smooth muscle cells by activating an autocrine IGF-1 loop. FASEB J Publ Fed Am Soc Exp Biol. 2003;17:1346–8.

    CAS  Google Scholar 

  40. Stokowska A, Atkins AL, Morán J, Pekny T, Bulmer L, Pascoe MC, et al. Complement peptide C3a stimulates neural plasticity after experimental brain ischaemia. Brain. J Neurol. 2017;140:353–69.

    Google Scholar 

  41. Shinjyo N, de Pablo Y, Pekny M, Pekna M. Complement peptide C3a promotes astrocyte survival in response to ischemic stress. Mol Neurobiol. 2016;53:3076–87.

    CAS  PubMed  Google Scholar 

  42. Weerth SH, Rus H, Shin ML, Raine CS. Complement C5 in experimental autoimmune encephalomyelitis (EAE) facilitates remyelination and prevents gliosis. Am J Pathol. 2003;163:1069–80.

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Stevens B, Allen NJ, Vazquez LE, Howell GR, Christopherson KS, Nouri N, et al. The classical complement cascade mediates CNS synapse elimination. Cell. 2007;131:1164–78.

    CAS  PubMed  Google Scholar 

  44. Schafer DP, Lehrman EK, Kautzman AG, Koyama R, Mardinly AR, Yamasaki R, et al. Microglia sculpt postnatal neural circuits in an activity and complement-dependent manner. Neuron. 2012;74:691–705.

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Veerhuis R, Nielsen HM, Tenner AJ. Complement in the brain. Mol Immunol. 2011;48:1592–603.

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Chung EK, Yang Y, Rennebohm RM, Lokki M-L, Higgins GC, Jones KN, et al. Genetic sophistication of human complement components C4A and C4B and RP-C4-CYP21-TNX (RCCX) modules in the major histocompatibility complex. Am J Hum Genet. 2002;71:823–37.

    PubMed  PubMed Central  Google Scholar 

  47. Mack M, Bender K, Schneider PM. Detection of retroviral antisense transcripts and promoter activity of the HERV-K(C4) insertion in the MHC class III region. Immunogenetics. 2004;56:321–32.

    CAS  PubMed  Google Scholar 

  48. Mayilyan KR, Wu YL, Kolachana B, McBride B, Yu CY, Weinberger DR. Lack of C4-short genes as a possible genetic mechanism of complement C4B protein level reductions in schizophrenia. Schizophr Bull. 2013;39:S104. Suppl 1.

    Google Scholar 

  49. Mayilyan KR, Weinberger DR, Wu YL, Kolachana B, McBride K, Yung CY Association of complement C4B gene deficiency with schizophrenia: Studies of European American families and controls. In: XV World Congress on Psychiatric Genetics 2007. p. 7–11.

  50. Rudduck C, Beckman L, Franzén G, Jacobsson L, Lindström L. Complement factor C4 in schizophrenia. Hum Hered. 1985;35:223–6.

    CAS  PubMed  Google Scholar 

  51. Wouters D, Van PS, Van A, der H, De MB, Schooneman D, Kuijpers TW, et al. High-throughput analysis of the C4 polymorphism by a combination of MLPA and isotype-specific ELISA’s. Mol Immunol. 2009;46:592–600.

    CAS  PubMed  Google Scholar 

  52. Schroers R, Nöthen MM, Rietschel M, Albus M, Maier W, Schwab S, et al. Investigation of complement C4B deficiency in schizophrenia. Hum Hered. 1997;47:279–82.

    CAS  PubMed  Google Scholar 

  53. Mayilyan KR, Dodds AW, Boyajyan AS, Soghoyan AF, Sim RB. Complement C4B protein in schizophrenia. World J Biol Psychiatry. 2008;9:225–30.

    PubMed  Google Scholar 

  54. Mayilyan KR, Arnold JN, Presanis JS, Soghoyan AF, Sim RB. Increased complement classical and mannan-binding lectin pathway activities in schizophrenia. Neurosci Lett. 2006;404:336–41.

    CAS  PubMed  Google Scholar 

  55. Shcherbakova I, Neshkova E, Dotsenko V, Platonova T, Shcherbakova E, Yarovaya G. The possible role of plasma kallikrein-kinin system and leukocyte elastase in pathogenesis of schizophrenia. Immunopharmacology. 1999;43:273–9.

    CAS  PubMed  Google Scholar 

  56. Faludi G, Mirnics K. Synaptic changes in the brain of subjects with schizophrenia. Int J Dev Neurosci. 2011;29:305–9.

    PubMed  PubMed Central  Google Scholar 

  57. Glausier JR, Lewis DA. Dendritic spine pathology in schizophrenia. Neuroscience. 2013;251:90–107.

    CAS  PubMed  Google Scholar 

  58. Glantz LA, Lewis DA. Decreased dendritic spine density on prefrontal cortical pyramidal neurons in schizophrenia. Arch Gen Psychiatry. 2000;57:65–73.

    CAS  PubMed  Google Scholar 

  59. Liu W, Liu F, Xu X, Bai Y. Replicated association between the European GWAS locus rs10503253 at CSMD1 and schizophrenia in Asian population. Neurosci Lett. 2017;647:122–8.

    CAS  PubMed  Google Scholar 

  60. Donohoe G, Walters J, Hargreaves A, Rose EJ, Morris DW, Fahey C, et al. Neuropsychological effects of the CSMD1 genome-wide associated schizophrenia risk variant rs10503253. Genes Brain Behav. 2013;12:203–9.

    CAS  PubMed  Google Scholar 

  61. Koiliari E, Roussos P, Pasparakis E, Lencz T, Malhotra A, Siever LJ, et al. The CSMD1 genome-wide associated schizophrenia risk variant rs10503253 affects general cognitive ability and executive function in healthy males. Schizophr Res. 2014;154:42–7.

    PubMed  Google Scholar 

  62. Rose EJ, Morris DW, Hargreaves A, Fahey C, Greene C, Garavan H, et al. Neural effects of the CSMD1 genome-wide associated schizophrenia risk variantrs10503253. Am J Med Genet Part B Neuropsychiatr Genet Publ Int SocPsychiatr Genet. 2013;162B:530–7.

    Google Scholar 

  63. Sakamoto S, Takaki M, Okahisa Y, Mizuki Y, Inagaki M, Ujike H, et al. Individual risk alleles of susceptibility to schizophrenia are associated with poor clinical and social outcomes. J Hum Genet. 2016;61:329–34.

    CAS  PubMed  Google Scholar 

  64. Athanasiu L, Giddaluru S, Fernandes C, Christoforou A, Reinvang I, Lundervold AJ, et al. A genetic association study of CSMD1 and CSMD2 with cognitive function. Brain Behav Immun. 2017;61:209–16.

    CAS  PubMed  Google Scholar 

  65. Xu W, Cohen-Woods S, Chen Q, Noor A, Knight J, Hosang G, et al. Genome-wide association study of bipolar disorder in Canadian and UK populations corroborates disease loci including SYNE1 and CSMD1. BMC Med Genet. 2014;15:2.

    PubMed  PubMed Central  Google Scholar 

  66. Cukier HN, Dueker ND, Slifer SH, Lee JM, Whitehead PL, Lalanne E, et al. Exome sequencing of extended families with autism reveals genes shared across neurodevelopmental and neuropsychiatric disorders. Mol Autism. 2014;5:1.

    PubMed  PubMed Central  Google Scholar 

  67. Sherva R, Wang Q, Kranzler H, Zhao H, Koesterer R, Herman A, et al. Genome-wide Association Study of Cannabis Dependence Severity, Novel Risk Variants, and Shared Genetic Risks. JAMA Psychiatry. 2016;73:472–80.

    PubMed  PubMed Central  Google Scholar 

  68. Meda SA, Ruaño G, Windemuth A, O’Neil K, Berwise C, Dunn SM, et al. Multivariate analysis reveals genetic associations of the resting default mode network in psychotic bipolar disorder and schizophrenia. Proc Natl Acad Sci. 2014;111:E2066–75.

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Giddaluru S, Espeseth T, Salami A, Westlye LT, Lundquist A, Christoforou A, et al. Genetics of structural connectivity and information processing in the brain. Brain Struct Funct. 2016;221:4643–61.

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Steen VM, Nepal C, Ersland KM, Holdhus R, Nævdal M, Ratvik SM, et al. Neuropsychological deficits in mice depleted of the schizophrenia susceptibility gene CSMD1. PloS One. 2013;8:e79501.

    PubMed  PubMed Central  Google Scholar 

  71. Roussos P, Katsel P, Davis KL, Siever LJ, Haroutunian V. A System-level transcriptomic analysis of schizophrenia using postmortem brain tissue samples. Arch Gen Psychiatry. 2012;69:1205–13.

    PubMed  Google Scholar 

  72. GTEx Consortium. The genotype-tissue expression (GTEx) project. Nat Genet. 2013;45:580–5.

    Google Scholar 

  73. de Leeuw CA, Mooij JM, Heskes T, Posthuma D MAGMA: generalized gene-set analysis of GWAS Data. Tang H, editor. PLOS Comput Biol 2015;17;11:e1004219.

  74. Liberzon A, Subramanian A, Pinchback R, Thorvaldsdóttir H, Tamayo P, Mesirov JP. Molecular signatures database (MSigDB) 3.0. Bioinformatics. 2011;27:1739–40.

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Fromer M, Roussos P, Sieberts SK, Johnson JS, Kavanagh DH, Perumal TM, et al. Gene expression elucidates functional impact of polygenic risk for schizophrenia. Nat Neurosci. 2016;19:1442–53.

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Pérez-Santiago J, Diez-Alarcia R, Callado LF, Zhang JX, Chana G, White CH, et al. A combined analysis of microarray gene expression studies of the human prefrontal cortex identifies genes implicated in schizophrenia. J Psychiatr Res. 2012;46:1464–74.

    PubMed  Google Scholar 

  77. Birnbaum R, Jaffe AE, Chen Q, Shin JH, Consortium B, Schubert CR, et al. Investigating the neuroimmunogenic architecture of schizophrenia. Mol Psychiatry. 2018;23:1251–60.

    CAS  PubMed  Google Scholar 

  78. Beasley C, Shao L. 136. Increased expression of early complement components in frontal cortex in Schizophrenia. Schizophr Bull. 2017;43:S73–S73. suppl_1.

    PubMed Central  Google Scholar 

  79. Ali FT, Abd El-Azeem EM, Hamed MA, Ali MAM, Abd Al-Kader NM, Hassan EA. Redox dysregulation, immuno-inflammatory alterations and genetic variants of BDNF and MMP-9 in schizophrenia: Pathophysiological and phenotypic implications. Schizophr Res. 2017;188:98–109.

    PubMed  Google Scholar 

  80. Fernandes BS, Cereser KM, Zortea K, Fries GR, Colpo G, Moreira L, et al. Complement system in bipolar disorders and schizophrenia: C3 and C4. Bipolar Disord. 2010;12:18–9.

    Google Scholar 

  81. Maes M, Delange J, Ranjan R, Meltzer HY, Desnyder R, Cooremans W, et al. Acute phase proteins in schizophrenia, mania and major depression: modulation by psychotropic drugs. Psychiatry Res. 1997;66:1–11.

    CAS  PubMed  Google Scholar 

  82. Cazzullo CL, Saresella M, Roda K, Calvo MG, Bertrando P, Doria S, et al. Increased levels of CD8+ and CD4+ 45RA+ lymphocytes in schizophrenic patients. Schizophr Res. 1998;31:49–55.

    CAS  PubMed  Google Scholar 

  83. Spivak B, Radwan M, Elimelech D, Baruch Y, Avidan G, Tyano S. A study of the complement system in psychiatric patients. Biol Psychiatry. 1989;26:640–2.

    CAS  PubMed  Google Scholar 

  84. Spivak B, Radwan M, Brandon J, Baruch Y, Stawski M, Tyano S, et al. Reduced total complement haemolytic activity in schizophrenic patients. Psychol Med. 1993;23:315–8.

    CAS  PubMed  Google Scholar 

  85. Wong CT, Tsoi WF, Saha N. Acute phase proteins in male Chinese schizophrenic patients in Singapore. Schizophr Res. 1996;22:165–71.

    CAS  PubMed  Google Scholar 

  86. Li H, Zhang Q, Li N, Wang F, Xiang H, Zhang Z, et al. Plasma levels of Th17-related cytokines and complement C3 correlated with aggressive behavior in patients with schizophrenia. Psychiatry Res. 2016;246:700–6.

    CAS  PubMed  Google Scholar 

  87. Idonije OB, Akinlade KS, Ihenyen O, Arinola OG. Complement factors in newly diagnosed Nigerian schizoprenic patients and those on antipsychotic therapy. Niger J Physiol Sci Publ Physiol Soc Niger. 2012;27:19–21.

    CAS  Google Scholar 

  88. Morera AL, Henry M, Garcia-Hernandez A, Fernandez-Lopez L. Acute phase proteins as biological markers of negative psychopathology in paranoid schizophrenia. Actas Esp Psiquiatr. 2007;35:249–52.

    CAS  PubMed  Google Scholar 

  89. Laskaris L, Chana G, Weickert CS, Bousman C, Baune B, McGorry P, et al. Increased C3 and C4 proteins in serum of FEP and UHR patients: implications for inflammatory subtyping in SCZ. Biol Psychiatry. 2017;81:S27–8.

    Google Scholar 

  90. Boyajyan A, Khoyetsyan A, Tsakanova G, Sim RB. Cryoglobulins as indicators of upregulated immune response in schizophrenia. Clin Biochem. 2008;41:355–60.

    CAS  PubMed  Google Scholar 

  91. Severance EG, Gressitt KL, Halling M, Stallings CR, Origoni AE, Vaughan C, et al. Complement C1q formation of immune complexes with milk caseins and wheat glutens in schizophrenia. Neurobiol Dis. 2012;48:447–53.

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Kirschfink M, Mollnes TE. Modern complement analysis. Clin Diagn Lab Immunol. 2003;10:982–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Palarasah Y, Nielsen C, Sprogøe U, Christensen ML, Lillevang S, Madsen HO, et al. Novel assays to assess the functional capacity of the classical, the alternative and the lectin pathways of the complement system. Clin Exp Immunol. 2011;164:388–95.

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Li Y, Zhou K, Zhang Z, Sun L, Yang J, Zhang M, et al. Label-free quantitative proteomic analysis reveals dysfunction of complement pathway in peripheral blood of schizophrenia patients: evidence for the immune hypothesis of schizophrenia. Mol Biosyst. 2012;8:2664–71.

    CAS  PubMed  Google Scholar 

  95. Zhang C, Zhang Y, Cai J, Chen M, Song L. Complement 3 and metabolic syndrome induced by clozapine: a cross-sectional study and retrospective cohort analysis. Pharm J. 2017;17:92–7.

    CAS  Google Scholar 

  96. Shcherbakova IV, Neshkova EA, Dotsenko VL, Kozlov LV, Mishin AA, Platonova TP, et al. [Activation of kallikrein-kinin system, degranulating activity of neutrophils and blood-brain barrier in schizophrenia]. Zh Nevrol Psikhiatr Im S S Korsakova. 1998;98:38–41.

    CAS  PubMed  Google Scholar 

  97. Hu WT, Watts KD, Tailor P, Nguyen TP, Howell JC, Lee RC, et al. CSF complement 3 and factor H are staging biomarkers in Alzheimer’s disease. Acta Neuropathol Commun. 2016 Feb 17;4:14.

  98. Lally J, Gaughran F, Timms P, Curran SR. Treatment-resistant schizophrenia: current insights on the pharmacogenomics of antipsychotics. Pharm Pers Med. 2016;9:117–29.

    CAS  Google Scholar 

  99. Li J, Loebel A, Meltzer HY. Identifying the genetic risk factors for treatment response to lurasidone by genome-wide association study: a meta-analysis of samples from three independent clinical trials. Schizophr Res. 2018;199:203–13.

    PubMed  Google Scholar 

  100. Fond G, d’Albis M-A, Jamain S, Tamouza R, Arango C, Fleischhacker WW, et al. The Promise of Biological Markers for Treatment Response in First-Episode Psychosis: A Systematic Review. Schizophr Bull. 2015;41:559–73.

    PubMed  PubMed Central  Google Scholar 

  101. Girardin FR, Poncet A, Perrier A, Vernaz N, Pletscher M, Samer CF, et al. Cost-effectiveness of HLA-DQB1/HLA-B pharmacogenetic-guided treatment and blood monitoring in US patients taking clozapine. Pharmacogenomics J. 2019;19:211–8.

    PubMed  PubMed Central  Google Scholar 

  102. MacDonald ML, Alhassan J, Newman JT, Richard M, Gu H, Kelly RM, et al. Selective loss of smaller spines in Schizophrenia. Am J Psychiatry. 2017;174:586–94.

    PubMed  PubMed Central  Google Scholar 

  103. ClinicalTrials.gov [Internet]. Bethesda (MD): National Library of Medicine (US). 29 Feb 2000. Identifier NCT02605993, Open-label, Multiple Ascending Dose Study of ALXN1210 in Patients With Paroxysmal Nocturnal Hemoglobinuria; 2015 Nov [cited 2019 Jan 23]. Available from: https://clinicaltrials.gov/ct2/show/NCT02605993.

  104. ClinicalTrials.gov [Internet]. Bethesda (MD): National Library of Medicine (US). 29 Feb 2000. Identifier NCT02763644, Efficacy and Safety of LFG316 in Transplant Associated Microangiopathy (TAM) Patients; 2016 May 5 [cited 2019 Jan 23]. Available froom: https://clinicaltrials.gov/ct2/show/NCT02763644.

  105. ClinicalTrials.gov [Internet]. Bethesda (MD): National Library of Medicine (US). 29 Feb 2000 Feb. Identifier NCT02515942, CLG561 Proof-of-Concept Study as a Monotherapy and in Combination With LFG316 in Subjects With Geographic Atrophy (GA); 2015 Aug 5 [cited 2019 Jan 23]. Available from: https://clinicaltrials.gov/ct2/show/NCT02515942.

  106. National Center for Biotechnology Information (NCBI) [Internet]. Bethesda (MD): National Library of Medicine (US), National Center for Biotechnology Information; [1988] - [cited 2018 Jun 5]. Available from: https://www.ncbi.nlm.nih.gov/gene.

  107. Kano S, Nwulia E, Niwa M, Chen Y, Sawa A, Cascella N. Altered MHC class I expression in dorsolateral prefrontal cortex of nonsmoker patients with schizophrenia. Neurosci Res. 2011;71:289–93.

    CAS  PubMed  Google Scholar 

  108. Ni J, Hu S, Zhang J, Tang W, Lu W, Zhang C. A preliminary genetic analysis of complement 3 gene and Schizophrenia. PloS One. 2015;10:e0136372.

    PubMed  PubMed Central  Google Scholar 

  109. Zhang C, Lv Q, Fan W, Tang W, Yi Z. Influence of CFH gene on symptom severity of schizophrenia. Neuropsychiatr Dis Treat. 2017;13:697–706.

    CAS  PubMed  PubMed Central  Google Scholar 

  110. Kucharska-Mazur J, Tarnowski M, Dołęgowska B, Budkowska M, Pędziwiatr D, Jabłoński M, et al. Novel evidence for enhanced stem cell trafficking in antipsychotic-naïve subjects during their first psychotic episode. J Psychiatr Res. 2014;49:18–24.

    PubMed  Google Scholar 

  111. Foldager L, Steffensen R, Thiel S, Als TD, Nielsen HJ, Nordentoft M, et al. MBL and MASP-2 concentrations in serum and MBL2 promoter polymorphisms are associated to schizophrenia. Acta Neuropsychiatr. 2012;24:199–207.

    PubMed  Google Scholar 

Download references

Acknowledgements

This study was funded by the Ontario Ministry of Research, Innovation, and Science and University of Toronto’s Faculty of Medicine. We would also like to thank Larry and Judy Tanenbaum for their generous donations to the Centre for Addiction and Mental Health. 

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James L. Kennedy.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Woo, J.J., Pouget, J.G., Zai, C.C. et al. The complement system in schizophrenia: where are we now and what’s next?. Mol Psychiatry 25, 114–130 (2020). https://doi.org/10.1038/s41380-019-0479-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41380-019-0479-0

This article is cited by

Search

Quick links