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Abstract
Psychopathy is an extreme form of antisocial behavior, with about 1% prevalence in the general population, and 10–30%
among incarcerated criminal offenders. Although the heritability of severe antisocial behavior is up to 50%, the genetic
background is unclear. The underlying molecular mechanisms have remained unknown but several previous studies suggest
that abnormal glucose metabolism and opioidergic neurotransmission contribute to violent offending and psychopathy. Here
we show using iPSC-derived cortical neurons and astrocytes from six incarcerated extremely antisocial and violent
offenders, three nonpsychopathic individuals with substance abuse, and six healthy controls that there are robust alterations
in the expression of several genes and immune response-related molecular pathways which were specific for psychopathy.
In neurons, psychopathy was associated with marked upregulation of RPL10P9 and ZNF132, and downregulation of
CDH5 and OPRD1. In astrocytes, RPL10P9 and MT-RNR2 were upregulated. Expression of aforementioned genes
explained 30–92% of the variance of psychopathic symptoms. The gene expression findings were confirmed with qPCR.
These genes may be relevant to the lack of empathy and emotional callousness seen in psychopathy, since several studies
have linked these genes to autism and social interaction.

Introduction

In developed countries, a relatively small group of anti-
social recidivistic offenders commits the majority of all

violent crimes. The prevalence of antisocial personality
disorder (ASPD) is 1–3% in the general population and
40–70% in prison populations, and the corresponding
figures for its most severe manifestation, psychopathy, are
about 1% in the general population and 10–30% among
incarcerated offenders [1–5]. ASPD is characterized
by aggression, hostility, callousness, manipulativeness,
deceitfulness, and impulsivity, and psychopathy is an
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extreme manifestation of ASPD. Severe antisocial and
criminal behavior has a substantial genetic component [6].
This far only one study has reported contributing genes
reaching genome-wide significance for ASPD [7], although
two studies have found association between single-
nucleotide polymorphisms and broad spectrum of anti-
social behavior [8, 9]. LINC00951, the gene associated with
imprisoned offenders with ASPD, codes for long intergenic
noncoding RNA, which is expressed especially in the
frontal cortex and cerebellum. Its function is not known [7],
but it has been linked to autoimmune disease [10]. The gene
linked to adult antisocial behavior, ABCB1, is also highly
expressed in the brain, and implicated in substance abuse
[9]. No underlying molecular pathways of severe antisocial
and criminal behavior are known, but there is preliminary
evidence on dysregulation of the endogenous opioid system
and brain opioid receptors [11–13] in antisocial individuals.
Also abnormal glucose metabolism leading to hypoglyce-
mia has been observed as the strongest predictor for violent
crimes [14]. A recent study has also found association
between immune-related gene sets and antisocial behavior
[9]. We aimed to study the neurobiological background of

psychopathy by using induced pluripotent stem cell (iPSC)-
derived cortical neurons and astrocytes, and included also
nonpsychopathic substance abusers in addition to healthy
individuals as control groups in order to distinguish the
putative role of the coexisting substance dependence.

Material and methods

We generated and fully characterized iPSC lines from six
antisocial violent offenders, three nonviolent substance
abusers and six control subjects without antisocial traits or
substance abuse disorders. Due to the explanatory nature
of the study, no power analysis based on predefined effect
size was done. The clinical and sociodemographic char-
acteristics of the study subjects are shown in Table 1. We
chose to differentiate the cells into cortical neurons
expressing markers of glutamatergic and GABAergic
neurons and to astrocytes. Methods for iPSC production
and their characterization, derivation of neurons and
astrocytes and their analyses are reported in detail
in Supplementary Material.

Table 1 Clinical and sociodemographic characteristics of study subjects

Age Diagnosis Number of
committed homicides

Number of
violent crimes

PCL-R score

Subject 1 30 Antisocial personality disorder, ADHD, alcohol dependence,
benzodiazepine abuse, multiple sclerosis, asthma

2 19 37.0

Subject 2 42 Antisocial personality disorder, alcohol dependence 3 4 Not
available

Subject 3 49 Antisocial personality disorder, alcohol dependence 2 11 30.0

Subject 4 43 Antisocial personality disorder, alcohol dependence,
polysubstance dependence

2 7 33.7

Subject 5 30 Antisocial personality disorder, alcohol dependence, opioid
dependence, cannabis dependence, benzodiazepine
dependence, amphetamine dependence

3 8 36.0

Subject 6 47 Antisocial personality disorder, borderline personality disorder,
paranoid personality disorder, alcohol dependence,
polysubstance dependence, amphetamine dependence,
hepatitis C

2 9 37.0

Subject 7 38 Alcohol dependence 0 0 2

Subject 8 25 Alcohol dependence 0 0 3

Subject 9 31 Alcohol dependence, cannabis dependence, bulimia 0 0 11

Subject 10 44 None 0 0 3

Subject 11 28 None 0 0 2

Subject 12 28 None 0 0 1

Subject 13 47 None 0 0 3

Subject 14 26 None 0 0 2

Subject 15 51 None 0 0 1

All individuals were males. Subjects 1–6 are violent offenders, 7–9 are individuals with substance abuse but without criminal behavior, and 10–15
are healthy controls. The biological fathers of Subject 1, Subject 3, and Subject 5 had prison convictions due to violent and nonviolent crimes.
None of the biological mothers had been convicted into prison

PCL-R psychopathy checklist revised
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Description of subjects

Six male offenders were identified by the history of their
criminal convictions from the Finnish National Crime
Register and recruited through the penal system and clas-
sified as extremely violent offenders as described in Tii-
honen et al. [5]. Three individuals having substance
dependence without violent behavior were recruited from
the local substance abuse rehabilitation center, and six
healthy controls were recruited from the staff of Niu-
vanniemi Hospital. The participants were interviewed with
Structured Clinical Interview for DSM-IV-Disorders to
exclude individuals with a psychosis diagnosis, and to
assess whether or not the subject fulfilled criteria for ASPD.
Also, any history of substance abuse (alcohol, heroin,
buprenorphine, amphetamine, cannabis, other) was obtained
through a questionnaire. The history of criminal convictions
was obtained from the National Crime Register [5]. Psy-
chopathy ratings with the Hare Psychopathy Checklist
revised (PCL-R) [1] were done by accredited rater OV using
official crime register data and forensic mental examination
reports (violent offenders), and clinical interview (indivi-
duals with substance dependence, healthy controls).
Informed consent was obtained from all subjects. This study
was approved by the Ethics Committee for Pediatrics,
Adolescent Medicine and Psychiatry, Hospital District of
Helsinki and Uusimaa, and the Criminal Sanctions Agency
of Finland.

Generation of hiPSCs and their characterization

The hiPSC lines were derived from individuals’ skin
fibroblasts (Supplementary Table 1, Supplementary
Figs. 1 and 2). The fibroblasts were isolated and expanded
in fibroblast culture media containing Iscove’s DMEM
media (Thermo Fisher Scientific) with 20% fetal bovine
serum, 1% Penicillin–Streptomycin and 1% nonessential
amino acids. iPSC reprogramming was performed by the
CytoTunE−iPS 2.0 Sendai Reprogramming Kit (Thermo
Fisher Scientific) according to the manufacturer’s
instructions. The iPSCs were grown on Matrigel-
coated dishes (BD Biosciences) in E8 medium (Gibco).
Medium was changed every other day and hiPSC colonies
were enzymatically passaged using 0.5 mM EDTA
(Gibco). The pluripotency of hiPSCs was confirmed by
expression of pluripotent markers using immunocy-
tochemistry (Oct-4, Sox2, TRA-1-81, and SSEA4) and
qPCR (OCT-4, SOX-2, NANOG, and LIN-28). The
embryoid body formation assay showed hiPSCs proper-
ties to differentiate into all three germ layers. In this assay,
hiPSCs were proliferated in low-adherent plates for
2 weeks after which the EBs were plated down on
Matrigel-coated plates for an additional two weeks. The

expression of smooth muscle actin positive cells
(mesoderm), BIIITubulin-positive cells (ectoderm), and
alpha-fetoprotein positive cells (endoderm) was confirmed
by immunocytochemistry. The clearance of Sendai virus
was measured by qPCR, and United Medix Laboratories
Ltd in Helsinki (Finland) confirmed normal karyotype of
each cell line.

hiPSC differentiation to neural precursor cells (NPCs)
and cortical neurons

Neural differentiation was performed according to Hicks
et al. [15] with minor modifications. hiPSC colonies
growing on Matrigel-coated plates are exposed to dual
SMAD inhibitors (10 µM SB431542 and 200 nM
LDN-193189) for 10 days in neural differentiation medium
containing a 1:1 mix of DMEM/F12 and Neurobasal
medium supplemented with 1% B27 supplement, 0.5%
N2 supplement, 2 mM Glutamax, 50 IU/ml penicillin, and
50 μg/ml streptomycin (all from Gibco). After the induction,
25 ng/ml bFGF (R&D Systems) was added for additional
2 days to expand the differentiated neuroepithelial cells in
rosettes. Rosettes were detached and plated into ultralow
attachment dishes (Corning) in neural sphere medium
(NSM), consisting of a 1:1 mix of DMEM/F12 and Neu-
robasal medium supplemented with 1% N2 supplement,
2 mM Glutamax, 50 IU/ml penicillin, and 50 μg/ml strep-
tomycin (all from Gibco) supplemented with 25 ng/ml
bFGF. During the differentiation, half of the medium was
renewed every other day and the spheres were manually cut
once a week to maintain NPC population. For experimental
purposes, NPCs were dissociated with Accutase and plated
in NSM media onto PORN/Matrigel-coated plates (with
density 2–3 × 106 cells/6 cm dish; 1 × 106 cells/6-well plate
or 100,000 cell/24-well plate). The neurons were matured
for 1 week before experiments. Immunocytochemistry
results showing the fractions of glutamatergic and
GABAergic cells are presented in Supplementary Fig. 3.

hiPSC differentiation to astrocytes

We have adapted a previously published protocol for the
differentiation of hiPSC-derived astrocytes [16]. Briefly,
due to the same origin of neurons and astrocytes, hiPSCs
were differentiated into neuroepithelial cells by using the
same procedure as for neuron differentiation for the first
10 days. The neural progenitors were detached to ultralow
attachment dishes and expanded in astrocyte sphere med-
ium, i.e., DMEM/F12 medium supplemented with 1% N2

supplement, 2 mM Glutamax, 50 IU/ml penicillin, and 50
μg/ml streptomycin (all from Gibco), 5000 KY/ml Heparin
(LEO), 10 ng/ml bFGF and 10 ng/ml EGF (both from R&D
Systems). Half of the medium was renewed every other day
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and the spheres were manually cut once a week. According
to our experience, this method generates a homogenous
population of astrocyte progenitor cells within 4 months of
differentiation. The astrocytes were further maturated on
Matrigel-coated plates by treatment with 10 ng/ml CNTF
and 10 ng/ml BMP4 (both from PeproTech) for 1 week in
a density of 600,000 cells/6-well plate or 80,000 cell/24-
well plate.

Methods concerning immunocytochemistry, RNA isola-
tion, gene expression profile, qRT-PCR, and quantitative
proteomic analysis are described in detail in Supplementary
Material.

Results

Supplementary Tables 2 and 3 show all differentially
expressed genes in neurons and astrocytes, respectively, up
to nominal significance (p < 0.05) between violent offenders
and control subjects. Since cultivation of neurons failed
from cells of one healthy control, there were 14 individuals
in the analyses concerning neurons, and 15 individuals in
the analyses concerning astrocytes. Differentially expressed
genes surviving correction for multiple comparisons in
cortical neurons are shown in Table 2. Of these genes, in
neurons, ribosomal RPL10P9 pseudogene showed over
tenfold upregulation in violent offenders as compared with
healthy controls and nonviolent individuals with substance
abuse. Also zinc finger protein 132 (ZNF132) gene was
markedly upregulated, and cadherin 5 (CDH5) gene mark-
edly downregulated among the neurons derived from cells
of violent offenders. Figure 1 displays the qPCR replica-
tions of these results (except for RPL10P9 due to no sui-
table primers being available), and correlations between
gene expression levels and psychopathy score (PCL-R).
Pearson’s correlations between gene expression and PCL-R
score were 0.67 (p= 0.013, N= 13; see Fig. 2) for
RPL10P9, 0.96 (p= 0.000, N= 13) for ZNF132, −0.65
(p= 0.015, N= 13) for CDH5, and −0.55 (p= 0.05, N=
13) for opioid receptor delta 1(OPRD1). CDH13 gene
encoding a cadherin that regulates axon growth during
neural differentiation, has been previously linked to extre-
mely violent behavior [5], but it did not achieve statistically
significance (p= 0.24) in this study, possibly because it is
most prominently expressed by oligodendrocytes in the
brain. Although the result for RPL10P9 could not be ver-
ified with qPCR due to missing suitable primers, the same
result for significant correlation with PCL-R score and
upregulation of the gene in the gene array was also dis-
covered in the astrocytes differentiated from the hiPSCs
lines [Pearson’s correlation 0.66 (p= 0.007, N= 14)]
(Fig. 2). Altogether, the data indicate the robustness of this
finding and underline the importance of RPL10P9 in the

pathophysiology of psychopathy. In the astrocytes, also
mitochondria encoded 16S RNA (MT-RNR) 2 showed a
four- to sixfold upregulation of RNA expression in the
violent offenders (Fig. 2).

Interestingly, opioid receptor delta 1 (OPRD1) gene was
upregulated in nonviolent offenders as compared with normal
controls, but the expression for OPRD1 was even lower in
the violent offenders as compared with the two other groups,
although these results reached only borderline statistical
significance (Fig. 1c, Suppl. Table 2). As the OPRD1 gene
codes for an opioid receptor delta protein, a protein involved
in mediating the effects of opioids often used for substance
abuse purposes, and as many violent antisocial offenders
often suffer from substance abuse disorders, it was striking
that the expression level of this protein was low in the violent
offenders. Thus, we did further qPCR analysis for OPRD1 in
order to see whether differences between the groups arise in
this more accurate analysis. The qPCR analysis pointed
toward the same trend of lower expression of OPRD1 in the
violent offender group, although this result again reached
only borderline statistical significance. Taking all together,
ZNF132, RPL10P9, CDH5, and OPRD1 genes explained
30–92% of variance of the psychopathy symptomatology, as
measured by the PCL-score. Moreover, in fibroblasts, no
differences between the studied groups were detected (Suppl.
Fig. 4). These findings point out that ZNF132 is mainly
overexpressed in neurons and most likely affect the tran-
scriptional regulation of other genes. Results from pathway
analyses from neurons are displayed in Supplementary
Table 4, and show enrichment in several immune response-
related pathways. No statistically significant enrichments
were observed in astrocytes.

Data from proteomic analysis are shown in Fig. 3. Here
the largest effect sizes were observed for opioid-binding
protein/cell-adhesion molecule (OPCML) in the proteomic
analysis and for PSMD3, PEG10, and PCDH19 in phos-
phoproteome analysis. Of the proteins with significantly
higher levels in the proteome analysis, OPCML was the
most elevated protein in the violent offenders as compared
with controls (6.6-fold change, p= 9.5 × 10−3). However,
also nonviolent substance abusers showed higher OPCML
values than controls, indicating that this finding may not be
necessarily specific for psychopathy but could be associated
with substance dependence.

In the phosphoproteome analysis, in the violent crim-
inals, paternally expressed 10 (PEG10) levels were 51-fold,
protocadherin 19 (PCDH19) 37-fold, spectrin beta, none-
rythrocytic 5 (SPTBN5) 17-fold, and acyl-CoA synthetase
long chain family member 4 (ACSL4) 7-fold higher than
controls. Concerning phosphoproteins with lower levels in
the violent offenders, levels of a proteasome 26S subunit
non-ATPase 3 (PSMD3) were 203-fold, and Myosin 1E
(MYO1e) 19-fold lower than in controls.

Neurobiological roots of psychopathy 3435
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Discussion

To our knowledge, this is the first study to reveal significant
alterations in gene expression related to psychopathy. Our
results showed that expression levels of RPL109, ZNF132,
CDH5, and OPRD1 genes in neurons explained 30–92% of
the severity of psychopathy, and RPL109 expression was
significantly associated with degree of psychopathy also in
astrocytes. It is remarkable that all the aforementioned
genes except OPRD1 have been previously linked to autism
[17–22], and might thus contribute to the emotional cal-
lousness and lack of empathy observed in psychopathic
violent offenders. The strongest association was observed
for ZNF132, a member of zinc finger Kröppel family
associated with several developmental and malignant dis-
orders [23]. It has been also reported that autism gene
CHD8 modifies the expression of ZNF132 [18]. The exact

function of ZNF132 is unknown but it may be involved in
transcriptional regulation. Interestingly, the highest expres-
sion levels of ZNF132 mRNA were seen in cortical neurons
of violent subjects, while in hiPSCs, no difference between
violent and nonviolent subjects was observed. ZNF132 is
expressed highly in the cerebellum [24], and a recent study
has found that cerebellum can regulate social behavior by
controlling dopamine release [25], suggesting that this may
contribute to mental disorders, such as autism and schizo-
phrenia. Our results imply that cerebellum may also have a
role in severe antisocial behavior.

We observed enrichment in several immune response-
related pathways. This is an interesting finding since a
recent study on adult antisocial behavior found enrichment
in 7 gene sets, most of which being immune related [9].
This suggests that altered immune response contributes to
the pathophysiology of antisocial behavior.
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Fig. 1 RNA expression analyses of hiPSCs-derived cortical neurons
for a ZNF132, b CDH5, and c OPRD1 genes. The first graph repre-
sents correlation with normalized expression levels and the second
with gene expression levels validated by quantitative RT-PCR (qRT-

PCR). The column graph presents mRNA expression levels of gene of
interest measured by qRT-PCR. r indicates Pearson correlation coef-
ficient. “Violent” indicates violent offenders, and “nonviolent” indi-
cates individuals with substance abuse but without criminal behavior
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In proteomic analysis, the most robust finding was
upregulation of OPCML. It has been shown to have an
accessory role in opioid receptor function, and the gene
encoding the protein is highly conserved in mammals. In
rats, the accessory role to activate opioid receptors has been
shown to be specific for the mu receptor ligands. Differ-
ences in OPCML gene expression have also been detected
in patients with schizophrenia, although protein level mea-
surements from post mortem brains have not differed
between patients and healthy controls [26].

In phosphoprotein analysis, several proteins were upre-
gulated. Of these, PEG10 is a paternally imprinted gene that
uses a rare mechanism for encoding for two different
protein products by using the −1 ribosomal frameshift
translation, which is well known from retroviruses and
retrotransposons, but is extremely rare in humans [27]. In
adult mice, the protein is expressed only in the brain and

testes, and blocks TGF-B signaling. A paternally imprinted
gene such as this one could explain why psychopathy is
inherited from father to son. In this study, three of six
offenders had a biological father convicted into prison,
while none of the mothers had been imprisoned. PCDH19 is
a protocadherin, which has been linked to epilepsy [28],
autism [29] and behavioral problems, aggression, and
photosensitivity. PCDH19 is thought to be a calcium-
dependent cell-adhesion protein that is primarily expressed
in the brain, and has been shown to cause a decrease in the
amount of neurosteroids, including adrenocorticotropic
hormone, in females. ACSL4 has been associated with
X-chromosome linked mental retardation [30] as well as
insulin secretion [31]. On the other hand, PSMD3 and
MYO1e were substantially downregulated compared with
controls. Of these, PSMD3 is an enzyme, an aberration of
which contributes to pathogenesis of neurodevelopmental
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Fig. 2 Transcriptome analyses of differentially expressed genes in
hiPSCs-derived astrocytes. a The genes with adjusted p-value < 0.05
and at least twofold up- or downregulation are presented in the table.
The correlation of PCL-R score with normalized expression levels for

RPL10P9 in b astrocytes and c neurons. r indicates the Pearson cor-
relation coefficient. “Violent” indicates violent offenders, and “non-
violent” indicates individuals with substance abuse but without
criminal behavior
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Fig. 3 Proteomic analyses of differentially expressed proteins and
phosphoproteins in hiPSCs-derived cortical neurons. a Proteins with
adjusted p-value < 0.05 and at least twofold up- or downregulation are
presented in the table. b The normalized expression of opioid-binding
protein/cell-adhesion molecule (OPCML) and its correlation with
PCL-R score. c Top ten list of phosphoproteins and normalized

expression and its correlation with PCL-R score for d 26S proteasome
non-ATPase regulatory subunit 3 (PSMD3), e Protocadherin
19 (PCDH19), f Retrotransposon-derived protein (PEG10). p-values
shown in a and c are nominal values, and remained statistically
significant (p < 0.05) after correction for multiple comparisons in
c. r indicates the Pearson correlation coefficient
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and neurodegenerative disorders [32, 33] and insulin
resistance [34]. This finding suggests that downregulation
of PSMD3 contributes to abnormal glucose metabolism
which results into impulsive violent behavior among
severely antisocial individuals as has been reported in
several studies [14, 35]. MYO1e has been associated with
autism in a single study [36].

In conclusion, expression of ZNF132 in neurons and
RPL10P9 in both neurons and astrocytes is markedly
abnormal among habitually violent offenders and these
findings are strongly associated with the degree of psy-
chopathic symptoms. The changes in protein levels
observed here point to alteration in insulin sensitivity and
glucose metabolism, and previous literature has shown that
abnormal glucose metabolism is the only predictor for
violent crimes which can surpass the accuracy of PCL-R
[35]. We also observed changes in the opioid system, which
has been shown to support prosocial functions, such as
empathy, among humans and nonhuman primates
[12, 13, 37, 38]. Our results showing a decrease in the
expression of opioid delta receptor gene are in line with
these previous findings. A recent theory suggests that a
deficient endogenous opioid system contributes to antisocial
personality, proposing that antisocial individuals attempt to
stimulate their dysfunctional opioid system by the reward-
ing effect of substance abuse, and impulsive, sensation-
seeking, aggressive, and promiscuous behavior [11]. Our
data suggest that dysfunction of the opioid system con-
tributes to the phenotype of psychopathy, supporting the
recently presented idea that partial opioid receptor agonists,
such as (+)-naloxone might be the first effective treatment
for psychopathy [11].

Data availability

All data needed to evaluate the conclusions in the manu-
script are provided in the manuscript or the supplementary
material.
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