Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Pharmacological and behavioral divergence of ketamine enantiomers: implications for abuse liability

Abstract

Ketamine, a racemic mixture of (S)-ketamine and (R)-ketamine enantiomers, has been used as an anesthetic, analgesic and more recently, as an antidepressant. However, ketamine has known abuse liability (the tendency of a drug to be used in non-medical situations due to its psychoactive effects), which raises concerns for its therapeutic use. (S)-ketamine was recently approved by the United States’ FDA for treatment-resistant depression. Recent studies showed that (R)-ketamine has greater efficacy than (S)-ketamine in preclinical models of depression, but its clinical antidepressant efficacy has not been established. The behavioral effects of racemic ketamine have been studied extensively in preclinical models predictive of abuse liability in humans (self-administration and conditioned place preference [CPP]). In contrast, the behavioral effects of each enantiomer in these models are unknown. We show here that in the intravenous drug self-administration model, the gold standard procedure to assess potential abuse liability of drugs in humans, rats self-administered (S)-ketamine but not (R)-ketamine. Subanesthetic, antidepressant-like doses of (S)-ketamine, but not of (R)-ketamine, induced locomotor activity (in an opioid receptor-dependent manner), induced psychomotor sensitization, induced CPP in mice, and selectively increased metabolic activity and dopamine tone in medial prefrontal cortex (mPFC) of rats. Pharmacological screening across thousands of human proteins and at biological targets known to interact with ketamine yielded divergent binding and functional enantiomer profiles, including selective mu and kappa opioid receptor activation by (S)-ketamine in mPFC. Our results demonstrate divergence in the pharmacological, functional, and behavioral effects of ketamine enantiomers, and suggest that racemic ketamine’s abuse liability in humans is primarily due to the pharmacological effects of its (S)-enantiomer.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Purchase on Springer Link

Instant access to full article PDF

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Divergent pharmacodynamics of ketamine enantiomers.
Fig. 2: Rapid brain uptake, fast clearance, and no high-affinity target for ketamine enantiomers.
Fig. 3: Functional brain imaging reveals regional differences in the effects of ketamine enantiomers.
Fig. 4: Behavioral effects of ketamine enantiomers: locomotor activity, conditioned place preference, and drug self-administration.

Similar content being viewed by others

References

  1. Gao M, Rejaei D, Liu H. Ketamine use in current clinical practice. Acta Pharm Sin. 2016;37:865–72.

    Article  CAS  Google Scholar 

  2. Berman RM, Cappiello A, Anand A, Oren DA, Heninger GR, Charney DS, et al. Antidepressant effects of ketamine in depressed patients. Biol Psychiatry. 2000;47:351–4.

    Article  CAS  PubMed  Google Scholar 

  3. Diazgranados N, Ibrahim L, Brutsche NE, Newberg A, Kronstein P, Khalife S, et al. A randomized add-on trial of an N-methyl-D-aspartate antagonist in treatment-resistant bipolar depression. Arch Gen Psychiatry. 2010;67:793–802.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Zarate CA, Singh JB, Carlson PJ, Brutsche NE, Ameli R, Luckenbaugh DA, et al. A randomized trial of an N-methyl-D-aspartate antagonist in treatment-resistant major depression. Arch Gen Psychiatry. 2006;63:856–64.

    Article  CAS  PubMed  Google Scholar 

  5. Zarate CA, Brutsche NE, Ibrahim L, Franco-Chaves J, Diazgranados N, Cravchik AL, et al. Replication of ketamine’s antidepressant efficacy in bipolar depression: a randomized controlled add-on trial. Biol Psychiatry. 2012;71:939–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Fava M, Freeman MP, Flynn M, Judge H, Hoeppner BB, Cusin C, et al., Double-blind, placebo-controlled, dose-ranging trial of intravenous ketamine as adjunctive therapy in treatment-resistant depression (TRD). Mol Psychiatry. 2018;25:1592–1603.

  7. Singh JB, Fedgchin M, Daly EJ, Boer PD, Cooper K, Lim P, et al. A double-blind, randomized, placebo-controlled, dose-frequency study of intravenous ketamine in patients with treatment-resistant depression. Am J Psychiatry. 2016;173:816–26.

    Article  PubMed  Google Scholar 

  8. Murrough JW, Iosifescu DV, Chang LC, Al Jurdi RK, Green CE, Perez AM, et al. Antidepressant efficacy of ketamine in treatment-resistant major depression: a two-site randomized controlled trial. Am J Psychiatry. 2013;170:1134–42.

    Article  PubMed  PubMed Central  Google Scholar 

  9. aan het Rot M, Collins KA, Murrough JW, Perez AM, Reich DL, Charney DS, et al. Safety and efficacy of repeated-dose intravenous ketamine for treatment-resistant depression. Biol Psychiatry. 2010;67:139–45.

    Article  CAS  PubMed  Google Scholar 

  10. Carter LP, Griffiths RR. Principles of laboratory assessment of drug abuse liability and implications for clinical development. Drug Alcohol Depend 2009;105:14–25.

    Article  CAS  Google Scholar 

  11. Zhu W, Ding Z, Zhang Yinan, Shi Jie, Hashimoto Kenji, Lu Lin. Risks associated with misuse of ketamine as a rapid-acting antidepressant. Neurosci Bull. 2016;32:557–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Wang C, Zheng D, Xu J, Lam W, Yew DT. Brain damages in ketamine addicts as revealed by magnetic resonance imaging. Front Neuroanat. 2013;7:23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. US Food and Drug Administration, FDA approves new nasal spray medication for treatment-resistant depression; available only at a certified doctor’s office or clinic. 2019. https://www.fda.gov/news-events/press-announcements/fda-approves-new-nasal-spray-medication-treatment-resistant-depression-available-only-certified.

  14. Janssen Announces U.S. FDA Approval of SPRAVATO® (esketamine) CIII Nasal Spray to Treat Depressive Symptoms in Adults with Major Depressive Disorder with Acute Suicidal Ideation or Behavior. 2020 https://www.prnewswire.com/news-releases/janssen-announces-us-fda-approval-of-spravato-esketamine-ciii-nasal-spray-to-treat-depressive-symptoms-in-adults-with-major-depressive-disorder-with-acute-suicidal-ideation-or-behavior-301104437.html.

  15. Turner EH. Esketamine for treatment-resistant depression: seven concerns about efficacy and FDA approval. Lancet. 2019;6:977–9.

    Google Scholar 

  16. Schatzberg AF. A word to the wise about intranasal ketamine. Am J Psychiatry. 2019;176:422–4.

    Article  PubMed  Google Scholar 

  17. Yang C, Shirayama Y, Zhang J-c, Ren Q, Yao W, Ma M, et al. (R)-ketamine: a rapid-onset and sustained antidepressant without psychotomimetic side effects. Transl Psychiatry. 2015;5:e632.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Leal GC, Bandeira ID, Correia-Melo FS, Telles M, Mello RP, Vieira F, et al. Intravenous arketamine for treatment-resistant depression: open-label pilot study. Eur Arch Psychiatry Clin Neurosci. 2020;271:577–82.

  19. Zanos P, Moaddel R, Morris PJ, Riggs LM, Highland JN, Georgiou P, et al. Ketamine and ketamine metabolite pharmacology: insights into therapeutic mechanisms. Pharm Rev. 2018;70:621–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Zorumski CF, Izumi Y, Mennerick S. Ketamine: NMDA receptors and beyond. J Neurosci. 2016;36:11158–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Gupta A, Devi LA, Gomes I. Potentiation of μ-opioid receptor-mediated signaling by ketamine. J Neurochem 2011;119:294–302.

    Article  CAS  PubMed  Google Scholar 

  22. Nemeth CL, Paine TA, Rittiner JE, Béguin C, Carroll FI, Roth BL, et al. Role of kappa-opioid receptors in the effects of salvinorin A and ketamine on attention in rats. Psychopharmacology. 2010;210:263–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Itzhak Y, Simon EJ. A novel phencyclidine analog interacts selectively with mu opioid receptors. J Pharmacol Exp Ther. 1984;230:383–6.

    CAS  PubMed  Google Scholar 

  24. He XS, Raymon LP, Mattson MV, Eldefrawi ME, de Costa BR. Synthesis and biological evaluation of 1-[1-(2-benzo[b]thienyl)cyclohexyl]piperidine homologues at dopamine-uptake and phencyclidine- and sigma-binding sites. J Med Chem.1993;36:1188–93.

    Article  CAS  PubMed  Google Scholar 

  25. Chaudieu I, Vignon J, Chicheportiche M, Kamenka JM, Trouiller G, Chicheportiche R. Role of the aromatic group in the inhibition of phencyclidine binding and dopamine uptake by PCP analogs. Pharmacol Biochem Behav. 1989;32:699–705.

    Article  CAS  PubMed  Google Scholar 

  26. Seeman P, Ko F, Tallerico T. Dopamine receptor contribution to the action of PCP, LSD and ketamine psychotomimetics. Mol Psychiatry. 2005;10:877–83.

    Article  CAS  PubMed  Google Scholar 

  27. De Luca M, Badiani A. Ketamine self-administration in the rat: evidence for a critical role of setting. Psychopharmacology. 2011;214:549–56.

    Article  PubMed  CAS  Google Scholar 

  28. Morgan CAJ, Curran H. Independent scientific committee on drugs, ketamine use: a review. Addiction. 2012;107:27–28.

    Article  PubMed  Google Scholar 

  29. Hillhouse TM, Porter JH, Negus SS. Dissociable effects of the noncompetitive NMDA receptor antagonists ketamine and MK-801 on intracranial self-stimulation in rats. Psychopharmacology. 2014;231:2705–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Yang C, Hashimoto K. Rapid antidepressant effects and abuse liability of ketamine. Psychopharmacology. 2014;231:2041–2.

    Article  CAS  PubMed  Google Scholar 

  31. Hillhouse TM, Porter JH, Negus SS. Reply to: Rapid antidepressant effects and abuse liability of ketamine. Psychopharmacology. 2014;231:2743–4.

    Article  Google Scholar 

  32. Brady JV. Animal models for assessing drugs of abuse. Neurosci Biobehav Rev. 1991;15:35–43.

    Article  CAS  PubMed  Google Scholar 

  33. Hunt GE, Malhi GS, Xiong Lai HM, Cleary M. Prevalence of comorbid substance use in major depressive disorder in community and clinical settings, 1990-2019: Systematic review and meta-analysis. J Affect Disord. 2020;266:288–304.

    Article  PubMed  Google Scholar 

  34. Wise RA, Bozarth MA. A psychomotor stimulant theory of addiction. Psychol Rev. 1987;94:469–92.

    Article  CAS  PubMed  Google Scholar 

  35. Bardo MT, Bevins RA. Conditioned place preference: what does it add to our preclinical understanding of drug reward? Psychopharmacology. 2000;153:31–43.

    Article  CAS  PubMed  Google Scholar 

  36. Schuster CR, Thompson T. Self administration of and behavioral dependence on drugs. Annu Rev Pharmacol. 1969;9:483–502.

    Article  CAS  PubMed  Google Scholar 

  37. Shiue CY, et al. Carbon-11 labelled ketamine-synthesis, distribution in mice and PET studies in baboons. Nucl Med Biol. 1997;24:145–50.

    Article  CAS  PubMed  Google Scholar 

  38. Hartvig P, Valtysson J, Antoni G, Westerberg G, Långström B, Ratti Moberg E. et al. Brain kinetics of (R)- and (S)-[N-methyl-11C]ketamine in the rhesus monkey studied by positron emission tomography (PET). Nucl Med Biol.1994;21:927–34.

    Article  CAS  PubMed  Google Scholar 

  39. Kumlien E, Hartvig P, Valind S, Oye I, Tedroff J, Långström B. NMDA-receptor activity visualized with (S)-[N-methyl-11C]ketamine and positron emission tomography in patients with medial temporal lobe epilepsy. Epilepsia. 1999;40:30–7.

    Article  CAS  PubMed  Google Scholar 

  40. Murray F, Kennedy J, Hutson PH, Elliot J, Huscroft I, Mohnen K, et al. Modulation of [3H]MK-801 binding to NMDA receptors in vivo and in vitro. Eur J Pharmacol. 2000;397:263–70.

    Article  CAS  PubMed  Google Scholar 

  41. Herring BE, Xie Z, Marks J, Fox AP. Isoflurane Inhibits the neurotransmitter release machinery. J Neurophysiol. 2009;102:1265–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Portmann S, Kwan HY, Theurillat R, Schmitz A, Mevissen M, Thormann W. Enantioselective capillary electrophoresis for identification and characterization of human cytochrome P450 enzymes which metabolize ketamine and norketamine in vitro. J Chromatogr A. 2010;1217:7942–8.

    Article  CAS  PubMed  Google Scholar 

  43. Duncan GE, Moy SS, Knapp DJ, Mueller RA, Breese GR. Metabolic mapping of the rat brain after subanesthetic doses of ketamine: potential relevance to schizophrenia. Brain Res. 1998;787:181–90.

    Article  CAS  PubMed  Google Scholar 

  44. Miyamoto S, Leipzig JN, Lieberman JA, Duncan GE. Effects of ketamine, MK-801, and amphetamine on regional brain 2-deoxyglucose uptake in freely moving mice. Neuropsychopharmacology. 2000;22:400–12.

    Article  CAS  PubMed  Google Scholar 

  45. Murray EA, Rudebeck PH. Specializations for reward-guided decision-making in the primate ventral prefrontal cortex. Nat Rev Neurosci. 2018;19:404–17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Hare BD, Duman RS. Prefrontal cortex circuits in depression and anxiety: contribution of discrete neuronal populations and target regions. Mol Psychiatry. 2020;25:2742–58.

  47. Klein ME, Chandra J, Sheriff S, Malinow R. Opioid system is necessary but not sufficient for antidepressive actions of ketamine in rodents. PNAS. 2020;117:2656–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Jacobson ML, Simmons SC, Wulf HA, Cheng H, Feng Y, Nugent FS, et al., Protracted effects of ketamine require immediate kappa opioid receptor activation and long‐lasting desensitization. FASEB J. 2020;34:1–1.

  49. Williams NR, Heifets BD, Blasey C, Sudheimer K, Pannu J, Pankow H, et al. Attenuation of antidepressant effects of ketamine by opioid receptor antagonism. Am J Psychiatry. 2018;175:1205–15.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Williams NR, Heifets BD, Bentzley BS, Blasey C, Sudheimer KD, Hawkins J, et al. Attenuation of antidepressant and antisuicidal effects of ketamine by opioid receptor antagonism. Mol Psychiatry. 2019;24:1779–86.

    Article  CAS  PubMed  Google Scholar 

  51. Milligan G. Principles: extending the utility of [35S]GTP gamma S binding assays. Trends Pharm Sci. 2003;24:87–90.

    Article  CAS  PubMed  Google Scholar 

  52. Vogt LJ, Sim-Selley LJ, Childers SR, Wiley RG, Vogt BA. Colocalization of mu-opioid receptors and activated G-proteins in rat cingulate cortex. J Pharm Exp Ther. 2001;299:840–8.

    CAS  Google Scholar 

  53. Tejeda HA, Counotte DS, Oh E, Ramamoorthy S, Schultz-Kuszak KN, Bäckman CM, et al. Prefrontal cortical kappa-opioid receptor modulation of local neurotransmission and conditioned place aversion. Neuropsychopharmacology. 2013;38:1770–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Kalivas PW. Neurotransmitter regulation of dopamine neurons in the ventral tegmental area. Brain Res Brain Res Rev. 1993;18:75–113.

    Article  CAS  PubMed  Google Scholar 

  55. Wise RA, Rompre PP. Brain dopamine and reward. Annu Rev Psychol. 1989;40:191–225.

    Article  CAS  PubMed  Google Scholar 

  56. Johnson SW, North RA. Opioids excite dopamine neurons by hyperpolarization of local interneurons. J Neurosci. 1992;12:483–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Margolis EB, Lock H, Chefer VI, Shippenberg TS, Hjelmstad GO, Fields HL. κ opioids selectively control dopaminergic neurons projecting to the prefrontal cortex. PNAS. 2006;103:2938–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Badiani A, Belin D, Epstein D, Calu D, Shaham Y. Opiate versus psychostimulant addiction: the differences do matter. Nat Rev Neurosci. 2011;12:685–700.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Hashimoto K, Kakiuchi T, Ohba H, Nishiyama S, Tsukada H. Reduction of dopamine D2/3 receptor binding in the striatum after a single administration of esketamine, but not R-ketamine: a PET study in conscious monkeys. Eur Arch Psychiatry Clin Neurosci. 2017;267:173–6.

    Article  PubMed  Google Scholar 

  60. Slifstein M, Kegeles LS, Xu X, Thompson JL, Urban N, Castrillon J, et al. Striatal and extrastriatal dopamine release measured with PET and [18F]fallypride. Synapse. 2011;64:350–62.

    Article  CAS  Google Scholar 

  61. McDougall SA, Moran AE, Baum TJ, Apodaca MG, Real V. Effects of ketamine on the unconditioned and conditioned locomotor activity of preadolescent and adolescent rats: impact of age, sex, and drug dose. Psychopharmacology. 2017;234:2683–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Mucha RF, van der Kooy D D, O’Shaughnessy M, Bucenieks P. Drug reinforcement studied by the use of place conditioning in rat. Brain Res. 1982;243:91–105.

    Article  CAS  PubMed  Google Scholar 

  63. Yokel RF, Intravenous self-administration: response rates, the effects of pharmacological challenges, and drug preference. In: Bozarth MA, editor. Methods of assessing the reinforcing properties of abused drugs. New York: Springer-Verlag; 1987. p. 1–34

  64. Richardson NR, Roberts DC. Progressive ratio schedules in drug self-administration studies in rats: a method to evaluate reinforcing efficacy. J Neurosci Methods. 1996;66:1–11.

    Article  CAS  PubMed  Google Scholar 

  65. Venniro M, Banks ML, Heilig M, Epstein DH, Shaham Y. Improving translation of animal models of addiction and relapse by reverse translation. Nat Rev Neurosci Brain Res. 2020;21:625–623.

    Article  CAS  Google Scholar 

  66. Yoon G, Petrakis IL, Krystal JH. Association of combined naltrexone and ketamine with depressive symptoms in a case series of patients with depression and alcohol use disorder. JAMA Psychiatry. 2019;76:337–8.

    Article  PubMed  PubMed Central  Google Scholar 

  67. Heifets BD, Williams NR, Bentzley BS, Schatzberg AF. Rigorous Trial Design Is Essential to Understand the Role of Opioid Receptors in Ketamine’s Antidepressant Effect. JAMA Psychiatry. 2019;76:657–9.

    Article  PubMed  Google Scholar 

  68. Pacheco DF, Romero T, Duarte I. Central antinociception induced by ketamine is mediated by endogenous opioids and μ- and δ-opioid receptors. Brain Res. 2014;1562:69–75.

    Article  CAS  Google Scholar 

  69. Zanos P, Highland JN, Liu X, Troppoli TA, Georgiou P, Lovett J, et al. (R)‐Ketamine exerts antidepressant actions partly via conversion to (2R,6R)‐hydroxynorketamine, while causing adverse effects at sub‐anaesthetic doses. Br J Pharmacol. 2019;176:2573–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Yang Y, Cui Y, Sang K, Dong Y, Ni Z, Ma S, et al. Ketamine blocks bursting in the lateral habenula to rapidly relieve depression. Nature. 2018;14:317–22.

    Article  CAS  Google Scholar 

  71. Zhang K, Hashimoto K. An update on ketamine and its two enantiomers as rapid-acting antidepressants. Expert Rev Neurother. 2018;19:83–92.

    Article  PubMed  CAS  Google Scholar 

  72. Vollenweider FX, Leenders KL, Oye I, Hell D, Angst J. Differential psychopathology and patterns of cerebral glucose utilisation produced by (S)- and (R)-ketamine in healthy volunteers using positron emission tomography (PET). Eur Neuropsychopharmacol. 1997;7:25–38.

    Article  CAS  PubMed  Google Scholar 

  73. Carlson PJ, Diazgranados N, Nugent AC, Ibrahim L, Luckenbaugh DA, Brutsche N, et al. Neural correlates of rapid antidepressant response to ketamine in treatment-resistant unipolar depression: a preliminary positron emission tomography study. Biol Psychiatry 2013;15:1213–21.

    Article  CAS  Google Scholar 

  74. Masaki Y, Kashiwagi Y, Watabe H, Abe K. (R)‐ and (S)‐ketamine induce differential fMRI responses in conscious rats. Synapse. 2019;73:e22126.

    Article  CAS  PubMed  Google Scholar 

  75. Matsumoto RR, Nguyen L, Kaushal N, Robson MJ. Sigma (σ) receptors as potential therapeutic targets to mitigate psychostimulant effects. Adv Pharmacol 2014;69:323–86.

    Article  CAS  PubMed  Google Scholar 

  76. Kalivas PW, Stewart J. Dopamine transmission in the initiation and expression of drug- and stress-induced sensitization of motor activity. Brain Res Rev. 1991;16:223–44.

    Article  CAS  PubMed  Google Scholar 

  77. Tan Y, Hashimoto K. Risk of psychosis after repeated intermittent administration of (S)-ketamine, but not (R)-ketamine, in mice. J Affect Disord. 2020;269:198–200.

    Article  CAS  PubMed  Google Scholar 

  78. Chang L, Zhang K, Pu Y, Qu Y, Wang S, Xiong Z, et al. Comparison of antidepressant and side effects in mice after intranasal administration of (R,S)-ketamine, (R)-ketamine, and (S)-ketamine. Pharmacol Biochem Behav. 2019;181:53–9.

    Article  CAS  PubMed  Google Scholar 

  79. O’Brien CP, Childress AR, McLellan AT, Ehrman R. Classical conditioning in drug-dependent humans. Ann N. Y Acad Sci. 1992;654:400–15.

    Article  PubMed  Google Scholar 

  80. Nair AB, Jacob. S. A simple practice guide for dose conversion between animals and human. J Basic Clin Pharm 2016;7:27–31.

    Article  PubMed  PubMed Central  Google Scholar 

  81. Morris ED, Yoder KK. Positron emission tomography displacement sensitivity: predicting binding potential change for positron emission tomography tracers based on their kinetic characteristics. J Cereb Blood Flow Metab. 2007;27:606–17.

    Article  CAS  PubMed  Google Scholar 

  82. US Food and Drug Administration, Joint Meeting of the Psychopharmacologic Drugs Advisory Committee and the Drug Safety and Risk Management Advisory Committee. 2019. https://www.fda.gov/advisory-committees/february-12-2019-joint-meeting-psychopharmacologic-drugs-advisory-committee-pdac-and-drug-safety-and#event-materials.

  83. Witkin JM, Kranzler J, Kaniecki K, Popik P, Smith JL, Hashimoto K, et al. R-(-)-ketamine modifies behavioral effects of morphine predicting efficacy as a novel therapy for opioid use disorder. Pharmacol Biochem Behav 2020;194:172927.

    Article  CAS  PubMed  Google Scholar 

  84. Cai N-S, Quiroz C, Bonaventura J, Bonifazi A, Cole TO, Purks J. Opioid–galanin receptor heteromers mediate the dopaminergic effects of opioids. J Clin Investig. 2019;129:2730–44.

    Article  PubMed  PubMed Central  Google Scholar 

  85. Bonaventura J, Eldridge MAG, Hu F, Gomez JL, Sanchez-Soto M, Abramyan A, et al. High-potency ligands for DREADD imaging and activation in rodents and monkeys. Nat Commun. 2019;10:4627.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  86. Fredriksson I I, Applebey SV, Minier-Toribio A, Shekara A A, Bosser JM, Shaham Y Y. Effect of the dopamine stabilizer (-)-OSU6162 on potentiated incubation of opioid craving after electric barrier-induced voluntary abstinence. Neuropsychopharmacology. 2020;45:770–9.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by NIDA (ZIA000069), NIMH, and NINDS intramural funds. We thank Drs. Marisela Morales (NIDA/IRP), Dr. David White (NIDA/MDTB), Martin Pomper (Johns Hopkins University) and Robert Dannals (Johns Hopkins University) for providing resources and equipment that made this work possible. We also thank the technical support provided by Theresa Kopajtic, Hannah Korah and Sarah Applebey in helping us set up experimental procedures.

Author information

Authors and Affiliations

Authors

Contributions

All authors critically reviewed the content and approved the final version before submission. JB, SL, MC, MB, JLG, OS, and MS-S performed the experiments. JB, SL, MS-S, IF, and MM analyzed the data. JB, IF, YS, and MM supervised experiments. PJM, CJT, DRS, CAZ, provided access to resources and support. JB and MM designed the study and wrote the manuscript with input from all coauthors.

Corresponding authors

Correspondence to Jordi Bonaventura or Michael Michaelides.

Ethics declarations

Conflict of interest

CAZ is listed as a co-inventor on a patent for the use of ketamine in major depression and suicidal ideation. CAZ is listed as co-inventor on a patent for the use of (2R,6R)- hydroxynorketamine, (S)-dehydronorketamine, and other stereo- isomeric dehydro and hydroxylated metabolites of (R,S)-ketamine metabolites in the treatment of depression and neuropathic pain; and as a co-inventor on a patent application for the use of (2R,6R)-hydroxynorketamine and (2S,6S)-hydroxynorketamine in the treatment of depression, anxiety, anhedonia, suicidal ideation, and posttraumatic stress disorders. He has assigned his patent rights to the US government but will share a percentage of any royalties that may be received by the government. All other authors declare no conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bonaventura, J., Lam, S., Carlton, M. et al. Pharmacological and behavioral divergence of ketamine enantiomers: implications for abuse liability. Mol Psychiatry 26, 6704–6722 (2021). https://doi.org/10.1038/s41380-021-01093-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41380-021-01093-2

This article is cited by

Search

Quick links