Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Expert Review
  • Published:

Transcranial direct current stimulation: a roadmap for research, from mechanism of action to clinical implementation

Abstract

Transcranial direct current stimulation (tDCS) is a promising method for altering the function of neural systems, cognition, and behavior. Evidence is emerging that it can also influence psychiatric symptomatology, including major depression and schizophrenia. However, there are many open questions regarding how the method might have such an effect, and uncertainties surrounding its influence on neural activity, and human cognition and functioning. In the present critical review, we identify key priorities for future research into major depression and schizophrenia, including studies of the mechanism(s) of action of tDCS at the neuronal and systems levels, the establishment of the cognitive impact of tDCS, as well as investigations of the potential clinical efficacy of tDCS. We highlight areas of progress in each of these domains, including data that appear to favor an effect of tDCS on neural oscillations rather than spiking, and findings that tDCS administration to the prefrontal cortex during task training may be an effective way to enhance behavioral performance. Finally, we provide suggestions for further empirical study that will elucidate the impact of tDCS on brain and behavior, and may pave the way for efficacious clinical treatments for psychiatric disorders.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1

Similar content being viewed by others

References

  1. Yavari F, Jamil A, Mosayebi Samani M, Vidor LP, Nitsche MA. Basic and functional effects of transcranial electrical stimulation (tES)-an introduction. Neurosci Biobehav Rev. 2018;85:81–92.

    Article  PubMed  Google Scholar 

  2. Lefaucheur JP, Antal A, Ayache SS, Benninger DH, Brunelin J, Cogiamanian F, et al. Evidence-based guidelines on the therapeutic use of transcranial direct current stimulation (tDCS). Clin Neurophysiol. 2017;128:56–92.

    Article  PubMed  Google Scholar 

  3. Mutz J, Edgcumbe DR, Brunoni AR, Fu CHY. Efficacy and acceptability of non-invasive brain stimulation for the treatment of adult unipolar and bipolar depression: a systematic review and meta-analysis of randomised sham-controlled trials. Neurosci Biobehav Rev. 2018;92:291–303.

    Article  PubMed  Google Scholar 

  4. Moffa AH, Brunoni AR, Fregni F, Palm U, Padberg F, Blumberger DM, et al. Safety and acceptability of transcranial direct current stimulation for the acute treatment of major depressive episodes: analysis of individual patient data. J Affect Disord. 2017;221:1–5.

    Article  PubMed  Google Scholar 

  5. Aparicio LVM, Guarienti F, Razza LB, Carvalho AF, Fregni F, Brunoni AR. A systematic review on the acceptability and tolerability of transcranial direct current stimulation treatment in neuropsychiatry trials. Brain Stimul. 2016;9:671–81.

    Article  PubMed  Google Scholar 

  6. Ferguson JM. SSRI antidepressant medications: adverse effects and tolerability. Prim Care Companion J Clin Psychiatry. 2001;3:22–7.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Brunoni AR, Nitsche MA, Bolognini N, Bikson M, Wagner T, Merabet L, et al. Clinical research with transcranial direct current stimulation (tDCS): challenges and future directions. Brain Stimul. 2012;5:175–95.

    Article  PubMed  Google Scholar 

  8. Esmaeilpour Z, Marangolo P, Hampstead BM, Bestmann S, Galletta E, Knotkova H, et al. Incomplete evidence that increasing current intensity of tDCS boosts outcomes. Brain Stimul. 2018;11:310–21.

    Article  PubMed  Google Scholar 

  9. Voroslakos M, Takeuchi Y, Brinyiczki K, Zombori T, Oliva A, Fernandez-Ruiz A, et al. Direct effects of transcranial electric stimulation on brain circuits in rats and humans. Nat Commun. 2018;9:483.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Huang Y, Liu AA, Lafon B, Friedman D, Dayan M, Wang X et al. Measurements and models of electric fields in the in vivo human brain during transcranial electric stimulation. Elife. 2017; 6:e18834.

  11. Opitz A, Falchier A, Yan CG, Yeagle EM, Linn GS, Megevand P, et al. Spatiotemporal structure of intracranial electric fields induced by transcranial electric stimulation in humans and nonhuman primates. Sci Rep. 2016;6:31236.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Jackson MP, Rahman A, Lafon B, Kronberg G, Ling D, Parra LC, et al. Animal models of transcranial direct current stimulation: methods and mechanisms. Clin Neurophysiol. 2016;127:3425–54.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Reato D, Rahman A, Bikson M, Parra LC. Low-intensity electrical stimulation affects network dynamics by modulating population rate and spike timing. J Neurosci. 2010;30:15067–79.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Liu A, Voroslakos M, Kronberg G, Henin S, Krause MR, Huang Y, et al. Immediate neurophysiological effects of transcranial electrical stimulation. Nat Commun. 2018;9:5092.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. McDonnell MD, Abbott D. What is stochastic resonance? Definitions, misconceptions, debates, and its relevance to biology. PLoS Comput Biol. 2009;5:e1000348.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Kronberg G, Bridi M, Abel T, Bikson M, Parra LC. Direct current stimulation modulates LTP and LTD: activity dependence and dendritic effects. Brain Stimul. 2017;10:51–8.

    Article  PubMed  Google Scholar 

  17. Bikson M, Name A, Rahman A. Origins of specificity during tDCS: anatomical, activity-selective, and input-bias mechanisms. Front Hum Neurosci. 2013;7:688.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Onton J, Delorme A, Makeig S. Frontal midline EEG dynamics during working memory. Neuroimage. 2005;27:341–56.

    Article  PubMed  Google Scholar 

  19. Simonsmeier BA, Grabner RH, Hein J, Krenz U, Schneider M. Electrical brain stimulation (tES) improves learning more than performance: a meta-analysis. Neurosci Biobehav Rev. 2018;84:171–81.

    Article  PubMed  Google Scholar 

  20. Cohen MX. Where does EEG come from and what does it mean? Trends Neurosci. 2017;40:208–18.

    Article  CAS  PubMed  Google Scholar 

  21. Logothetis NK, Wandell BA. Interpreting the BOLD signal. Annu Rev Physiol. 2004;66:735–69.

    Article  CAS  PubMed  Google Scholar 

  22. Rawji V, Ciocca M, Zacharia A, Soares D, Truong D, Bikson M, et al. tDCS changes in motor excitability are specific to orientation of current flow. Brain Stimul. 2018;11:289–98.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Alekseichuk I, Diers K, Paulus W, Antal A. Transcranial electrical stimulation of the occipital cortex during visual perception modifies the magnitude of BOLD activity: a combined tES-fMRI approach. Neuroimage. 2016;140:110–7.

    Article  PubMed  Google Scholar 

  24. Fiori V, Kunz L, Kuhnke P, Marangolo P, Hartwigsen G. Transcranial direct current stimulation (tDCS) facilitates verb learning by altering effective connectivity in the healthy brain. Neuroimage. 2018;181:550–9.

    Article  PubMed  Google Scholar 

  25. Weber MJ, Messing SB, Rao H, Detre JA, Thompson-Schill SL. Prefrontal transcranial direct current stimulation alters activation and connectivity in cortical and subcortical reward systems: a tDCS-fMRI study. Hum Brain Mapp. 2014;35:3673–86.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Boonstra TW, Nikolin S, Meisener AC, Martin DM, Loo CK. Change in mean frequency of resting-state electroencephalography after transcranial direct current stimulation. Front Hum Neurosci. 2016;10:270.

    PubMed  PubMed Central  Google Scholar 

  27. Wilson TW, McDermott TJ, Mills MS, Coolidge NM, Heinrichs-Graham E. tDCS modulates visual gamma oscillations and basal alpha activity in occipital cortices: evidence from MEG. Cereb Cortex. 2018;28:1597–609.

    Article  PubMed  Google Scholar 

  28. Hanley CJ, Singh KD, McGonigle DJ. Transcranial modulation of brain oscillatory responses: a concurrent tDCS-MEG investigation. Neuroimage. 2016;140:20–32.

    Article  PubMed  Google Scholar 

  29. Marshall TR, Esterer S, Herring JD, Bergmann TO, Jensen O. On the relationship between cortical excitability and visual oscillatory responses - a concurrent tDCS-MEG study. Neuroimage. 2016;140:41–9.

    Article  PubMed  Google Scholar 

  30. Reinhart RM, Zhu J, Park S, Woodman GF. Synchronizing theta oscillations with direct-current stimulation strengthens adaptive control in the human brain. Proc Natl Acad Sci USA. 2015;112:9448–53.

    Article  CAS  PubMed  Google Scholar 

  31. McDermott TJ, Wiesman AI, Mills MS, Spooner RK, Coolidge NM, Proskovec AL, et al. tDCS modulates behavioral performance and the neural oscillatory dynamics serving visual selective attention. Hum Brain Mapp. 2019;40:729–40.

    Article  PubMed  Google Scholar 

  32. Choe J, Coffman BA, Bergstedt DT, Ziegler MD, Phillips ME. Transcranial direct current stimulation modulates neuronal activity and learning in pilot training. Front Hum Neurosci. 2016;10:34.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Boudewyn M, Roberts BM, Mizrak E, Ranganath C, Carter CS. Prefrontal transcranial direct current stimulation (tDCS) enhances behavioral and EEG markers of proactive control. Cogn Neurosci. 2018;10:57–65.

  34. Fries P. A mechanism for cognitive dynamics: neuronal communication through neuronal coherence. Trends Cogn Sci. 2005;9:474–80.

    Article  PubMed  Google Scholar 

  35. Siegel M, Donner TH, Engel AK. Spectral fingerprints of large-scale neuronal interactions. Nat Rev Neurosci. 2012;13:121–34.

    Article  CAS  PubMed  Google Scholar 

  36. Hyafil A, Giraud AL, Fontolan L, Gutkin B. Neural cross-frequency coupling: connecting architectures, mechanisms, and functions. Trends Neurosci. 2015;38:725–40.

    Article  CAS  PubMed  Google Scholar 

  37. Buzsaki G, Schomburg EW. What does gamma coherence tell us about inter-regional neural communication? Nat Neurosci. 2015;18:484–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Fischer DB, Fried PJ, Ruffini G, Ripolles O, Salvador R, Banus J, et al. Multifocal tDCS targeting the resting state motor network increases cortical excitability beyond traditional tDCS targeting unilateral motor cortex. Neuroimage. 2017;157:34–44.

    Article  CAS  PubMed  Google Scholar 

  39. Imburgio MJ, Orr JM. Effects of prefrontal tDCS on executive function: methodological considerations revealed by meta-analysis. Neuropsychologia. 2018;117:156–66.

    Article  PubMed  Google Scholar 

  40. Reinhart RM, Cosman JD, Fukuda K, Woodman GF. Using transcranial direct-current stimulation (tDCS) to understand cognitive processing. Atten Percept Psychophys. 2017;79:3–23.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Dmochowski JP, Datta A, Bikson M, Su Y, Parra LC. Optimized multi-electrode stimulation increases focality and intensity at target. J Neural Eng. 2011;8:046011.

    Article  PubMed  Google Scholar 

  42. Battaglini L, Noventa S, Casco C. Anodal and cathodal electrical stimulation over V5 improves motion perception by signal enhancement and noise reduction. Brain Stimul. 2017;10:773–9.

    Article  PubMed  Google Scholar 

  43. Zito GA, Senti T, Cazzoli D, Muri RM, Mosimann UP, Nyffeler T, et al. Cathodal HD-tDCS on the right V5 improves motion perception in humans. Front Behav Neurosci. 2015;9:257.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Szucs D, Ioannidis JP. Empirical assessment of published effect sizes and power in the recent cognitive neuroscience and psychology literature. PLoS Biol. 2017;15:e2000797.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Colling LJ, Szucs D. Statisical inference and the replication crisis. Rev Philos Psychol. 2018. https://doi.org/10.1007/s13164-018-0421-4.

  46. Medina J, Cason S. No evidential value in samples of transcranial direct current stimulation (tDCS) studies of cognition and working memory in healthy populations. Cortex. 2017;94:131–41.

    Article  PubMed  Google Scholar 

  47. Horvath JC, Forte JD, Carter O. Quantitative review finds no evidence of cognitive effects in healthy populations from single-session transcranial direct current stimulation (tDCS). Brain Stimul. 2015;8:535–50.

    Article  PubMed  Google Scholar 

  48. Meron D, Hedger N, Garner M, Baldwin DS. Transcranial direct current stimulation (tDCS) in the treatment of depression: systematic review and meta-analysis of efficacy and tolerability. Neurosci Biobehav Rev. 2015;57:46–62.

    Article  PubMed  Google Scholar 

  49. Nitsche MA, Bikson M, Bestmann S. on the use of meta-analysis in neuromodulatory non-invasive brain stimulation. Brain Stimul. 2015;8:666–7.

    Article  PubMed  Google Scholar 

  50. Santarnecchi E, Brem AK, Levenbaum E, Thompson T, Kadosh RC, Pascual-Leone A. Enhancing cognition using transcranial electrical stimulation. Curr Opin Behav Sci. 2015;4:171–8.

    Article  Google Scholar 

  51. Filmer HL, Dux PE, Mattingley JB. Applications of transcranial direct current stimulation for understanding brain function. Trends Neurosci. 2014;37:742–53.

    Article  CAS  PubMed  Google Scholar 

  52. Filmer HL, Varghese E, Hawkins GE, Mattingley JB, Dux PE. Improvements in attention and decision-making following combined behavioral training and brain stimulation. Cereb Cortex. 2017;27:3675–82.

    PubMed  Google Scholar 

  53. Smith RC, Boules S, Mattiuz S, Youssef M, Tobe RH, Sershen H, et al. Effects of transcranial direct current stimulation (tDCS) on cognition, symptoms, and smoking in schizophrenia: a randomized controlled study. Schizophr Res. 2015;168:260–6.

    Article  PubMed  Google Scholar 

  54. Hoy KE, Bailey NW, Arnold SL, Fitzgerald PB. The effect of transcranial direct current stimulation on gamma activity and working memory in schizophrenia. Psychiatry Res. 2015;228:191–6.

    Article  PubMed  Google Scholar 

  55. Vercammen A, Rushby JA, Loo C, Short B, Weickert CS, Weickert TW. Transcranial direct current stimulation influences probabilistic association learning in schizophrenia. Schizophr Res. 2011;131:198–205.

    Article  PubMed  Google Scholar 

  56. Friedman NP, Miyake A, Corley RP, Young SE, Defries JC, Hewitt JK. Not all executive functions are related to intelligence. Psychol Sci. 2006;17:172–9.

    Article  PubMed  Google Scholar 

  57. Barch DM, Moore H, Nee DE, Manoach DS, Luck SJ. CNTRICS imaging biomarkers selection: working memory. Schizophr Bull. 2012;38:43–52.

    Article  PubMed  Google Scholar 

  58. Mancuso LE, Ilieva IP, Hamilton RH, Farah MJ. Does transcranial direct current stimulation improve healthy working memory?: A meta-analytic review. J Cogn Neurosci. 2016;28:1063–89.

    Article  PubMed  Google Scholar 

  59. Reinhart RMG. Disruption and rescue of interareal theta phase coupling and adaptive behavior. Proc Natl Acad Sci USA. 2017;114:11542–7.

    Article  CAS  PubMed  Google Scholar 

  60. Jacobson L, Javitt DC, Lavidor M. Activation of inhibition: diminishing impulsive behavior by direct current stimulation over the inferior frontal gyrus. J Cogn Neurosci. 2011;23:3380–7.

    Article  PubMed  Google Scholar 

  61. Li LM, Violante IR, Leech R, Hampshire A, Opitz A, McArthur D, et al. Cognitive enhancement with salience network electrical stimulation is influenced by network structural connectivity. Neuroimage. 2019;185:425–33.

    Article  PubMed  PubMed Central  Google Scholar 

  62. Vergallito A, Riva P, Pisoni A, Romero Lauro LJ. Modulation of negative emotions through anodal tDCS over the right ventrolateral prefrontal cortex. Neuropsychologia. 2018;119:128–35.

    Article  PubMed  Google Scholar 

  63. Ironside M, Browning M, Ansari TL, Harvey CJ, Sekyi-Djan MN, Bishop SJ et al. Effect of prefrontal cortex stimulation on regulation of amygdala response to threat in individuals with trait anxiety: a randomized clinical trial. JAMA Psychiatry. 2018;76:71–78.

  64. Brevet-Aeby C, Brunelin J, Iceta S, Padovan C, Poulet E. Prefrontal cortex and impulsivity: interest of noninvasive brain stimulation. Neurosci Biobehav Rev. 2016;71:112–34.

    Article  PubMed  Google Scholar 

  65. Lundqvist M, Herman P, Lansner A. Theta and gamma power increases and alpha/beta power decreases with memory load in an attractor network model. J Cogn Neurosci. 2011;23:3008–20.

    Article  PubMed  Google Scholar 

  66. Compte A, Brunel N, Goldman-Rakic PS, Wang XJ. Synaptic mechanisms and network dynamics underlying spatial working memory in a cortical network model. Cereb Cortex. 2000;10:910–23.

    Article  CAS  PubMed  Google Scholar 

  67. Hartwigsen G. Flexible redistribution in cognitive networks. Trends Cogn Sci. 2018;22:687–98.

    Article  PubMed  Google Scholar 

  68. Brunoni AR, Moffa AH, Fregni F, Palm U, Padberg F, Blumberger DM, et al. Transcranial direct current stimulation for acute major depressive episodes: meta-analysis of individual patient data. Br J Psychiatry. 2016;208:522–31.

    Article  PubMed  PubMed Central  Google Scholar 

  69. Shiozawa P, Fregni F, Bensenor IM, Lotufo PA, Berlim MT, Daskalakis JZ, et al. Transcranial direct current stimulation for major depression: an updated systematic review and meta-analysis. Int J Neuropsychopharmacol. 2014;17:1443–52.

    Article  PubMed  Google Scholar 

  70. Brunoni AR, Moffa AH, Sampaio-Junior B, Borrione L, Moreno ML, Fernandes RA, et al. Trial of electrical direct-current therapy versus escitalopram for depression. N Engl J Med. 2017;376:2523–33.

    Article  CAS  PubMed  Google Scholar 

  71. Brunoni AR, Valiengo L, Baccaro A, Zanao TA, de Oliveira JF, Goulart A, et al. The sertraline vs. electrical current therapy for treating depression clinical study: results from a factorial, randomized, controlled trial. JAMA Psychiatry. 2013;70:383–91.

    Article  CAS  PubMed  Google Scholar 

  72. Loo CK, Husain MM, McDonald WM, Aaronson S, O’Reardon JP, Alonzo A, et al. International randomized-controlled trial of transcranial Direct Current Stimulation in depression. Brain Stimul. 2018;11:125–33.

    Article  PubMed  Google Scholar 

  73. Rock PL, Roiser JP, Riedel WJ, Blackwell AD. Cognitive impairment in depression: a systematic review and meta-analysis. Psychol Med. 2014;44:2029–40.

    Article  CAS  PubMed  Google Scholar 

  74. Martin DM, Teng JZ, Lo TY, Alonzo A, Goh T, Iacoviello BM, et al. Clinical pilot study of transcranial direct current stimulation combined with cognitive emotional training for medication resistant depression. J Affect Disord. 2018;232:89–95.

    Article  CAS  PubMed  Google Scholar 

  75. Wolkenstein L, Plewnia C. Amelioration of cognitive control in depression by transcranial direct current stimulation. Biol Psychiatry. 2013;73:646–51.

    Article  PubMed  Google Scholar 

  76. Brunoni AR, Boggio PS, De Raedt R, Bensenor IM, Lotufo PA, Namur V, et al. Cognitive control therapy and transcranial direct current stimulation for depression: a randomized, double-blinded, controlled trial. J Affect Disord. 2014;162:43–9.

    Article  CAS  PubMed  Google Scholar 

  77. Segrave RA, Arnold S, Hoy K, Fitzgerald PB. Concurrent cognitive control training augments the antidepressant efficacy of tDCS: a pilot study. Brain Stimul. 2014;7:325–31.

    Article  CAS  PubMed  Google Scholar 

  78. Oliveira JF, Zanao TA, Valiengo L, Lotufo PA, Bensenor IM, Fregni F, et al. Acute working memory improvement after tDCS in antidepressant-free patients with major depressive disorder. Neurosci Lett. 2013;537:60–4.

    Article  CAS  PubMed  Google Scholar 

  79. Powell TY, Boonstra TW, Martin DM, Loo CK, Breakspear M. Modulation of cortical activity by transcranial direct current stimulation in patients with affective disorder. PLoS ONE. 2014;9:e98503.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Martin DM, Moffa A, Nikolin S, Bennabi D, Brunoni AR, Flannery W, et al. Cognitive effects of transcranial direct current stimulation treatment in patients with major depressive disorder: an individual patient data meta-analysis of randomised, sham-controlled trials. Neurosci Biobehav Rev. 2018;90:137–45.

    Article  PubMed  Google Scholar 

  81. Vanderhasselt MA, Brunoni AR, Loeys T, Boggio PS, De Raedt R. Nosce te ipsum-Socrates revisited? Controlling momentary ruminative self-referent thoughts by neuromodulation of emotional working memory. Neuropsychologia. 2013;51:2581–9.

    Article  PubMed  Google Scholar 

  82. Lesh TA, Niendam TA, Minzenberg MJ, Carter CS. Cognitive control deficits in schizophrenia: mechanisms and meaning. Neuropsychopharmacology. 2011;36:316–38.

    Article  PubMed  Google Scholar 

  83. Mondino M, Jardri R, Suaud-Chagny MF, Saoud M, Poulet E, Brunelin J. Effects of fronto-temporal transcranial direct current stimulation on auditory verbal hallucinations and resting-state functional connectivity of the left temporo-parietal junction in patients with schizophrenia. Schizophr Bull. 2016;42:318–26.

    Article  PubMed  Google Scholar 

  84. Brunelin J, Mondino M, Gassab L, Haesebaert F, Gaha L, Suaud-Chagny MF, et al. Examining transcranial direct-current stimulation (tDCS) as a treatment for hallucinations in schizophrenia. Am J Psychiatry. 2012;169:719–24.

    Article  PubMed  Google Scholar 

  85. Fitzgerald PB, McQueen S, Daskalakis ZJ, Hoy KE. A negative pilot study of daily bimodal transcranial direct current stimulation in schizophrenia. Brain Stimul. 2014;7:813–6.

    Article  PubMed  Google Scholar 

  86. Kekic M, Boysen E, Campbell IC, Schmidt U. A systematic review of the clinical efficacy of transcranial direct current stimulation (tDCS) in psychiatric disorders. J Psychiatr Res. 2016;74:70–86.

    Article  PubMed  Google Scholar 

  87. Moffa AH, Brunoni AR, Nikolin S, Loo CK. Transcranial direct current stimulation in psychiatric disorders: a comprehensive review. Psychiatr Clin North Am. 2018;41:447–63.

    Article  PubMed  Google Scholar 

  88. Fregni F, Liguori P, Fecteau S, Nitsche MA, Pascual-Leone A, Boggio PS. Cortical stimulation of the prefrontal cortex with transcranial direct current stimulation reduces cue-provoked smoking craving: a randomized, sham-controlled study. J Clin Psychiatry. 2008;69:32–40.

    Article  PubMed  Google Scholar 

  89. Boggio PS, Sultani N, Fecteau S, Merabet L, Mecca T, Pascual-Leone A, et al. Prefrontal cortex modulation using transcranial DC stimulation reduces alcohol craving: a double-blind, sham-controlled study. Drug Alcohol Depend. 2008;92:55–60.

    Article  PubMed  Google Scholar 

  90. Batista EK, Klauss J, Fregni F, Nitsche MA, Nakamura-Palacios EM. A randomized placebo-controlled trial of targeted prefrontal cortex modulation with bilateral tDCS in patients with crack-cocaine dependence. Int J Neuropsychopharmacol. 2015;18:pyv066.

  91. Boggio PS, Zaghi S, Villani AB, Fecteau S, Pascual-Leone A, Fregni F. Modulation of risk-taking in marijuana users by transcranial direct current stimulation (tDCS) of the dorsolateral prefrontal cortex (DLPFC). Drug Alcohol Depend. 2010;112:220–5.

    Article  PubMed  Google Scholar 

  92. Shahbabaie A, Golesorkhi M, Zamanian B, Ebrahimpoor M, Keshvari F, Nejati V, et al. State dependent effect of transcranial direct current stimulation (tDCS) on methamphetamine craving. Int J Neuropsychopharmacol. 2014;17:1591–8.

    Article  CAS  PubMed  Google Scholar 

  93. da Silva MC, Conti CL, Klauss J, Alves LG, do Nascimento Cavalcante HM, Fregni F, et al. Behavioral effects of transcranial direct current stimulation (tDCS) induced dorsolateral prefrontal cortex plasticity in alcohol dependence. J Physiol Paris. 2013;107:493–502.

    Article  PubMed  Google Scholar 

  94. Berlow YA, Zandvakili A, Carpenter LL, Philip NS. Transcranial direct current stimulation for unipolar depression and risk of treatment emergent mania: an updated meta-analysis. Brain Stimul. 2019;12:1066–8.

    Article  PubMed  Google Scholar 

  95. Horvath JC, Carter O, Forte JD. Transcranial direct current stimulation: five important issues we aren’t discussing (but probably should be). Front Syst Neurosci. 2014;8:2.

    Article  PubMed  PubMed Central  Google Scholar 

  96. McIntosh RD. Exploratory reports: a new article type for cortex. Cortex. 2017;96:A1–A4.

    Article  Google Scholar 

  97. Civile C, McLaren R, McLaren IPL. How we can change your mind: anodal tDCS to Fp3 alters human stimulus representation and learning. Neuropsychologia. 2018;119:241–6.

    Article  PubMed  Google Scholar 

  98. Minarik T, Berger B, Althaus L, Bader V, Biebl B, Brotzeller F, et al. The importance of sample size for reproducibility of tDCS effects. Front Hum Neurosci. 2016;10:453.

    Article  PubMed  PubMed Central  Google Scholar 

  99. Jalali R, Miall RC, Galea JM. No consistent effect of cerebellar transcranial direct current stimulation on visuomotor adaptation. J Neurophysiol. 2017;118:655–65.

    Article  PubMed  PubMed Central  Google Scholar 

  100. Woods AJ, Antal A, Bikson M, Boggio PS, Brunoni AR, Celnik P, et al. A technical guide to tDCS, and related non-invasive brain stimulation tools. Clin Neurophysiol. 2016;127:1031–48.

    Article  CAS  PubMed  Google Scholar 

  101. Fried EI. The 52 symptoms of major depression: lack of content overlap among seven common depression scales. J Affect Disord. 2017;208:191–7.

    Article  PubMed  Google Scholar 

  102. Phillips ML, Chase HW, Sheline YI, Etkin A, Almeida JR, Deckersbach T, et al. Identifying predictors, moderators, and mediators of antidepressant response in major depressive disorder: neuroimaging approaches. Am J Psychiatry. 2015;172:124–38.

    Article  PubMed  PubMed Central  Google Scholar 

  103. Duncan J. An adaptive coding model of neural function in prefrontal cortex. Nat Rev Neurosci. 2001;2:820–9.

    Article  CAS  PubMed  Google Scholar 

  104. Tononi G, Sporns O, Edelman GM. Measures of degeneracy and redundancy in biological networks. Proc Natl Acad Sci USA. 1999;96:3257–62.

    Article  CAS  PubMed  Google Scholar 

  105. Harty S, Sella F, Cohen Kadosh R. Mind the brain: the mediating and moderating role of neurophysiology. Trends Cogn Sci. 2017;21:2–5.

    Article  PubMed  Google Scholar 

  106. Radman T, Ramos RL, Brumberg JC, Bikson M. Role of cortical cell type and morphology in subthreshold and suprathreshold uniform electric field stimulation in vitro. Brain Stimul. 2009;2:215–28. 228 e211-213.

    Article  PubMed  PubMed Central  Google Scholar 

  107. Carp J. On the plurality of (methodological) worlds: estimating the analytic flexibility of FMRI experiments. Front Neurosci. 2012;6:149.

    Article  PubMed  PubMed Central  Google Scholar 

  108. Al-Kaysi AM, Al-Ani A, Loo CK, Powell TY, Martin DM, Breakspear M, et al. Predicting tDCS treatment outcomes of patients with major depressive disorder using automated EEG classification. J Affect Disord. 2017;208:597–603.

    Article  PubMed  Google Scholar 

  109. D’Urso G, Dell’Osso B, Rossi R, Brunoni AR, Bortolomasi M, Ferrucci R, et al. Clinical predictors of acute response to transcranial direct current stimulation (tDCS) in major depression. J Affect Disord. 2017;219:25–30.

    Article  PubMed  Google Scholar 

Download references

Funding

The present work was supported by NIMH grant 1R21MH108421-01A1 (to MLP and HWC). MLP is also supported by the Pittsburgh Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Henry W. Chase.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chase, H.W., Boudewyn, M.A., Carter, C.S. et al. Transcranial direct current stimulation: a roadmap for research, from mechanism of action to clinical implementation. Mol Psychiatry 25, 397–407 (2020). https://doi.org/10.1038/s41380-019-0499-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41380-019-0499-9

This article is cited by

Search

Quick links