Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Dysregulation of mitochondrial dynamics, mitophagy and apoptosis in major depressive disorder: Does inflammation play a role?

Abstract

Recent studies have suggested that mitochondrial dysfunction and dysregulated neuroinflammatory pathways are involved in the pathophysiology of major depressive disorder (MDD). Here, we aimed to assess the differences in markers of mitochondrial dynamics, mitophagy, general autophagy, and apoptosis in peripheral blood mononuclear cells (PBMCs) of MDD patients (n = 77) and healthy controls (HCs, n = 24). Moreover, we studied inflammation engagement as a moderator of mitochondria dysfunctions on the severity of depressive symptoms. We found increased levels of Mfn-2 (p < 0.001), short Opa-1 (S-Opa-1) (p < 0.001) and Fis-1 (p < 0.001) in MDD patients, suggesting an increase in the mitochondrial fragmentation. We also found that MDD patients had higher levels of Pink-1 (p < 0.001), p62/SQSTM1 (p < 0.001), LC3B (p = 0.002), and caspase-3 active (p = 0.001), and lower levels of parkin (p < 0.001) compared with HCs. Moreover, we showed that that MDD patients with higher CRP levels had higher levels of Mfn-2 (p = 0.001) and LC3B (p = 0.002) when compared with MDD patients with low CRP. Another notable finding was that the severity of depressive symptoms in MDD is associated with changes in protein levels in pathways related to mitochondrial dynamics and mitophagy, and can be dependent on the inflammatory status. Overall, our study demonstrated that a disruption in the mitochondrial dynamics network could initiate a cascade of abnormal changes relevant to the critical pathological changes during the course of MDD and lead to poor outcomes.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Levels of proteins involved in mitochondrial dynamics and mitophagy in patients with major depressive disorder.
Fig. 2: Levels of mitochondrial proteins in patients with major depressive stratified by C-Reactive Protein.
Fig. 3: Levels of anti- and pro-apoptotic proteins in patients with Major Depressive Disorder.
Fig. 4: Simple slopes plots for the moderation of CRP on the relationship between mitochondrial and apoptotic markers with QIDS-C.

Similar content being viewed by others

References

  1. Disease GBD, Injury I, Prevalence C. Global, regional, and national incidence, prevalence, and years lived with disability for 354 diseases and injuries for 195 countries and territories, 1990–2017: A systematic analysis for the global burden of disease study 2017. Lancet. 2018;392:1789–858.

    Article  Google Scholar 

  2. Liu Q, He H, Yang J, Feng X, Zhao F, Lyu J. Changes in the global burden of depression from 1990 to 2017: Findings from the global burden of disease study. J Psychiatr Res. 2020;126:134–40.

    Article  PubMed  Google Scholar 

  3. Kim YK. Molecular neurobiology of major depressive disorder. Prog Neuro-Psychopharmacol Biol Psychiatry. 2016;64:275–6.

    Article  Google Scholar 

  4. Zhang G, Xu S, Zhang Z, Zhang Y, Wu Y, An J, et al. Identification of key genes and the pathophysiology associated with major depressive disorder patients based on integrated bioinformatics analysis. Front Psychiatry. 2020;11:192.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Allen J, Romay-Tallon R, Brymer KJ, Caruncho HJ, Kalynchuk LE. Mitochondria and mood: Mitochondrial dysfunction as a key player in the manifestation of depression. Front Neurosci. 2018;12:386.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Belenguer P, Duarte JMN, Schuck PF, Ferreira GC. Mitochondria and the Brain: Bioenergetics and beyond. Neurotox Res. 2019;36:219–38.

    Article  PubMed  Google Scholar 

  7. Spinelli JB, Haigis MC. The multifaceted contributions of mitochondria to cellular metabolism. Nat Cell Biol. 2018;20:745–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Kornmann B. Quality control in mitochondria: Use it, break it, fix it, trash it. F1000Prime Rep. 2014;6:15.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. Boveris A, Oshino N, Chance B. The cellular production of hydrogen peroxide. Biochem J. 1972;128:617–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Fischer F, Hamann A, Osiewacz HD. Mitochondrial quality control: An integrated network of pathways. Trends Biochem Sci. 2012;37:284–92.

    Article  CAS  PubMed  Google Scholar 

  11. Evans CS, Holzbaur ELF. Quality control in neurons: Mitophagy and other selective autophagy mechanisms. J Mol Biol. 2020;432:240–60.

    Article  CAS  PubMed  Google Scholar 

  12. Palikaras K, Tavernarakis N. Regulation and roles of mitophagy at synapses. Mech Ageing Dev. 2020;187:111216.

    Article  CAS  PubMed  Google Scholar 

  13. Sedlackova L, Korolchuk VI. Mitochondrial quality control as a key determinant of cell survival. Biochim Biophys Acta Mol Cell Res. 2019;1866:575–87.

    Article  CAS  PubMed  Google Scholar 

  14. Panchal K, Tiwari AK. Mitochondrial dynamics, a key executioner in neurodegenerative diseases. Mitochondrion. 2019;47:151–73.

    Article  CAS  PubMed  Google Scholar 

  15. Alexiou A, Nizami B, Khan FI, Soursou G, Vairaktarakis C, Chatzichronis S, et al. Mitochondrial dynamics and proteins related to neurodegenerative diseases. Curr Protein Pept Sci. 2018;19:850–7.

    Article  CAS  PubMed  Google Scholar 

  16. Scaini G, Barichello T, Fries GR, Kennon EA, Andrews T, Nix BR, et al. TSPO upregulation in bipolar disorder and concomitant downregulation of mitophagic proteins and NLRP3 inflammasome activation. Neuropsychopharmacol: Off Publ Am Coll Neuropsychopharmacol. 2019;44:1291–9.

    Article  CAS  Google Scholar 

  17. Scaini G, Fries GR, Valvassori SS, Zeni CP, Zunta-Soares G, Berk M, et al. Perturbations in the apoptotic pathway and mitochondrial network dynamics in peripheral blood mononuclear cells from bipolar disorder patients. Transl Psychiatry. 2017;7:e1111.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Scaini G, Quevedo J, Velligan D, Roberts DL, Raventos H, Walss-Bass C. Second generation antipsychotic-induced mitochondrial alterations: Implications for increased risk of metabolic syndrome in patients with schizophrenia. Eur Neuropsychopharmacol: J Eur Coll Neuropsychopharmacol. 2018;28:369–80.

    Article  CAS  Google Scholar 

  19. Cataldo AM, McPhie DL, Lange NT, Punzell S, Elmiligy S, Ye NZ, et al. Abnormalities in mitochondrial structure in cells from patients with bipolar disorder. Am J Pathol. 2010;177:575–85.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Mertens J, Wang QW, Kim Y, Yu DX, Pham S, Yang B, et al. Differential responses to lithium in hyperexcitable neurons from patients with bipolar disorder. Nature. 2015;527:95–99.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Inuwa IM, Peet M, Williams MA. QSAR modeling and transmission electron microscopy stereology of altered mitochondrial ultrastructure of white blood cells in patients diagnosed as schizophrenic and treated with antipsychotic drugs. Biotech Histochem. 2005;80:133–7.

    Article  CAS  PubMed  Google Scholar 

  22. Rosenfeld M, Brenner-Lavie H, Ari SG, Kavushansky A, Ben-Shachar D. Perturbation in mitochondrial network dynamics and in complex I dependent cellular respiration in schizophrenia. Biol Psychiatry. 2011;69:980–8.

    Article  CAS  PubMed  Google Scholar 

  23. Atkin TA, MacAskill AF, Brandon NJ, Kittler JT. Disrupted in Schizophrenia-1 regulates intracellular trafficking of mitochondria in neurons. Mol Psychiatry. 2011;16:122–4. 121

    Article  CAS  PubMed  Google Scholar 

  24. Chen C, Wang Y, Zhang J, Ma L, Gu J, Ho G. Contribution of neural cell death to depressive phenotypes of streptozotocin-induced diabetic mice. Dis Model Mech. 2014;7:723–30.

    PubMed  PubMed Central  Google Scholar 

  25. Gulbins A, Schumacher F, Becker KA, Wilker B, Soddemann M, Boldrin F, et al. Antidepressants act by inducing autophagy controlled by sphingomyelin-ceramide. Mol Psychiatry. 2018;23:2324–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Trivedi MH, Chin Fatt CR, Jha MK, Cooper CM, Trombello JM, Mason BL, et al. Comprehensive phenotyping of depression disease trajectory and risk: Rationale and design of Texas resilience against depression study (T-RAD). J Psychiatr Res. 2020;122:22–32.

    Article  PubMed  Google Scholar 

  27. Montgomery SA, Asberg M. A new depression scale designed to be sensitive to change. Br J Psychiatry: J Ment Sci. 1979;134:382–9.

    Article  CAS  Google Scholar 

  28. Demarest TG, McCarthy MM. Sex differences in mitochondrial (dys)function: Implications for neuroprotection. J Bioenerg Biomembr. 2015;47:173–88.

    Article  CAS  PubMed  Google Scholar 

  29. Scaini G, Maggi DD, De-Nes BT, Goncalves CL, Ferreira GK, Teodorak BP, et al. Activity of mitochondrial respiratory chain is increased by chronic administration of antidepressants. Acta neuropsychiatrica. 2011;23:112–8.

    Article  PubMed  Google Scholar 

  30. Chistiakov DA, Sobenin IA, Revin VV, Orekhov AN, Bobryshev YV. Mitochondrial aging and age-related dysfunction of mitochondria. Biomed Res Int. 2014;2014:238463.

    PubMed  PubMed Central  Google Scholar 

  31. Hayes A Introduction to Mediation, Moderation, and Conditional Process Analysis. 2nd ed A Regression-Based Approach. 2nd edition edn. Guilford Press: New York, 2018, pp 692.

  32. Scaini G, Santos PM, Benedet J, Rochi N, Gomes LM, Borges LS, et al. Evaluation of Krebs cycle enzymes in the brain of rats after chronic administration of antidepressants. Brain Res Bull. 2010;82:224–7.

    Article  CAS  PubMed  Google Scholar 

  33. Kageyama Y, Kasahara T, Kato M, Sakai S, Deguchi Y, Tani M, et al. The relationship between circulating mitochondrial DNA and inflammatory cytokines in patients with major depression. J Affect Disord. 2018;233:15–20.

    Article  CAS  PubMed  Google Scholar 

  34. Busch KB, Kowald A, Spelbrink JN. Quality matters: how does mitochondrial network dynamics and quality control impact on mtDNA integrity? Philos Trans R Soc Lond B Biol Sci. 2014;369:20130442.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. MacVicar T, Langer T. OPA1 processing in cell death and disease - the long and short of it. J Cell Sci. 2016;129:2297–306.

    CAS  PubMed  Google Scholar 

  36. Sood A, Jeyaraju DV, Prudent J, Caron A, Lemieux P, McBride HM, et al. A Mitofusin-2-dependent inactivating cleavage of Opa1 links changes in mitochondria cristae and ER contacts in the postprandial liver. Proc Natl Acad Sci USA. 2014;111:16017–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Frezza C, Cipolat S, Martins de Brito O, Micaroni M, Beznoussenko GV, Rudka T, et al. OPA1 controls apoptotic cristae remodeling independently from mitochondrial fusion. Cell. 2006;126:177–89.

    Article  CAS  PubMed  Google Scholar 

  38. Jin SM, Youle RJ. PINK1- and Parkin-mediated mitophagy at a glance. J Cell Sci. 2012;125:795–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Kaminskyy VO, Zhivotovsky B. Free radicals in cross talk between autophagy and apoptosis. Antioxid Redox Signal. 2014;21:86–102.

  40. Chung Y, Lee J, Jung S, Lee Y, Cho JW, Oh YJ. Dysregulated autophagy contributes to caspase-dependent neuronal apoptosis. Cell Death Dis. 2018;9:1189.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Deus CM, Yambire KF, Oliveira PJ, Raimundo N. Mitochondria-lysosome crosstalk: From physiology to neurodegeneration. Trends Mol Med. 2020;26:71–88.

    Article  CAS  PubMed  Google Scholar 

  42. Amidfar M, Kim YK, Scaini G, Quevedo J. Evidence for additionally increased apoptosis in the peripheral blood mononuclear cells of major depressive patients with a high risk for suicide. Am J Med Genet Part B, Neuropsychiatr Genet: Off Publ Int Soc Psychiatr Genet. 2018;177:388–96.

    Article  CAS  Google Scholar 

  43. Shelton RC, Claiborne J, Sidoryk-Wegrzynowicz M, Reddy R, Aschner M, Lewis DA, et al. Altered expression of genes involved in inflammation and apoptosis in frontal cortex in major depression. Mol Psychiatry. 2011;16:751–62.

    Article  CAS  PubMed  Google Scholar 

  44. Szuster-Ciesielska A, Slotwinska M, Stachura A, Marmurowska-Michalowska H, Dubas-Slemp H, Bojarska-Junak A, et al. Accelerated apoptosis of blood leukocytes and oxidative stress in blood of patients with major depression. Prog neuro-Psychopharmacol Biol psychiatry. 2008;32:686–94.

    Article  CAS  Google Scholar 

  45. Nakahira K, Haspel JA, Rathinam VA, Lee SJ, Dolinay T, Lam HC, et al. Autophagy proteins regulate innate immune responses by inhibiting the release of mitochondrial DNA mediated by the NALP3 inflammasome. Nat Immunol. 2011;12:222–30.

    Article  CAS  PubMed  Google Scholar 

  46. Pinti M, Cevenini E, Nasi M, De Biasi S, Salvioli S, Monti D, et al. Circulating mitochondrial DNA increases with age and is a familiar trait: Implications for “inflamm-aging”. Eur J Immunol. 2014;44:1552–62.

    Article  CAS  PubMed  Google Scholar 

  47. Wu G, Zhu Q, Zeng J, Gu X, Miao Y, Xu W, et al. Extracellular mitochondrial DNA promote NLRP3 inflammasome activation and induce acute lung injury through TLR9 and NF-kappaB. J Thorac Dis. 2019;11:4816–28.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Biasizzo M, Kopitar-Jerala N. Interplay Between NLRP3 Inflammasome and Autophagy. Front Immunol. 2020;11:591803.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

The T-RAD study is generously supported by The Hersh Foundation, Jordan E. Harris Foundation, W. W. Caruth, Jr. Fund, Evelyn Rose, M2G Ventures, and support for the use of REDCap (CTSA NIH Grant UL1TR001105). The research funding support from the University of Texas health science centre at Houston, the Louis A. Faillace, MD Endowment Funds and the Translational Psychiatry Program to GS and JQ are acknowledged. Translational Psychiatry Program (USA) is funded by the Department of Psychiatry and Behavioral Sciences, McGovern Medical School at UTHealth and Linda Gail Behavioral Health Research Fund. Center of Excellence on Mood Disorders (USA) is funded by the Pat Rutherford Jr Chair in Psychiatry, John S. Dunn Foundation and Anne and Don Fizer Foundation Endowment for Depression Research. Translational Psychiatry Laboratory (Brazil) is funded by grants from Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES), Fundação de Amparo à Pesquisa e Inovação do Estado de Santa Catarina (FAPESC), Instituto Cérebro e Mente and University of Southern Santa Catarina (UNESC).

Author information

Authors and Affiliations

Authors

Contributions

GS, BLM, MHT, and JQ contribute to conception and design, analysis and interpretation of clinical data, and final approval of the version to be published. GS performed biochemical assessments, data analysis and wrote the paper with input from all authors. APD assisted with statistical analysis and manuscript preparation. MKJ and JCS revised the paper critically for relevant intellectual content.

Corresponding author

Correspondence to Giselli Scaini.

Ethics declarations

Competing interests

The authors declare no competing interests, and the funding body had no role in the design of the study, collection and analysis of data, or decision to publish.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Scaini, G., Mason, B.L., Diaz, A.P. et al. Dysregulation of mitochondrial dynamics, mitophagy and apoptosis in major depressive disorder: Does inflammation play a role?. Mol Psychiatry 27, 1095–1102 (2022). https://doi.org/10.1038/s41380-021-01312-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41380-021-01312-w

This article is cited by

Search

Quick links