Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Brain-specific Wt1 deletion leads to depressive-like behaviors in mice via the recruitment of Tet2 to modulate Epo expression

Abstract

Major depressive disorder (MDD) is the most common psychiatric disease worldwide. The precise molecular and cellular mechanisms underlying this disorder remain largely unknown. Wilms’ tumor 1 (Wt1), a transcription factor, plays critical roles in cancer and organ development. Importantly, deletion of the 11p13 region that contains the WT1 gene is a major cause of WARG syndrome (Wilms’ tumor, aniridia, genitourinary anomalies, and mental retardation), which is characterized by psychiatric disease, including depression. However, the roles and mechanisms of WT1 in embryonic neurogenesis and psychiatric disease remain unclear. Here, we demonstrate that the brain-specific deletion of Wt1 results in abnormal cell distribution during embryonic neurogenesis, which is accompanied by enhanced proliferation of neural progenitors and reduced neuronal differentiation. Moreover, neurons exhibit abnormal morphology during cortical development following Wt1 ablation. Furthermore, Wt1cKO mice exhibit depressive-like behaviors, including immobility, despair, and anhedonia. Mechanistically, Wt1 recruits Tet2 to the promoter of erythropoietin (Epo), which results in enhanced 5-hydroxymethylcytosine (5hmC) levels and the promotion of Epo expression. Either Epo plasmid electroporation or Epo protein injection can partially restore the deficiency caused by Wt1 deletion. Importantly, administration of Epo to both embryos and adults can ameliorate the depressive-like behavior of Wt1cKO mice. In addition, WT1 plays a similar role in human neural progenitor cells (hNPCs) proliferation and differentiation. Taken together, our findings reveal the critical role and regulatory mechanism of Wt1 in embryonic neurogenesis and behavioral modulation, which could contribute to the understanding of MDD etiology and therapy.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Wt1 deficiency results in impaired neurogenesis.
Fig. 2: Wt1 deficiency leads to depressive-like behaviors.
Fig. 3: Wt1 regulates Epo expression by recruiting Tet2, thereby enhancing the 5hmC levels on the Epo promoter.
Fig. 4: Deficiency caused by Wt1 depletion can be partially rescued by Epo.
Fig. 5: Epo administration ameliorates depressive-like behavior in Wt1cKO mice.

Similar content being viewed by others

References

  1. Leng L, Zhuang K, Liu Z, Huang C, Gao Y, Chen G, et al. Menin deficiency leads to depressive-like behaviors in mice by modulating astrocyte-mediated neuroinflammation. Neuron. 2018;100:551–63. e557.

    CAS  PubMed  Google Scholar 

  2. consortium C. Sparse whole-genome sequencing identifies two loci for major depressive disorder. Nature. 2015;523:588–91.

    Google Scholar 

  3. Ferrari AJ, Charlson FJ, Norman RE, Patten SB, Freedman G, Murray CJ, et al. Burden of depressive disorders by country, sex, age, and year: findings from the global burden of disease study 2010. PLoS Med. 2013;10:e1001547.

    PubMed  PubMed Central  Google Scholar 

  4. Kessler RC, Bromet EJ. The epidemiology of depression across cultures. Annu Rev Public Health. 2013;34:119–38.

    PubMed  PubMed Central  Google Scholar 

  5. Flint J, Kendler KS. The genetics of major depression. Neuron. 2014;81:484–503.

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Sullivan PF, Neale MC, Kendler KS. Genetic epidemiology of major depression: review and meta-analysis. Am J Psychiatry. 2000;157:1552–62.

    CAS  PubMed  Google Scholar 

  7. Kendler KS, Gatz M, Gardner CO, Pedersen NL. A Swedish national twin study of lifetime major depression. Am J Psychiatry. 2006;163:109–14.

    PubMed  Google Scholar 

  8. Taliaz D, Stall N, Dar DE, Zangen A. Knockdown of brain-derived neurotrophic factor in specific brain sites precipitates behaviors associated with depression and reduces neurogenesis. Mol Psychiatry. 2010;15:80–92.

    CAS  PubMed  Google Scholar 

  9. Li H, Zhu Y, Morozov YM, Chen X, Page SC, Rannals MD, et al. Disruption of TCF4 regulatory networks leads to abnormal cortical development and mental disabilities. Mol Psychiatry. 2019;24:1235–46.

    CAS  PubMed  Google Scholar 

  10. Videbech P, Ravnkilde B. Hippocampal volume and depression: a meta-analysis of MRI studies. Am J Psychiatry. 2004;161:1957–66.

    PubMed  Google Scholar 

  11. Lorenzetti V, Allen NB, Fornito A, Yucel M. Structural brain abnormalities in major depressive disorder: a selective review of recent MRI studies. J Affect Disord. 2009;117:1–17.

    PubMed  Google Scholar 

  12. Geerlings MI, Sigurdsson S, Eiriksdottir G, Garcia ME, Harris TB, Sigurdsson T, et al. Associations of current and remitted major depressive disorder with brain atrophy: the AGES-Reykjavik Study. Psychol Med. 2013;43:317–28.

    CAS  PubMed  Google Scholar 

  13. Yang L, Han Y, Suarez Saiz F, Minden MD. A tumor suppressor and oncogene: the WT1 story. Leukemia. 2007;21:868–76.

    CAS  PubMed  Google Scholar 

  14. Kreidberg JA, Sariola H, Loring JM, Maeda M, Pelletier J, Housman D, et al. WT-1 is required for early kidney development. Cell. 1993;74:679–91.

    CAS  PubMed  Google Scholar 

  15. Bandiera R, Sacco S, Vidal VP, Chaboissier MC, Schedl A. Steroidogenic organ development and homeostasis: A WT1-centric view. Mol Cell Endocrinol. 2015;408:145–55.

    CAS  PubMed  Google Scholar 

  16. Gao F, Maiti S, Alam N, Zhang Z, Deng JM, Behringer RR, et al. The Wilms tumor gene, Wt1, is required for Sox9 expression and maintenance of tubular architecture in the developing testis. Proc Natl Acad Sci USA. 2006;103:11987–92.

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Martinez-Estrada OM, Lettice LA, Essafi A, Guadix JA, Slight J, Velecela V, et al. Wt1 is required for cardiovascular progenitor cell formation through transcriptional control of Snail and E-cadherin. Nat Genet. 2010;42:89–93.

    CAS  PubMed  Google Scholar 

  18. Wagner KD, Wagner N, Vidal VP, Schley G, Wilhelm D, Schedl A, et al. The Wilms’ tumor gene Wt1 is required for normal development of the retina. EMBO J. 2002;21:1398–405.

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Wagner N, Wagner KD, Hammes A, Kirschner KM, Vidal VP, Schedl A, et al. A splice variant of the Wilms’ tumour suppressor Wt1 is required for normal development of the olfactory system. Development. 2005;132:1327–36.

    CAS  PubMed  Google Scholar 

  20. Galvis-Blanco SJ, Arias-Florez JS, Contreras-Garcia GA. [WAGR syndrome by heterozygous deletion of the WT1 gene. Pediatric case report]. Arch Argent Pediatr. 2019;117:e505–8.

    PubMed  Google Scholar 

  21. Zubenko GS, Maher B, Hughes HB 3rd, Zubenko WN, Stiffler JS, Kaplan BB, et al. Genome-wide linkage survey for genetic loci that influence the development of depressive disorders in families with recurrent, early-onset, major depression. Am J Med Genet B Neuropsychiatr Genet. 2003;123B:1–18.

    PubMed  Google Scholar 

  22. Shen T, Ji F, Yuan Z, Jiao J. CHD2 is required for embryonic neurogenesis in the developing cerebral cortex. Stem Cells. 2015;33:1794–806.

    CAS  PubMed  Google Scholar 

  23. Zhang W, Wan H, Feng G, Qu J, Wang J, Jing Y, et al. SIRT6 deficiency results in developmental retardation in cynomolgus monkeys. Nature. 2018;560:661–5.

    CAS  PubMed  Google Scholar 

  24. Weng YI, Huang TH, Yan PS. Methylated DNA immunoprecipitation and microarray-based analysis: detection of DNA methylation in breast cancer cell lines. Methods Mol Biol. 2009;590:165–76.

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Cheng Y, Sun M, Chen L, Li Y, Lin L, Yao B, et al. Ten-eleven translocation proteins modulate the response to environmental stress in mice. Cell Rep. 2018;25:3194–203. e3194.

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Ernst C. Proliferation and differentiation deficits are a major convergence point for neurodevelopmental disorders. Trends Neurosci. 2016;39:290–9.

    CAS  PubMed  Google Scholar 

  27. Bernal A, Arranz L. Nestin-expressing progenitor cells: function, identity and therapeutic implications. Cell Mol Life Sci. 2018;75:2177–95.

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Jelkmann W. Regulation of erythropoietin production. J Physiol. 2011;589:1251–8.

    CAS  PubMed  Google Scholar 

  29. Beleslin-Cokic BB, Cokic VP, Yu X, Weksler BB, Schechter AN, Noguchi CT. Erythropoietin and hypoxia stimulate erythropoietin receptor and nitric oxide production by endothelial cells. Blood. 2004;104:2073–80.

    CAS  PubMed  Google Scholar 

  30. Digicaylioglu M, Bichet S, Marti HH, Wenger RH, Rivas LA, Bauer C, et al. Localization of specific erythropoietin binding sites in defined areas of the mouse brain. Proc Natl Acad Sci USA. 1995;92:3717–20.

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Noguchi CT, Asavaritikrai P, Teng R, Jia Y. Role of erythropoietin in the brain. Crit Rev Oncol Hematol. 2007;64:159–71.

    PubMed  PubMed Central  Google Scholar 

  32. Kaneko N, Kako E, Sawamoto K. Enhancement of ventricular-subventricular zone-derived neurogenesis and oligodendrogenesis by erythropoietin and its derivatives. Front Cell Neurosci. 2013;7:235.

    CAS  PubMed  PubMed Central  Google Scholar 

  33. McPherson RJ, Juul SE. Erythropoietin for infants with hypoxic-ischemic encephalopathy. Curr Opin Pediatr. 2010;22:139–45.

    PubMed  PubMed Central  Google Scholar 

  34. Simon FH, Erhart P, Vcelar B, Scheuerle A, Schelzig H, Oberhuber A. Erythropoietin preconditioning improves clinical and histologic outcome in an acute spinal cord ischemia and reperfusion rabbit model. J Vasc Surg. 2016;64:1797–804.

    PubMed  Google Scholar 

  35. Lu D, Mahmood A, Qu C, Goussev A, Schallert T, Chopp M. Erythropoietin enhances neurogenesis and restores spatial memory in rats after traumatic brain injury. J Neurotrauma. 2005;22:1011–7.

    PubMed  Google Scholar 

  36. Tsai PT, Ohab JJ, Kertesz N, Groszer M, Matter C, Gao J, et al. A critical role of erythropoietin receptor in neurogenesis and post-stroke recovery. J Neurosci. 2006;26:1269–74.

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Juul S. Erythropoietin in the central nervous system, and its use to prevent hypoxic-ischemic brain damage. Acta Paediatr Suppl. 2002;91:36–42.

    CAS  PubMed  Google Scholar 

  38. Yu X, Shacka JJ, Eells JB, Suarez-Quian C, Przygodzki RM, Beleslin-Cokic B, et al. Erythropoietin receptor signalling is required for normal brain development. Development. 2002;129:505–16.

    CAS  PubMed  Google Scholar 

  39. Hassouna I, Ott C, Wustefeld L, Offen N, Neher RA, Mitkovski M, et al. Revisiting adult neurogenesis and the role of erythropoietin for neuronal and oligodendroglial differentiation in the hippocampus. Mol Psychiatry. 2016;21:1752–67.

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Dame C, Kirschner KM, Bartz KV, Wallach T, Hussels CS, Scholz H. Wilms tumor suppressor, Wt1, is a transcriptional activator of the erythropoietin gene. Blood. 2006;107:4282–90.

    CAS  PubMed  Google Scholar 

  41. Wang Y, Xiao M, Chen X, Chen L, Xu Y, Lv L, et al. WT1 recruits TET2 to regulate its target gene expression and suppress leukemia cell proliferation. Mol Cell. 2015;57:662–73.

    PubMed  PubMed Central  Google Scholar 

  42. Chen F, Bertelsen AB, Holm IE, Nyengaard JR, Rosenberg R, Dorph-Petersen KA. Hippocampal volume and cell number in depression, schizophrenia, and suicide subjects. Brain Res. 2019;1727:146546.

    PubMed  Google Scholar 

  43. Zuckerman H, Pan Z, Park C, Brietzke E, Musial N, Shariq AS, et al. Recognition and treatment of cognitive dysfunction in major depressive disorder. Front Psychiatry. 2018;9:655.

    PubMed  PubMed Central  Google Scholar 

  44. McIntyre RS, Xiao HX, Syeda K, Vinberg M, Carvalho AF, Mansur RB, et al. The prevalence, measurement, and treatment of the cognitive dimension/domain in major depressive disorder. CNS Drugs. 2015;29:577–89.

    CAS  PubMed  Google Scholar 

  45. Brines ML, Ghezzi P, Keenan S, Agnello D, de Lanerolle NC, Cerami C, et al. Erythropoietin crosses the blood-brain barrier to protect against experimental brain injury. Proc Natl Acad Sci USA. 2000;97:10526–31.

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Li XB, Zheng W, Ning YP, Cai DB, Yang XH, Ungvari GS, et al. Erythropoietin for cognitive deficits associated with schizophrenia, bipolar disorder, and major depression: a systematic review. Pharmacopsychiatry. 2018;51:100–4.

    PubMed  Google Scholar 

  47. Ma C, Cheng F, Wang X, Zhai C, Yue W, Lian Y, et al. Erythropoietin pathway: a potential target for the treatment of depression. Int J Mol Sci. 2016;17:677.

    PubMed Central  Google Scholar 

  48. Osborn M, Rustom N, Clarke M, Litteljohn D, Rudyk C, Anisman H, et al. Antidepressant-like effects of erythropoietin: a focus on behavioural and hippocampal processes. PLoS ONE. 2013;8:e72813.

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank all members in our lab for their valuable suggestions. We also thank Shiwen Li, Hua Qin, Xili Zhu, and Xuepei Lei for the help in confocal imaging and behavioral analysis. This work was supported by grants from the National Key R&D Program of China (2019YFA0110300), the CAS Strategic Priority Research Program (XDA16020602), the National Science Foundation of China (81825006, 31730033, and 31621004), Key deployment projects of the Chinese Academy of Sciences (ZDRW-ZS-2017-5), and K.C. Wong Education Foundation.

Author information

Authors and Affiliations

Authors

Contributions

FJ performed the experiments, analyzed the results, and wrote the manuscript. WW and CF provided the help in the experiment performance. FG provided the Wt1fl/fl mice and helped in Wt1 antibody test. JJ supervised the project and provided the funding support.

Corresponding authors

Correspondence to Fen Ji or Jianwei Jiao.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ji, F., Wang, W., Feng, C. et al. Brain-specific Wt1 deletion leads to depressive-like behaviors in mice via the recruitment of Tet2 to modulate Epo expression. Mol Psychiatry 26, 4221–4233 (2021). https://doi.org/10.1038/s41380-020-0759-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41380-020-0759-8

This article is cited by

Search

Quick links