Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Expert Review
  • Published:

Cancer and Alzheimer’s disease inverse relationship: an age-associated diverging derailment of shared pathways

Abstract

Several epidemiological studies show an inverse association between cancer and Alzheimer’s disease (AD). It is debated whether this association is the consequence of biological mechanisms shared by both these conditions or may be related to the pharmacological treatments carried out on the patients. The latter hypothesis, however, is not sustained by the available evidence. Hence, the focus of this review is to analyze common biological mechanisms for both cancer and AD and to build up a biological theory useful to explain the inverse correlation between AD and cancer. The review proposes a hypothesis, according to which several molecular players, prominently PIN1 and p53, have been investigated and considered involved in complex molecular interactions putatively associated with the inverse correlation. On the other hand, p53 involvement in both diseases seems to be a consequence of the aberrant activation of other proteins. Instead, PIN1 may be identified as a novel key regulator at the crossroad between cancer and AD. PIN1 is a peptidyl-prolyl cis-trans isomerase that catalyzes the cis-trans isomerization, thus regulating the conformation of different protein substrates after phosphorylation and modulating protein function. In particular, trans-conformations of Amyloid Precursor Protein (APP) and tau are functional and “healthy”, while cis-conformations, triggered after phosphorylation, are pathogenic. As an example, PIN1 accelerates APP cis-to-trans isomerization thus favoring the non-amyloidogenic pathway, while, in the absence of PIN1, APP is processed through the amyloidogenic pathway, thus predisposing to neurodegeneration. Furthermore, a link between PIN1 and tau regulation has been found, since when PIN1 function is inhibited, tau is hyperphosphorylated. Data from brain specimens of subjects affected by mild cognitive impairment and AD have revealed a very low PIN1 expression. Moreover, polymorphisms in PIN1 promoter correlated with an increased PIN1 expression are associated with a delay of sporadic AD age of onset, while a polymorphism related to a reduced PIN1 expression is associated with a decreased risk of multiple cancers. In the case of dementias, in particular of Alzheimer’s disease, new biological markers and targets based on the discussed players can be developed based on a theoretical approach relying on different grounds compared to the past. An unbiased expansion of the rationale and of the targets may help to achieve in the field of neurodegenerative dementias similar advances to those attained in the case of cancer treatment.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Emerging role of PIN1 as culprit governing the inverse relationship between cancer and Alzheimer’s disease (iCAP – inverse Cancer-Alzheimer correlation through PIN1- hypothesis).
Fig. 2: Hypothesis on the age-related diverging derailment of pathways at the crossroads between cancer and neurodegeneration.

Similar content being viewed by others

References

  1. Yamada M, Sasaki H, Mimori Y, Kasagi F, Sudoh S, Ikeda J, et al. Prevalence and risks of dementia in the Japanese population: RERF’s adult health study Hiroshima subjects. Radiation effects research foundation. J Am Geriatr Soc. 1999;47:189–95.

    CAS  PubMed  Google Scholar 

  2. Roe CM, Behrens MI, Xiong C, Miller JP, Morris JC. Alzheimer disease and cancer. Neurology. 2005;64:895–8.

    CAS  PubMed  Google Scholar 

  3. Roe CM, Fitzpatrick AL, Xiong C, Sieh W, Kuller L, Miller JP, et al. Cancer linked to Alzheimer disease but not vascular dementia. Neurology. 2010;74:106–12.

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Driver JA, Beiser A, Au R, Kreger BE, Splansky GL, Kurth T, et al. Inverse association between cancer and Alzheimer’s disease: results from the Framingham Heart Study. BMJ. 2012;344:e1442.

    PubMed  PubMed Central  Google Scholar 

  5. Realmuto S, Cinturino A, Arnao V, Mazzola MA, Cupidi C, Aridon P, et al. Tumor diagnosis preceding Alzheimer’s disease onset: is there a link between cancer and Alzheimer’s disease? J Alzheimers Dis. 2012;31:177–82.

    CAS  PubMed  Google Scholar 

  6. Musicco M, Adorni F, Di Santo S, Prinelli F, Pettenati C, Caltagirone C, et al. Inverse occurrence of cancer and Alzheimer disease: a population-based incidence study. Neurology. 2013;81:322–8.

    PubMed  Google Scholar 

  7. Vanacore N, Spila-Alegiani S, Raschetti R, Meco G. Mortality cancer risk in parkinsonian patients: a population-based study. Neurology. 1999;52:395–8.

    CAS  PubMed  Google Scholar 

  8. Olsen JH, Friis S, Frederiksen K, McLaughlin JK, Mellemkjaer L, Møller H. Atypical cancer pattern in patients with Parkinson’s disease. Br J Cancer. 2005;92:201–5.

    CAS  PubMed  Google Scholar 

  9. Bajaj A, Driver JA, Schernhammer ES. Parkinson’s disease and cancer risk: a systematic review and meta-analysis. Cancer Causes Control. 2010;21:697–707.

    PubMed  Google Scholar 

  10. Catalá-López F, Suárez-Pinilla M, Suárez-Pinilla P, Valderas JM, Gómez-Beneyto M, Martinez S, et al. Inverse and direct cancer comorbidity in people with central nervous system disorders: a meta-analysis of cancer incidence in 577,013 participants of 50 observational studies. Psychother Psychosom. 2014;83:89–105.

    PubMed  Google Scholar 

  11. Nudelman KNH, Risacher SL, West JD, McDonald BC, Gao S, Saykin AJ. Association of cancer history with Alzheimer’s disease onset and structural brain changes. Front Physiol. 2014;5:423.

    PubMed  PubMed Central  Google Scholar 

  12. Du XL, Cai Y, Symanski E. Association between chemotherapy and cognitive impairments in a large cohort of patients with colorectal cancer. Int J Oncol. 2013;42:2123–33.

    PubMed  Google Scholar 

  13. Ou SM, Lee YJ, Hu YW, Liu CJ, Chen TJ, Fuh JL, et al. Does Alzheimer’s disease protect against cancers? A nationwide population-based study. Neuroepidemiology. 2013;40:42–9.

    PubMed  Google Scholar 

  14. White RS, Lipton RB, Hall CB, Steinerman JR. Nonmelanoma skin cancer is associated with reduced Alzheimer disease risk. Neurology. 2013;80:1966–72.

    PubMed  PubMed Central  Google Scholar 

  15. Benito-León J, Romero JP, Louis ED, Bermejo-Pareja F. Faster cognitive decline in elders without dementia and decreased risk of cance rmortality: NEDICES study. Neurology. 2014;82:1441–8.

    PubMed  PubMed Central  Google Scholar 

  16. Roe CM, Behrens MI. AD and cancer: epidemiology makes for strange bedfellows. Neurology. 2013;81:310–1.

    PubMed  Google Scholar 

  17. Jemal A, Siegel R, Ward E, Murray T, Xu J, Thun MJ. Cancer statistics, 2007. CA Cancer J Clin. 2007;57:43–66.

    PubMed  Google Scholar 

  18. Powell IJ. Epidemiology and pathophysiology of prostate cancer in African-American men. J Urol. 2007;177:444–9.

    PubMed  Google Scholar 

  19. Sánchez-Valle J, Tejero H, Ibáñez K, Portero JL, Krallinger M, Al-Shahrour F, et al. A molecular hypothesis to explain direct and inverse co-morbidities between Alzheimer’s Disease, Glioblastoma and Lung cancer. Sci Rep. 2017;7:4474.

    PubMed  PubMed Central  Google Scholar 

  20. Lehrer S. Glioblastoma and dementia may share a common cause. Med Hypotheses. 2010;75:67–8.

    PubMed  Google Scholar 

  21. Shi HB, Tang B, Liu YW, Wang XF, Chen GJ. Alzheimer disease and cancer risk: a meta-analysis. J Cancer Res Clin Oncol. 2015;141:485–94.

    PubMed  Google Scholar 

  22. van der Willik KD, Ruiter R, Wolters FJ, Ikram MK, Stricker BH, Hauptmann M, et al. Mild cognitive impairment and dementia show contrasting associations with risk of cancer. Neuroepidemiology. 2018;50:207–15.

    PubMed  PubMed Central  Google Scholar 

  23. Marcos G, Santabárbara J, Lopez-Anton R, De-la-Cámara C, Gracia-García P, Lobo E, et al. Conversion to dementia in mild cognitive impairment diagnosed with DSM-5 criteria and with Petersen’s criteria. Acta Psychiatr Scand. 2016;133:378–85.

    CAS  PubMed  Google Scholar 

  24. Salloway S, Ferris S, Kluger A, Goldman R, Griesing T, Kumar D, et al. Efficacy of donepezil in mild cognitive impairment - a randomized placebo-controlled trial. Neurology. 2004;63:651–7.

    CAS  PubMed  Google Scholar 

  25. Feldman HH, Ferris S, Winblad B, Sfikas N, Mancione L, He Y, et al. Effect of rivastigmine on delay to diagnosis of Alzheimer’s disease from mild cognitive impairment: the index study. Lancet Neurol. 2007;6:501–12.

    CAS  PubMed  Google Scholar 

  26. Winblad B, Gauthier S, Scinto L, Feldman H, Wilcock GK, Truyen L, et al. Safety and efficacy of galantamine in subjects with mild cognitive impairment. Neurology. 2008;70:2024–35.

    CAS  PubMed  Google Scholar 

  27. Ferris S, Schneider L, Farmer M, Kay G, Crook T. A double-blind, placebo-controlled trial of memantine in age-associated memory impairment (memantine in AAMI). Int J Geriatr psychiatry. 2007;22:448–55.

    PubMed  Google Scholar 

  28. Serrano M, Blasco MA. Cancer and ageing: convergent and divergent mechanisms. Nat Rev Mol Cell Biol. 2007;8:715–22.

    CAS  PubMed  Google Scholar 

  29. Yarchoan M, James BD, Shah RC, Arvanitakis Z, Wilson RS, Schneider J, et al. Association of cancer history with Alzheimer’s disease dementia and neuropathology. J Alzheimers Dis. 2017;56:699–706.

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Ott A, Breteler MMB, van Harskamp F, Stijnen T, Hofman A. The incidence and risk of dementia. The Rotterdam study. Am J Epidemiol. 1998;147:574–80.

    CAS  PubMed  Google Scholar 

  31. Lanctôt KL, Herrmann N, LouLou MM. Correlates of response to acetylcholinesterase inhibitor therapy in Alzheimer’s disease. J Psychiatry Neurosci. 2003;28:13–26.

    PubMed  PubMed Central  Google Scholar 

  32. Raschetti R, Maggini M, Sorrentino GC, Martini N, Caffari B, Vanacore N. A cohort study of effectiveness of acetylcholinesterase inhibitors in Alzheimer’s disease. Eur J Clin Pharm. 2005;61:361–8.

    CAS  Google Scholar 

  33. Sinforiani E, Zucchella C, Pasotti C, Bartolo M, Nappi G. Report of ten years’ activity in an Alzheimer’s disease assessment unit. Aging Clin Exp Res. 2009;21:365–8.

    PubMed  Google Scholar 

  34. Drews U. Cholinesterase in embryonic development. Prog Histochem Cytochem. 1975;7:1–52.

    CAS  PubMed  Google Scholar 

  35. Razon N, Soreq H, Roth E, Bartal A, Silman I. Characterization of activities and forms of cholinesterases in human primary brain tumors. Exp Neurol. 1984;84:681–95.

    CAS  PubMed  Google Scholar 

  36. Zakut H, Even L, Birkenfeld S, Malinger G, Zisling R, Soreq H. Modified properties of serum cholinesterases in primary carcinomas. Cancer. 1988;61:727–37.

    CAS  PubMed  Google Scholar 

  37. Lapidot-Lifson Y, Prody CA, Ginzberg D, Meytes D, Zakut H, Soreq H. Coamplification of human acetylcholinesterase and butyrylcholinesterase genes in blood cells: correlation with various leukemias and abnormal megakaryocytopoiesis. Proc Natl Acad Sci USA. 1989;86:4715–9.

    CAS  PubMed  Google Scholar 

  38. Gnatt A, Prody CA, Zamir R, Lieman-Hurwitz J, Zakut H, Soreq H. Expression of alternatively terminated unusual human butyrylcholinesterase messenger RNA transcripts, mapping to chromosome 3q26-ter, in nervous system tumors. Cancer Res. 1990;50:1983–7.

    CAS  PubMed  Google Scholar 

  39. Zakut H, Ehrlich G, Ayalon A, Prody CA, Malinger G, Seidman S, et al. Acetylcholinesterase and butyrylcholinesterase genes coamplify in primary ovarian carcinomas. J Clin Invest. 1990;86:900–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Ben Aziz-Aloya R, Sternfeld M, Soreq H. Promoter elements and alternative splicing in the human ACHE gene. Prog Brain Res. 1993;98:147–53.

    PubMed  Google Scholar 

  41. Soreq H, Lapidot-Lifson Y, Zakut H. A role for cholinesterases in tumorigenesis? Cancer Cells. 1991;3:511–6.

    CAS  PubMed  Google Scholar 

  42. Blair A, Zhan SH, Cantor KP, Stewart PA. Estimating exposure to pesticides in epidemiologic studies of cancer. ACS Sym Ser. 1989;382:38–46.

    CAS  Google Scholar 

  43. Jodeiri Farshbaf M, Ghaedi K. Does any drug to treat cancer target mTOR and iron hemostasis in neurodegenerative disorders? Biometals. 2017;30:1–16.

    CAS  PubMed  Google Scholar 

  44. Frain L, Swanson D, Cho K, Gagnon D, Lu KP, Betensky RA, et al. Association of cancer and Alzheimer’s disease risk in a national cohort of veterans. Alzheimers Dement. 2017;13:1364–70.

    PubMed  PubMed Central  Google Scholar 

  45. Toyonaga T, Smith LM, Finnema SJ, Gallezot JD, Naganawa M, Bini J, et al. In vivo synaptic density imaging with 11C-UCB-J detects treatment effects of saracatinib (AZD0530) in a mouse model of Alzheimer’s disease. J Nucl Med. 2019;60:1780–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Larson M, Sherman MA, Amar F, Nuvolone M, Schneider JA, Bennett DA, et al. The complex PrP(c)-Fyn couples human oligomeric Aβ with pathological tau changes in Alzheimer’s disease. J Neurosci. 2012;32:16857–71a.

    CAS  PubMed  PubMed Central  Google Scholar 

  47. van Dyck CH, Nygaard HB, Chen K, Donohue MC, Raman R, Rissman RA, et al. Effect of AZD0530 on cerebral metabolic decline in Alzheimer disease: a randomized clinical trial. JAMA Neurol. 2019;76:1219–29.

    PubMed Central  Google Scholar 

  48. Altekruse SF, Kosary CL, Krapcho M, Neyman N, Aminou R, Waldron W, et al. SEER Cancer Statistics Review, 1975–2007. Bethesda, MD: National Cancer Institute; 2010.

    Google Scholar 

  49. Nudelman KNH, McDonald BC, Lahiri DK, Saykin AJ. Biological hallmarks of cancer in Alzheimer’s disease. Mol Neurobiol. 2019;56:1–15.

    Google Scholar 

  50. Koppenol WH, Bounds PL, Dang CV. Otto Warburg’s contributions to current concepts of cancer metabolism. Nat Rev Cancer. 2011;11:325–37.

    CAS  PubMed  Google Scholar 

  51. Castellani RJ, Nunomura A, Lee HG, Perry G, Smith MA. Phosphorylated tau: toxic, protective, or none of the above. J Alzheimers Dis. 2008;14:377–83.

    PubMed  PubMed Central  Google Scholar 

  52. Demetrius LA, Simon DK. An inverse-Warburg effect and the origin of Alzheimer’s disease. Biogerontology. 2012;13:583–94.

    CAS  PubMed  Google Scholar 

  53. Monacelli F, Cea M, Borghi R, Odetti P, Nencioni A. Do cancer drugs counteract neurodegeneration? Repurposing for Alzheimer’s disease. J Alzheimers Dis. 2017;55:1295–306.

    PubMed  Google Scholar 

  54. Li JM, Liu C, Hu X, Cai Y, Ma C, Luo XG, et al. Inverse correlation between Alzheimer’s disease and cancer: implication for a strong impact of regenerative propensity on neurodegeneration? BMC Neurol. 2014;14:211.

    PubMed  PubMed Central  Google Scholar 

  55. Palsson-McDermott EM, O’Neill LA. The Warburg effect then and now: from cancer to inflammatory diseases. Bioessays. 2013;35:965–73.

    CAS  PubMed  Google Scholar 

  56. Moreno-Sánchez R, Rodríguez-Enríquez S, Marín-Hernández A, Saavedra E. Energy metabolism in tumor cells. FEBS J. 2007;274:1393–418.

    PubMed  Google Scholar 

  57. Danhier P, Bański P, Payen VL, Grasso D, Ippolito L, Sonveaux P, et al. Cancer metabolism in space and time: Beyond the Warburg effect. Biochim Biophys Acta Bioenerg. 2017;1858:556–72.

    CAS  PubMed  Google Scholar 

  58. Manczak M, Park BS, Jung Y, Reddy PH. Differential expression of oxidative phosphorylation genes in patients with Alzheimer’s disease: implications for early mitochondrial dysfunction and oxidative damage. Neuromolecular Med. 2004;5:147–62.

    CAS  PubMed  Google Scholar 

  59. Zhu X, Lee HG, Perry G, Smith MA. Alzheimer disease, the two-hit hypothesis: an update. Biochim Biophys Acta. 2007;1772:494–502.

    CAS  PubMed  Google Scholar 

  60. Folch J, Junyent F, Verdaguer E, Auladell C, Pizarro JG, Beas-Zarate C, et al. Role of cell cycle re-entry in neurons: a common apoptotic mechanism of neuronal cell death. Neurotox Res. 2012;22:195–207.

    PubMed  Google Scholar 

  61. Yang Y, Geldmacher DS, Herrup K. DNA replication precedes neuronal cell death in Alzheimer’s disease. J Neurosci. 2001;21:2661–68.

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Demetrius LA, Simon DK. The inverse association of cancer and Alzheimer’s: a bioenergetic mechanism. J R Soc Interface. 2013;10:20130006.

    PubMed  PubMed Central  Google Scholar 

  63. Arendt T, Holzer M, Gärtner U, Brückner MK. Aberrancies in signal transduction and cell cycle related events in Alzheimer’s disease. J Neural Transm Suppl. 1998;54:147–58.

    CAS  PubMed  Google Scholar 

  64. Vincent I, Rosado M, Davies P. Mitotic mechanisms in Alzheimer’s disease? J Cell Biol. 1996;132:413–25.

    CAS  PubMed  Google Scholar 

  65. Vincent I, Jicha G, Rosado M, Dickson DW. Aberrant expression of mitotic cdc2/cyclin B1 kinase in degenerating neurons of Alzheimer’s disease brain. J Neurosci. 1997;17:3588–98.

    CAS  PubMed  PubMed Central  Google Scholar 

  66. McShea A, Harris PL, Webster KR, Wahl AF, Smith MA. Abnormal expression of the cell cycle regulators P16 and CDK4 in Alzheimer’s disease. Am J Pathol. 1997;150:1933–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  67. McShea A, Wahl AF, Smith MA. Re-entry into the cell cycle: a mechanism for neurodegeneration in Alzheimer disease. Med Hypotheses. 1999;52:525–7.

    CAS  PubMed  Google Scholar 

  68. Nagy Z, Esiri MM, Smith AD. Expression of cell division markers in the hippocampus in Alzheimer’s disease and other neurodegenerative conditions. Acta Neuropathol. 1997;93:294–300.

    CAS  PubMed  Google Scholar 

  69. Busser J, Geldmacher DS, Herrup K. Ectopic cell cycle proteins predict the sites of neuronal cell death in Alzheimer’s disease brain. J Neurosci. 1998;18:2801–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Smith MZ, Nagy Z, Esiri MM. Cell cycle-related protein expression in vascular dementia and Alzheimer’s disease. Neurosci Lett. 1999;271:45–8.

    CAS  PubMed  Google Scholar 

  71. Masters CL, Multhaup G, Simms G, Pottgiesser J, Martins RN, Beyreuther K. Neuronal origin of a cerebral amyloid: neurofibrillary tangles of Alzheimer’s disease contain the same protein as the amyloid of plaque cores and blood vessels. EMBO J. 1985;4:2757–63.

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Copani A, Condorelli F, Caruso A, Vancheri C, Sala A, Giuffrida Stella AM, et al. Mitotic signaling by beta-amyloid causes neuronal death. FASEB J. 1999;13:2225–34.

    CAS  PubMed  Google Scholar 

  73. Ibáñez K, Boullosa C, Tabares-Seisdedos R, Baudot A, Valencia A. Molecular evidence for the inverse comorbidity between central nervous system disorders and cancers detected by transcriptomic meta-analyses. PLoS Genet. 2014;10:e1004173.

    PubMed  PubMed Central  Google Scholar 

  74. Yaffe MB, Schutkowski M, Shen M, Zhou XZ, Stukenberg PT, Rahfeld JU, et al. Sequence-specific and phosphorylation-dependent proline isomerization: a potential mitotic regulatory mechanism. Science. 1997;278:1957–60.

    CAS  PubMed  Google Scholar 

  75. Van Heemst D, Mooijaart SP, Beekman M, Schreuder J, de Craen AJ, Brandt BW, et al. Variation in the human TP53 gene affects old age survival and cancer mortality. Exp Gerontol. 2005;40:11–15.

    PubMed  Google Scholar 

  76. Inestrosa NC, Toledo EM. The role of Wnt signaling in neuronal dysfunction in Alzheimer’s disease. Mol Neurodegener. 2008;3:9.

    PubMed  PubMed Central  Google Scholar 

  77. Halliday M, Mallucci GR. Targeting the unfolded protein response in neurodegeneration: a new approach to therapy. Neuropharmacology. 2014;76:169–74.

    CAS  PubMed  Google Scholar 

  78. Walter P, Ron D. The unfolded protein response: from stress pathway to homeostatic regulation. Science. 2011;334:1081–6.

    CAS  PubMed  Google Scholar 

  79. Wang S, Kaufman RJ. The impact of the unfolded protein response on human disease. J Cell Biol. 2012;197:857–67.

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Hipp MS, Park SH, Hartl FU. Proteostasis impairment in protein-misfolding and -aggregation diseases. Trends Cell Biol. 2014;24:506–14.

    CAS  PubMed  Google Scholar 

  81. Tabas I, Ron D. Integrating the mechanisms of apoptosis induced by endoplasmic reticulum stress. Nat Cell Biol. 2011;13:184–90.

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Sano R, Reed JC. ER stress-induced cell death mechanisms. Biochim Biophys Acta. 2013;1833:3460–70.

    CAS  PubMed  Google Scholar 

  83. Vandewynckel YP, Laukens D, Geerts A, Bogaerts E, Paridaens A, Verhelst X, et al. The paradox of the unfolded protein response in cancer. Anticancer Res. 2013;33:4683–94.

    CAS  PubMed  Google Scholar 

  84. Kim H, Bhattacharya A, Qi L. Endoplasmic reticulum quality control in cancer: Friend or foe. Semin Cancer Biol. 2015;33:25–33.

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Fernandez PM, Tabbara SO, Jacobs LK, Manning FC, Tsangaris TN, Schwartz AM, et al. Overexpression of the glucose-regulated stress gene GRP78 in malignant but not benign human breast lesions. Breast Cancer Res Treat. 2000;59:15–26.

    CAS  PubMed  Google Scholar 

  86. Shuda M, Kondoh N, Imazeki N, Tanaka K, Okada T, Mori K, et al. Activation of the ATF6, XBP1 and grp78 genes in human hepatocellular carcinoma: a possible involvement of the ER stress pathway in hepatocarcinogenesis. J Hepatol. 2003;38:605–14.

    CAS  PubMed  Google Scholar 

  87. Levine AJ. p53, the cellular gatekeeper for growth and division. Cell. 1997;88:323–31.

    CAS  PubMed  Google Scholar 

  88. Méplan C, Richard MJ, Hainaut P. Redox signaling and transition metals in the control of the p53 pathway. Biochem Pharmacol. 2000;59:25–33.

    PubMed  Google Scholar 

  89. Al Rashid ST, Dellaire G, Cuddihy A, Jalali F, Vaid M, Coackley C, et al. Evidence for the direct binding of phosphorylated p53 to sites ofDNA breaks in vivo. Cancer Res. 2005;65:10810–21.

    CAS  PubMed  Google Scholar 

  90. Guillouf C, Graña X, Selvakumaran M, De Luca A, Giordano A, Hoffman B, et al. Dissection of the genetic programs of p53-mediated G1growth arrest and apoptosis: blocking p53-induced apoptosis unmasks G1 arrest. Blood. 1995;85:2691–98.

    CAS  PubMed  Google Scholar 

  91. Shawi M, Autexier C. Telomerase, senescence and ageing. Mech Ageing Dev. 2008;129:3–10.

    CAS  PubMed  Google Scholar 

  92. Sigal A, Rotter V. Oncogenic mutations of the p53 cancer suppressor: the demons of the guardian of the genome. Cancer Res. 2000;60:6788–93.

    CAS  PubMed  Google Scholar 

  93. Cenini G, Sultana R, Memo M, Butterfield DA. Elevated levels of pro-apoptotic p53 and its oxidative modification by the lipid peroxidation product, HNE, in brain from subjects with amnestic mild cognitive impairment and Alzheimer’s disease. J Cell Mol Med. 2008;12:987–94.

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Hooper C, Meimaridou E, Tavassoli M, Melino G, Lovestone S, Killick R. p53 is upregulated in Alzheimer’s disease and induces tau phosphorylation in HEK293a cells. Neurosci Lett. 2007;418:34–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  95. Lanni C, Racchi M, Memo M, Govoni S, Uberti D. p53 at the crossroads between cancer and neurodegeneration. Free Radic Biol Med. 2012;52:1727–33.

    CAS  PubMed  Google Scholar 

  96. Campisi J. Senescent cells, tumor suppression, and organismal aging: good citizens, bad neighbors. Cell. 2005;120:513–22.

    CAS  PubMed  Google Scholar 

  97. Tassabehji NM, VanLandingham JW, Levenson CW. Copper alters the conformation and transcriptional activity of the tumor suppressor protein p53 inhuman Hep G2 cells. Exp Biol Med (Maywood). 2005;230:699–708.

    CAS  Google Scholar 

  98. Lanni C, Racchi M, Stanga S, Mazzini G, Ranzenigo A, Polotti R, et al. Unfolded blood p53 as predictive signature from mild cognitive impairment to Alzheimer’s disease. J Alzheimers Dis. 2010;20:97–104.

    CAS  PubMed  Google Scholar 

  99. Strano S, Dell’Orso S, Di Agostino S, Fontemaggi G, Sacchi A, Blandino G. Mutant p53: an oncogenic transcription factor. Oncogene. 2007;26:2212–19.

    CAS  PubMed  Google Scholar 

  100. Scian MJ, Stagliano KE, Ellis MA, Hassan S, Bowman M, Miles M, et al. Modulation of gene expression by cancer-derived p53 mutants. Cancer Res. 2004;64:7447–54.

    CAS  PubMed  Google Scholar 

  101. O’Farrell TJ, Ghosh P, Dobashi N, Sasaki CY, Longo DL. Comparison of the effect of mutant and wild-type p53 on global gene expression. Cancer Res. 2004;64:8199–207.

    PubMed  Google Scholar 

  102. Weisz L, Zalcenstein A, Stambolsky P, Cohen Y, Goldfinger N, Oren M, et al. Transactivation of EGR1 gene contributes to mutant p53 gain of function. Cancer Res. 2004;64:8318–27.

    CAS  PubMed  Google Scholar 

  103. Salvioli S, Capri M, Bucci L, Lanni C, Racchi M, Uberti D, et al. Why do centenarians escape or postpone cancer? The role of IGF-1, inflammation and p53. Cancer Immunol Immunother. 2009;58:1909–17.

    CAS  PubMed  Google Scholar 

  104. Chatoo W, Abdouh M, Bernier G. p53 pro-oxidant activity in the central nervous system: implication in aging and neurodegenerative diseases. Antioxid Redox Signal. 2011;15:1729–37.

    CAS  PubMed  Google Scholar 

  105. Hafsi H, Hainaut P. Redox control and interplay between p53 isoforms: roles in the regulation of basal p53 levels, cell fate, and senescence. Antioxid Redox Signal. 2011;15:1655–67.

    CAS  PubMed  Google Scholar 

  106. Salminen A, Ojala J, Kaarniranta K. Apoptosis and aging: increased resistance to apoptosis enhances the aging process. Cell Mol Life Sci. 2011;68:1021–31.

    CAS  PubMed  Google Scholar 

  107. Lanni C, Racchi M, Uberti D, Mazzini G, Stanga S, Sinforiani E, et al. Pharmacogenetics and pharmacogenomics, trends in normal and pathological ageing studies: focus on p53. Curr Pharm Des. 2008;14:2665–71.

    CAS  PubMed  Google Scholar 

  108. Alves da Costa C, Checler F. Apoptosis in Parkinson’s disease: is p53 the missing link between genetic and sporadic Parkinsonism? Cell Signal. 2011;23:963–8.

    CAS  PubMed  Google Scholar 

  109. Tyner SD, Venkatachalam S, Choi J, Jones S, Ghebranious N, Igelmann H, et al. p53 mutant mice that display early ageing-associated phenotypes. Nature. 2002;415:45–53.

    CAS  PubMed  Google Scholar 

  110. Dumble M, Moore L, Chambers SM, Geiger H, Van Zant G, Goodell MA, et al. The impact of altered p53 dosage on hematopoietic stem cell dynamics during aging. Blood. 2007;109:1736–42.

    CAS  PubMed  PubMed Central  Google Scholar 

  111. Di Giovanni S, Knights CD, Rao M, Yakovlev A, Beers J, Catania J, et al. The tumor suppressor protein p53 is required for neurite outgrowth and axon regeneration. EMBO J. 2006;25:4084–96.

    PubMed  PubMed Central  Google Scholar 

  112. Tedeschi A, Di Giovanni S. The non-apoptotic role of p53 in neuronal biology: enlightening the dark side of the moon. EMBO Rep. 2009;10:576–83.

    CAS  PubMed  PubMed Central  Google Scholar 

  113. Tedeschi A, Nguyen T, Puttagunta R, Gaub P, Di Giovanni S. A p53-CBP/p300 transcription module is required for GAP-43 expression, axon out-growth, and regeneration. Cell Death Differ. 2009;16:543–54.

    CAS  PubMed  Google Scholar 

  114. Rodier F, Campisi J, Bhaumik D. Two faces of p53: aging and cancer suppression. Nucleic Acids Res. 2007;35:7475–84.

    CAS  PubMed  PubMed Central  Google Scholar 

  115. Reth M. Hydrogen peroxide as second messenger in lymphocyte activation. Nat Immunol. 2002;3:1129–34.

    CAS  PubMed  Google Scholar 

  116. Checler F, Alves, da Costa C. p53 in neurodegenerative diseases and brain cancers. Pharm Ther. 2014;142:99–113.

    CAS  Google Scholar 

  117. Sablina AA, Budanov AV, Ilyinskaya GV, Agapova LS, Kravchenko JE, Chumakov PM. The antioxidant function of the p53 tumor suppressor. Nat Med. 2005;11:1306–13.

    CAS  PubMed  PubMed Central  Google Scholar 

  118. Ong ALC. Ramasamy TS2. Role of Sirtuin1-p53 regulatory axis in aging, cancer and cellular reprogramming. Ageing Res Rev. 2018;43:64–80.

    CAS  PubMed  Google Scholar 

  119. Vaziri H, Dessain SK, Ng Eaton E, Imai SI, Frye RA, Pandita TK, et al. hSIR2(SIRT1) functions as an NAD-dependent p53 deacetylase. Cell. 2001;107:149–59.

    CAS  PubMed  Google Scholar 

  120. Grabowska W, Sikora E, Bielak-Zmijewska A. Sirtuins, a promising target in slowing down the ageing process. Biogerontology. 2017;18:447–76.

    CAS  PubMed  PubMed Central  Google Scholar 

  121. Liu D, Xu Y. p53, oxidative stress, and aging. Antioxid Redox Signal. 2011;15:1669–78.

    CAS  PubMed  PubMed Central  Google Scholar 

  122. Ota H, Akishita M, Eto M, Iijima K, Kaneki M, Ouchi Y. Sirt1 modulates premature senescence-like phenotype in human endothelial cells. J Mol Cell Cardiol. 2007;43:571–9.

    CAS  PubMed  Google Scholar 

  123. Yamakuchi M, Lowenstein CJ. MiR-34, SIRT1 and p53: the feedback loop. ABBV Cell Cycle. 2009;8:712–5.

    CAS  Google Scholar 

  124. Gasparini L, Racchi M, Binetti G, Trabucchi M, Solerte SB, Alkon D, et al. Peripheral markers in testing pathophysiological hypotheses and diagnosing Alzheimer’s disease. FASEB J. 1998;12:17–34.

    CAS  PubMed  Google Scholar 

  125. Racchi M, Govoni S. Rationalizing a pharmacological intervention on the amyloid precursor protein metabolism. Trends Pharm Sci. 1999;20:418–23.

    CAS  PubMed  Google Scholar 

  126. de la Monte SM, Sohn YK, Wands JR. Correlates of p53- and Fas (CD95)-mediated apoptosis in Alzheimer’s disease. J Neurol Sci. 1997;152:73–83.

    PubMed  Google Scholar 

  127. Buoso E, Lanni C, Schettini G, Govoni S, Racchi M. beta-Amyloid precursor protein metabolism: focus on the functions and degradation of its intracellular domain. Pharm Res. 2010;62:308–17.

    CAS  Google Scholar 

  128. Buoso E, Biundo F, Lanni C, Schettini G, Govoni S, Racchi M. AβPP intracellular C-terminal domain function is related to its degradation processes. J Alzheimers Dis. 2012;30:393–405.

    CAS  PubMed  Google Scholar 

  129. Lanni C, Necchi D, Pinto A, Buoso E, Buizza L, Memo M, et al. Zyxin is a novel target for β-amyloid peptide: characterization of its role in Alzheimer’s pathogenesis. J Neurochem. 2013;125:790–9.

    CAS  PubMed  Google Scholar 

  130. Grison A, Mantovani F, Comel A, Agostoni E, Gustincich S, Persichetti F, et al. Ser46 phosphorylation and prolyl-isomerase Pin1-mediated isomerization of p53 are key events in p53-dependent apoptosis induced by mutant huntingtin. Proc Natl Acad Sci USA. 2011;108:17979–84.

    CAS  PubMed  Google Scholar 

  131. Amor-Gutiérrez O, Costa-Rama E, Arce-Varas N, Martínez-Rodríguez C, Novelli A, Fernández-Sánchez MT, et al. Competitive electrochemical immunosensor for the detection of unfolded p53 protein in blood as biomarker for Alzheimer’s disease. Anal Chim Acta. 2020;1093:28–34.

    PubMed  Google Scholar 

  132. Tonello S, Stradolini F, Abate G, Uberti D, Serpelloni M, Carrara S, et al. Electrochemical detection of different p53 conformations by using nanostructured surfaces. Sci Rep. 2019;9:17347.

    PubMed  PubMed Central  Google Scholar 

  133. Zacchi P, Gostissa M, Uchida T, Salvagno C, Avolio F, Volinia S, et al. The prolyl isomerase Pin1 reveals a mechanism to control p53 functions after genotoxic insults. Nature. 2002;419:853–7.

    CAS  PubMed  Google Scholar 

  134. Zheng H, You H, Zhou XZ, Murray SA, Uchida T, Wulf G, et al. The prolyl isomerase Pin1 is a regulator of p53 in genotoxic response. Nature. 2002;419:849–53.

    CAS  PubMed  Google Scholar 

  135. Sorrentino G, Mioni M, Giorgi C, Ruggeri N, Pinton P, Moll U, et al. The prolyl-isomerase Pin1 activates the mitochondrial death program of p53. Cell Death Differ. 2013;20:198–208.

    CAS  PubMed  Google Scholar 

  136. Mantovani F, Tocco F, Girardini J, Smith P, Gasco M, Lu X, et al. The prolyl isomerase Pin1 orchestrates p53 acetylation and dissociation from the apoptosis inhibitor iASPP. Nat Struct Mol Biol. 2007;14:912–20.

    CAS  PubMed  Google Scholar 

  137. Erster S, Mihara M, Kim RH, Petrenko O, Moll UM. In vivo mitochondrial p53 translocation triggers a rapid first wave of cell death in response to DNA damage that can precede p53 target gene activation. Mol Cell Biol. 2004;24:6728–41.

    CAS  PubMed  PubMed Central  Google Scholar 

  138. Lu KP, Hanes SD, Hunter T. A human peptidyl–prolyl isomerase essential for regulation of mitosis. Nature. 1996;380:544–7.

    CAS  PubMed  Google Scholar 

  139. Yaffe MB, Schutkowski M, Shen M, Zhou XZ, Stukenberg PT, Rahfeld J, et al. Sequence-specific and phosphorylation-dependent proline isomerization: a potential mitotic regulatory mechanism. Science. 1997;278:1957–60.

    CAS  PubMed  Google Scholar 

  140. Lu PJ, Zhou XZ, Shen M, Lu KP. A function of WW domains as phosphoserine- or phosphothreonine-binding modules. Science. 1999;283:1325–8.

    CAS  PubMed  Google Scholar 

  141. Lu KP, Zhou XZ. The prolyl isomerase PIN1: a pivotal new twist in phosphorylation signaling and disease. Nat Rev Mol Cell Biol. 2007;8:904–16.

    CAS  PubMed  Google Scholar 

  142. Bao L, Sauter G, Sowadski J, Lu KP, Wang D. Prevalent overexpression of prolyl isomerase Pin1 in human cancers. Am J Pathol. 2004;164:1727–37.

    CAS  PubMed  PubMed Central  Google Scholar 

  143. Stifani S. The multiple roles of peptidyl prolyl isomerases in brain cancer. Biomolecules. 2018;8:E112. pii

    PubMed  Google Scholar 

  144. Lee TH, Chen CH, Suizu F, Huang P, Schiene-Fischer C, Daum S, et al. Death-associated protein kinase 1 phosphorylates Pin1 and inhibits its prolyl isomerase activity and cellular function. Mol Cell. 2011;42:147–59.

    PubMed  PubMed Central  Google Scholar 

  145. Rangasamy V, Mishra R, Sondarva G, Das S, Lee TH, Bakowska JC, et al. Mixed-lineage kinase 3 phosphorylates prolyl-isomerase Pin1 to regulate its nuclear translocation and cellular function. Proc Natl Acad Sci USA. 2012;109:8149–54.

    CAS  PubMed  Google Scholar 

  146. Chen CH, Chang CC, Lee TH, Luo ML, Huang P, Liao PH, et al. SENP1 desumoylates and regulates Pin1 protein activity and cellular function. Cancer Res. 2013;73:3951–62.

    CAS  PubMed  Google Scholar 

  147. MacLachlan TK, Somasundaram K, Sgagias M, Shifman Y, Muschel RJ, Cowan KH, et al. BRCA1 effects on the cell cycle and the DNA damage response are linked to altered gene expression. J Biol Chem. 2000;275:2777–85.

    CAS  PubMed  Google Scholar 

  148. Rustighi A, Tiberi L, Soldano A, Napoli M, Nuciforo P, Rosato A, et al. The prolyl-isomerase Pin1 is a Notch1 target that enhances Notch1 activation in cancer. Nat Cell Biol. 2009;11:133–42.

    CAS  PubMed  Google Scholar 

  149. Rustighi A, Zannini A, Tiberi L, Sommaggio R, Piazza S, Sorrentino G, et al. Prolyl-isomerase Pin1 controls normal and cancer stem cells of the breast. EMBO Mol Med. 2014;6:99–119.

    CAS  PubMed  Google Scholar 

  150. De Strooper B, Annaert W, Cupers P, Saftig P, Craessaerts K, Mumm JS, et al. A presenilin-1-dependent gamma-secretase-like protease mediates release of Notch intracellular domain. Nature. 1999;398:518–22.

    PubMed  Google Scholar 

  151. Bray SJ. Notch signalling: a simple pathway becomes complex. Nat Rev Mol Cell Biol. 2006;7:678–89.

    CAS  PubMed  Google Scholar 

  152. Ding Q, Huo L, Yang JY, Xia W, Wei Y, Liao Y, et al. Down-regulation of myeloid cell leukemia-1 through inhibiting Erk/Pin 1 pathway by sorafenib facilitates chemosensitization in breast cancer. Cancer Res. 2008;68:6109–17.

    CAS  PubMed  PubMed Central  Google Scholar 

  153. Ranganathan P, Weaver KL, Capobianco AJ. Notch signalling in solid tumours: a little bit of everything but not all the time. Nat Rev Cancer. 2011;11:338–51.

    CAS  PubMed  Google Scholar 

  154. Domingo-Domenech J, Vidal SJ, Rodriguez-Bravo V, Castillo-Martin M, Quinn SA, Rodriguez-Barrueco R, et al. Suppression of acquired docetaxel resistance in prostate cancer through depletion of notch- and hedgehog-dependent tumor-initiating cells. Cancer Cell. 2012;22:373–88.

    CAS  PubMed  PubMed Central  Google Scholar 

  155. Bhattacharya S, Das A, Mallya K, Ahmad I. Maintenance of retinal stem cells by Abcg2 is regulated by notch signaling. J Cell Sci. 2007;120:2652–62.

    CAS  PubMed  Google Scholar 

  156. Wulf G, Finn G, Suizu F, Lu KP. Phosphorylation-specific prolyl isomerization: is there an underlying theme? Nat Cell Biol. 2005;7:435–41.

    CAS  PubMed  Google Scholar 

  157. Cheng CW, Chow AK, Pang R, Fok EW, Kwong YL, Tse E. PIN1 inhibits apoptosis in hepatocellular carcinoma through modulation of the antiapoptotic function of survivin. Am J Pathol. 2013;182:765–75.

    CAS  PubMed  Google Scholar 

  158. Bornens M. Centrosome composition and microtubule anchoring mechanisms. Curr Opin Cell Biol. 2002;14:25–34.

    CAS  PubMed  Google Scholar 

  159. Doxsey S. Duplicating dangerously: linking centrosome duplication and aneuploidy. Mol Cell. 2001;10:439–40.

    Google Scholar 

  160. Wulf GM, Ryo A, Wulf GG, Lee SW, Niu T, Petkova V, et al. Pin1 is overexpressed in breast cancer and cooperates with Ras signaling in increasing the transcriptional activity of c-Jun towards cyclin D1. EMBO J. 2001;20:3459–72.

    CAS  PubMed  PubMed Central  Google Scholar 

  161. Liou YC, Ryo R, Huang HK, Lu PJ, Bronson R, Fujimori F, et al. Loss of Pin1 function in the mouse causes phenotypes resembling cyclin D1-null phenotypes. Proc Natl Acad Sci USA. 2002;99:133540.

    Google Scholar 

  162. Ryo A, Liou YC, Wulf G, Nakamura M, Lee SW, Lu KP. Pin1 is an E2F target gene essential for the Neu/Ras-induced transformation of mammary epithelial cells. Mol Cell Biol. 2002;22:5281–95.

    CAS  PubMed  PubMed Central  Google Scholar 

  163. Hamdane M, Dourlen P, Bretteville A, Sambo AV, Ferreira S, Ando K, et al. Pin1 allows for differential Tau dephosphorylation in neuronal cells. Mol Cell Neurosci. 2006;32:155–60.

    CAS  PubMed  Google Scholar 

  164. Liou YC, Sun A, Ryo A, Zhou XZ, Yu ZX, Huang HK. Role of the prolyl isomerase Pin1 in protecting against age-dependent neurodegeneration. Nature. 2003;424:556–61.

    CAS  PubMed  Google Scholar 

  165. Nakamura K, Kosugi I, Lee DY, Hafner A, Sinclair DA, Ryo A, et al. Prolyl isomerase Pin1 regulates neuronal differentiation via β-catenin. Mol Cell Biol. 2012;32:2966–78.

    CAS  PubMed  PubMed Central  Google Scholar 

  166. Chen CH, Li W, Sultana R, You MH, Kondo A, Shahpasand K, et al. Pin1 cysteine-113 oxidation inhibits its catalytic activity and cellular function in Alzheimer’s disease. Neurobiol Dis. 2015;76:13–23.

    CAS  PubMed  PubMed Central  Google Scholar 

  167. Kim BM, You MH, Chen CH, Lee S, Hong Y, Hong Y, et al. Death-associated protein kinase 1 has a critical role in aberrant tau protein regulation and function. Cell Death Dis. 2014;5:e1237.

    CAS  PubMed  PubMed Central  Google Scholar 

  168. Butterfield DA, Poon HF, St Clair D, Keller JN, Pierce WM, Klein JB, et al. Redox proteomics identification of oxidatively modified hippocampal proteins in mild cognitive impairment: insights into the development of Alzheimer’s disease. Neurobiol Dis. 2006;22:223–32.

    CAS  PubMed  Google Scholar 

  169. Brenkman AB, de Keizer PL, van den Broek NJ, van der Groep P, van Diest PJ, van der Horst A, et al. The peptidyl–isomerase Pin1 regulates p27kip1 expression through inhibition of Forkhead box O tumor suppressors. Cancer Res. 2008;68:7597–605.

    CAS  PubMed  Google Scholar 

  170. Pastorino L, Sun A, Lu PJ, Zhou XZ, Balastik M, Finn G, et al. The prolyl isomerase Pin1 regulates amyloid precursor protein processing and amyloid-beta production. Nature. 2006;440:528–34.

    CAS  PubMed  Google Scholar 

  171. Pastorino L, Ma SL, Balastik M, Huang P, Pandya D, Nicholson L, et al. Alzheimer’s disease-related loss of Pin1 function influences the intracellular localization and the processing of AbetaPP. J Alzheimers Dis. 2012;30:277–97.

    CAS  PubMed  Google Scholar 

  172. Lee TH, Tun-Kyi A, Shi R, Lim J, Soohoo C, Finn G, et al. Essential role of Pin1 in the regulation of TRF1 stability and telomere maintenance. Nat Cell Biol. 2009;11:97–105.

    CAS  PubMed  Google Scholar 

  173. Wulf G, Garg P, Liou YC, Iglehart D, Lu KP. Modeling breast cancer in vivo and ex vivo reveals an essential role of Pin1 in tumorigenesis. EMBO J. 2004;23:3397–407.

    CAS  PubMed  PubMed Central  Google Scholar 

  174. Lee HW, Blasco MA, Gottlieb GJ, Horner JW 2nd, Greider CW, DePinho RA. Essential role of mouse telomerase in highly proliferative organs. Nature. 1998;392:569–74.

    CAS  PubMed  Google Scholar 

  175. Wulf GM, Liou YC, Ryo A, Lee SW, Lu KP. Role of Pin1 in the regulation of p53 stability and p21 transactivation, and cell cycle checkpoints in response to DNA damage. J Biol Chem. 2002;277:47976–9.

    CAS  PubMed  Google Scholar 

  176. Li QF, Wu CT, Duan HF, Sun HY, Wang H, Lu ZZ, et al. Activation of sphingosine kinase mediates suppressive effect of interleukin-6 on human multiple myeloma cell apoptosis. Br J Haematol. 2007;138:632–9.

    CAS  PubMed  Google Scholar 

  177. Zita MM, Marchionni I, Bottos E, Righi M, Del Sal G, Cherubini E, et al. Postphosphorylation prolyl isomerisation of gephyrin represents a mechanism to modulate glycine receptors function. EMBO J. 2007;26:1761–71.

    PubMed  Google Scholar 

  178. Rowinsky EK. The development and clinical utility of the taxane class of antimicrotubule chemotherapy agents. Annu Rev Med. 1997;48:353–74.

    CAS  PubMed  Google Scholar 

  179. Li ZH, Xiong QY, Tu JH, Gong Y, Qiu W, Zhang HQ, et al. Tau proteins expressions in advanced breast cancer and its significance in taxane containing neoadjuvant chemotherapy. Med Oncol. 2013;30:591.

    PubMed  Google Scholar 

  180. Hung AY, Koo EH, Haass C, Selkoe DJ. Increased expression of beta-amyloid precursor protein during neuronal differentiation is not accompanied by secretory cleavage. Proc Natl Acad Sci USA. 1992;89:9439–43.

    CAS  PubMed  Google Scholar 

  181. Takagi K, Ito S, Miyazaki T, Miki Y, Shibahara Y, Ishida T, et al. Suzuki, Amyloid precursor protein in human breast cancer: an androgen-induced gene associated with cell proliferation. Cancer Sci. 2013;104:1532–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  182. Nakamura K, Greenwood A, Binder L, Bigio EH, Denial S, Nicholson L, et al. Proline isomer-specific antibodies reveal the early pathogenic tau conformation in Alzheimer’s disease. Cell. 2012;149:232–44.

    CAS  PubMed  PubMed Central  Google Scholar 

  183. Iqbal K, Liu F, Gong CX, Alonso Adel C, Grundke-Iqbal I. Mechanisms of tau induced neurodegeneration. Acta Neuropathol. 2009;118:53–69.

    CAS  PubMed  PubMed Central  Google Scholar 

  184. Ma SL, Pastorino L, Zhou XZ, Lu KP. Prolyl isomerase Pin1 promotes amyloid precursor protein (APP) turnover by inhibiting glycogen synthase kinase-3beta (GSK3beta) activity: novel mechanism for Pin1 to protect against Alzheimer disease. J Biol Chem. 2012;287:6969–73.

    CAS  PubMed  Google Scholar 

  185. Mandelkow EM, Drewes G, Biernat J, Gustke N, Van Lint J, Vandenheede JR, et al. Glycogen synthase kinase-3 and the Alzheimer-like state of microtubule-associated protein tau. FEBS Lett. 1992;314:315–21.

    CAS  PubMed  Google Scholar 

  186. Tao LJ, Chen YS, Yao L, Zou B, Tao LS, Kong J, et al. Promoter polymorphism (−842GNC) contributes to a decreased risk of cancer: Evidence from meta-analysis. Oncol Lett. 2014;8:1360–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  187. Liou YC, Zhou XZ, Lu KP. The prolyl isomerase Pin1 as a molecular switch to determine the fate of phosphoproteins. Trends Biochem Sci. 2011;36:501–14

  188. Sherzai AZ, Parasram M, Haider JM, Sherzai D. Alzheimer disease and cancer: a national inpatient sample analysis. Alzheimer Dis Assoc Disord. 2020; https://doi.org/10.1097/WAD.0000000000000369.

  189. Pavlidis N, Stanta G, Audisio RA. Cancer prevalence and mortality in centenarians: a systematic review. Crit Rev Oncol Hematol. 2012;83:145–52.

    PubMed  Google Scholar 

  190. Andersen SL, Terry DF, Wilcox MA, Babineau T, Malek K, Perls TT. Cancer in the oldest old. Mech Ageing Dev. 2005;126:263–7.

    PubMed  Google Scholar 

  191. Stanta G, Campagner L, Cavallieri F, Giarelli L. Cancer of the oldest old. What we have learned from autopsy studies. Clin Geriatr Med. 1997;13:55–68.

    CAS  PubMed  Google Scholar 

  192. Suen KC, Lau LL, Yermakov V. Cancer and old age. An autopsy study of 3535 patients over 65 years old. Cancer. 1974;33:1164–8.

    CAS  PubMed  Google Scholar 

  193. Ishii T, Maeda K, Nakamura K, Hosoda Y. Cancer in the aged: an autopsy study of 940 cancer patients. J Am Geriatr Soc. 1979;27:307–13.

    CAS  PubMed  Google Scholar 

  194. Imaida K, Hasegawa R, Kato T, Futakuchi M, Takahashi S, Ogawa K, et al. Clinicopathological analysis on cancers of autopsy cases in a geriatric hospital. Pathol Int. 1997;47:293–300.

    CAS  PubMed  Google Scholar 

  195. Miyaishi O, Ando F, Matsuzawa K, Kanawa R, Isobe KI. Cancer incidence in old age. Mech Ageing Dev. 2000;117:47–55.

    CAS  PubMed  Google Scholar 

  196. Sebastiani P, Solovieff N, Dewan AT, Walsh KM, Puca A, Hartley SW, et al. Genetic signatures of exceptional longevity in humans. PLoS One. 2012;7:e29848.

    CAS  PubMed  PubMed Central  Google Scholar 

  197. Beekman M, Nederstigt C, Suchiman HE, Kremer D, van der Breggen R, Lakenberg N, et al. Genome-wide association study (GWAS)-identified disease risk alleles do not compromise human longevity. Proc Natl Acad Sci USA. 2010;107:18046–49.

    CAS  PubMed  Google Scholar 

  198. Andersen SL, Sebastiani P, Dworkis DA, Feldman L, Perls TT. Health span approximates life span among many supercentenarians: compression of morbidity at the approximate limit of life span. J Gerontol A Biol Sci Med Sci. 2012;67:395–405.

    PubMed  Google Scholar 

  199. Ganz AB, Beker N, Hulsman M, Sikkes S, Scheltens P. Netherlands Brain Bank et al. Neuropathology and cognitive performance in self-reported cognitively healthy centenarians. Acta Neuropathol Commun. 2018;6:64

    PubMed  PubMed Central  Google Scholar 

  200. Neltner JH, Abner EL, Jicha GA, Schmitt FA, Patel E, Poon LW, et al. Brain pathologies in extreme old age. Neurobiol Aging. 2016;37:1–11.

    PubMed  Google Scholar 

  201. Qiu C, Fratiglioni L. Aging without dementia is achievable: current evidence from epidemiological research. J Alzheimers Dis. 2018;62:933–42.

    PubMed  PubMed Central  Google Scholar 

  202. Murabito JM, Yuan R, Lunetta KL. The search for longevity and healthy aging genes: insights from epidemiological studies and samples of long-lived individuals. J Gerontol A Biol Sci Med Sci. 2012;67:470–79.

    PubMed  Google Scholar 

  203. Atzmon G, Schechter C, Greiner W, Davidson D, Rennert G, Barzilai N. Clinical phenotype of families with longevity. J Am Geriatr Soc. 2004;52:274–77.

    PubMed  Google Scholar 

  204. Maloney B, Lahiri DK. Epigenetics of dementia: understanding the disease as a transformation rather than a state. Lancet Neurol. 2016;15:760–74.

    CAS  PubMed  Google Scholar 

  205. Bergman A, Atzmon G, Ye K, MacCarthy T, Barzilai N. Buffering mechanisms in aging: a systems approach toward uncovering the genetic component of aging. PLoS Comput Biol. 2007;3:e170.

    PubMed  PubMed Central  Google Scholar 

  206. Brooks-Wilson AR. Genetics of healthy aging and longevity. Hum Genet. 2013;132:1323–38.

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefano Govoni.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lanni, C., Masi, M., Racchi, M. et al. Cancer and Alzheimer’s disease inverse relationship: an age-associated diverging derailment of shared pathways. Mol Psychiatry 26, 280–295 (2021). https://doi.org/10.1038/s41380-020-0760-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41380-020-0760-2

This article is cited by

Search

Quick links