Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Anti-depressive-like behaviors of APN KO mice involve Trkb/BDNF signaling related neuroinflammatory changes

Abstract

Major depression disorder is a severe mental illness often linked with metabolic disorders. Adiponectin is an adipocyte-secreted circulatory hormone with antidiabetic and glucose/lipid modulation capacities. Studies have demonstrated the pathophysiological roles of adiponectin involved in various neurological disorders, including depression. However, the underlying mechanisms are poorly understood. Here we showed that adiponectin deprivation enhanced antidepressive-like behaviors in the LPS-induced model of depression. APN KO mice displayed increased cytokines (both pro and anti-inflammatory), accompanied by an impaired expression of adiponectin receptors (mRNA/protein level) and decreasing IBA-1 level in the cortex and primary microglia of LPS treated APN KO mice. Further, LPS-treatment significantly reduced p-NFκB expression in the microglia of APN KO mice. However, the Bay11-7082 treatment recovered p-NFκB expression in the cortex of APN KO mice in the presence of LPS. Interestingly, the antidepressant potentials of APN KO mice were abolished by TrkB antagonist K252a, IKK inhibitor Bay11-7082, and AdipoRon suggesting crosstalk between TrkB/BDNF signaling and NFκB in depression. Furthermore, the effects of Bay11-7082 were abolished by a TrkB/BDNF activator (7,8-DHF), indicating a critical role of TrkB/BDNF signaling. Taken together, these findings showed that dysregulated neuroinflammatory status and BDNF signaling might underlie the antidepressive-like behaviors of APN KO mice. NFκB elicited BDNF changes may be accountable for the pathogenesis of LPS induced depression, where APN might present an alternative therapeutic target for depressive disorders.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: LPS-treatment did not enhance depressive-like behaviors and Iba-1, while modified cytokines level in APN KO mice.
Fig. 2: LPS-treatment to PMG of APN KO mice.
Fig. 3: LPS-treated APN KO mice lost anti-depressive-like behaviors and modified BNDF/TrkB and synaptic gene expression upon K252a, Bay11-7082, and AR treatment.
Fig. 4: 7,8-DHF reversed Bay11-7082 modified changes in the LPS-treated APN KO mice.
Fig. 5: APN receptors expression in APN KO mice, PMG, and BV2 cells.

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in this published article [and its supplementary information files.

References

  1. Nestler EJ, Barrot M, DiLeone RJ, Eisch AJ, Gold SJ, Monteggia LM. Neurobiology of depression. Neuron. 2002;34:13–25.

    Article  CAS  PubMed  Google Scholar 

  2. Sjöberg L, Karlsson B, Atti AR, Skoog I, Fratiglioni L, Wang HX. Prevalence of depression: comparisons of different depression definitions in population-based samples of older adults. J Affect Disord. 2017;221:123–31.

    Article  PubMed  Google Scholar 

  3. Dean J, Keshavan M. The neurobiology of depression: an integrated view. Asian J psychiatry. 2017;27:101–11.

    Article  Google Scholar 

  4. Blier P. Neurobiology of depression and mechanism of action of depression treatments. J Clin psychiatry. 2016;77:e319.

    Article  PubMed  Google Scholar 

  5. Dowlati Y, Herrmann N, Swardfager WL, Reim EK, Lanctôt KL. Efficacy and tolerability of antidepressants for treatment of depression in coronary artery disease: a meta-analysis. Can J psychiatry Rev canadienne de Psychiatr. 2010;55:91–99.

    Google Scholar 

  6. Brent DA. Antidepressants and suicidality. Psychiatr Clin North Am. 2016;39:503–12.

    Article  PubMed  Google Scholar 

  7. Agius M, Bonnici H. Antidepressants in use in clinical practice. Psychiatr Danubina. 2017;29(Suppl 3):667–71.

    CAS  Google Scholar 

  8. Ghoneim MM, O’Hara MW. Depression and postoperative complications: an overview. BMC Surg. 2016;16:5.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Krishnan V, Nestler EJ. The molecular neurobiology of depression. Nature. 2008;455:894–902.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Villas Boas GR, Boerngen de Lacerda R, Paes MM, Gubert P, Almeida WLDC, Rescia VC, et al. Molecular aspects of depression: a review from neurobiology to treatment. Eur J Pharmacol. 2019;851:99–121.

    Article  CAS  PubMed  Google Scholar 

  11. Wohleb ES, Franklin T, Iwata M, Duman RS. Integrating neuroimmune systems in the neurobiology of depression. Nat Rev Neurosci. 2016;17:497–511.

    Article  CAS  PubMed  Google Scholar 

  12. Dantzer R. Depression and inflammation: an intricate relationship. Biol psychiatry. 2012;71:4–5.

    Article  PubMed  Google Scholar 

  13. Dowlati Y, Herrmann N, Swardfager W, Liu H, Sham L, Reim EK, et al. A meta-analysis of cytokines in major depression. Biol psychiatry. 2010;67:446–57.

    Article  CAS  PubMed  Google Scholar 

  14. Sestan-Pesa M, Horvath TL. Metabolism and mental illness. Trends Mol Med. 2016;22:174–83.

    Article  CAS  PubMed  Google Scholar 

  15. Malynn S, Campos-Torres A, Moynagh P, Haase J. The pro-inflammatory cytokine TNF-α regulates the activity and expression of the serotonin transporter (SERT) in astrocytes. Neurochem Res. 2013;38:694–704.

    Article  CAS  PubMed  Google Scholar 

  16. Kabiersch A, del Rey A, Honegger CG, Besedovsky HO. Interleukin-1 induces changes in norepinephrine metabolism in the rat brain. Brain, Behav, Immun. 1988;2:267–74.

    Article  CAS  Google Scholar 

  17. Jeon SW, Kim YK. Neuroinflammation and cytokine abnormality in major depression: cause or consequence in that illness? World J Psychiatry. 2016;6:283–93.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Rubartelli A. Redox control of NLRP3 inflammasome activation in health and disease. J Leukoc Biol. 2012;92:951–8.

    Article  CAS  PubMed  Google Scholar 

  19. Dai Y, Zhang J, Xiang J, Li Y, Wu D, Xu J. Calcitriol inhibits ROS-NLRP3-IL-1β signaling axis via activation of Nrf2-antioxidant signaling in hyperosmotic stress stimulated human corneal epithelial cells. Redox Biol. 2019;21:101093.

    Article  CAS  PubMed  Google Scholar 

  20. Zhang B, Zhao J, Wang Z, Xu L, Liu A, Du G. DL0410 attenuates oxidative stress and neuroinflammation via BDNF/TrkB/ERK/CREB and Nrf2/HO-1 activation. Int Immunopharmacol. 2020;86:106729.

    Article  CAS  PubMed  Google Scholar 

  21. van Leeuwen E, Hampton MB, Smyth LCD. Redox signalling and regulation of the blood-brain barrier. Int J Biochem Cell Biol. 2020;125:105794.

    Article  PubMed  CAS  Google Scholar 

  22. Aguilera G, Colín-González AL, Rangel-López E, Chavarría A, Santamaría A. Redox signaling, neuroinflammation, and neurodegeneration. Antioxid redox Signal. 2018;28:1626–51.

    Article  CAS  PubMed  Google Scholar 

  23. Resende R, Fernandes T, Pereira AC, De Pascale J, Marques AP, Oliveira P, et al. Mitochondria, endoplasmic reticulum and innate immune dysfunction in mood disorders: do mitochondria-associated membranes (MAMs) play a role? Biochimica et Biophysica Acta Mol basis Dis. 2020;1866:165752.

    Article  CAS  Google Scholar 

  24. Torres-Odio S, Key J, Hoepken HH, Canet-Pons J, Valek L, Roller B, et al. Progression of pathology in PINK1-deficient mouse brain from splicing via ubiquitination, ER stress, and mitophagy changes to neuroinflammation. J neuroinflammation. 2017;14:154.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Weinberg SE, Sena LA, Chandel NS. Mitochondria in the regulation of innate and adaptive immunity. Immunity. 2015;42:406–17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Andreazza AC, Shao L, Wang JF, Young LT. Mitochondrial complex I activity and oxidative damage to mitochondrial proteins in the prefrontal cortex of patients with bipolar disorder. Arch Gen psychiatry. 2010;67:360–8.

    Article  CAS  PubMed  Google Scholar 

  27. Lin MT, Beal MF. Mitochondrial dysfunction and oxidative stress in neurodegenerative diseases. Nature. 2006;443:787–95.

    Article  CAS  PubMed  Google Scholar 

  28. Kaufmann FN, Costa AP, Ghisleni G, Diaz AP, Rodrigues ALS, Peluffo H, et al. NLRP3 inflammasome-driven pathways in depression: Clinical and preclinical findings. Brain Behav Immun. 2017;64:367–83.

    Article  CAS  PubMed  Google Scholar 

  29. Pal China S, Sanyal S, Chattopadhyay N. Adiponectin signaling and its role in bone metabolism. Cytokine. 2018;112:116–31.

    Article  CAS  PubMed  Google Scholar 

  30. Turer AT, Scherer PE. Adiponectin: mechanistic insights and clinical implications. Diabetologia. 2012;55:2319–26.

    Article  CAS  PubMed  Google Scholar 

  31. Straub LG, Scherer PE. Metabolic messengers: adiponectin. Nat Metab. 2019;1:334–9.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Rizzo MR, Fasano R, Paolisso G. Adiponectin and Cognitive Decline. Int j mol sci. 2020; 21:2010.

  33. Liu J, Guo M, Zhang D, Cheng S-Y, Liu M, Ding J, et al. Adiponectin is critical in determining susceptibility to depressive behaviors and has antidepressant-like activity. Proc Natl Acad Sci. 2012;109:12248–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Hu Y, Dong X, Chen J. Adiponectin and depression: a meta-analysis. Biomed Res. 2015;3:38–42.

    Google Scholar 

  35. Li C, Meng F, Garza JC, Liu J, Lei Y, Kirov SA et al. Modulation of depression-related behaviors by adiponectin AdipoR1 receptors in 5-HT neurons. Mol psychiatry 2020. https://www.nature.com/articles/s41380-020-0649-0

  36. Rastegar S, Parimisetty A, Cassam Sulliman N, Narra SS, Weber S, Rastegar M, et al. Expression of adiponectin receptors in the brain of adult zebrafish and mouse: Links with neurogenic niches and brain repair. J Comp Neurol. 2019;527:2317–33.

    CAS  PubMed  Google Scholar 

  37. Lee TH, Cheng KK, Hoo RL, Siu PM, Yau SY. The novel perspectives of adipokines on brain health. Int J mol sci 2019; 20:5638.

  38. Bloemer J, Pinky PD, Smith WD, Bhattacharya D, Chauhan A, Govindarajulu M et al. Adiponectin knockout mice display cognitive and synaptic deficits. Front Endocrinol 2019;10:819.

  39. Li W, Ali T, He K, Liu Z, Shah FA, Ren Q et al. Ibrutinib alleviates LPS-induced neuroinflammation and synaptic defects in a mouse model of depression. Brain Behav Immun. 2020;10:819.

  40. Ali T, Rahman SU, Hao Q, Li W, Liu Z, Ali Shah F et al. Melatonin prevents neuroinflammation and relieves depression by attenuating autophagy impairment through FOXO3a regulation. J pineal res. 2020;69:e12667.

  41. Ali T, Rahman SU, Hao Q, Li W, Liu Z, Ali Shah F, et al. Melatonin prevents neuroinflammation and relieves depression by attenuating autophagy impairment through FOXO3a regulation. J Pineal Res. 2020;69:e12667.

    Article  CAS  PubMed  Google Scholar 

  42. Zhao X, Cao F, Liu Q, Li X, Xu G, Liu G, et al. Behavioral, inflammatory and neurochemical disturbances in LPS and UCMS-induced mouse models of depression. Behavioural brain Res. 2019;364:494–502.

    Article  CAS  Google Scholar 

  43. Wang M, Ye X, Hu J, Zhao Q, Lv B, Ma W, et al. NOD1/RIP2 signalling enhances the microglia-driven inflammatory response and undergoes crosstalk with inflammatory cytokines to exacerbate brain damage following intracerebral haemorrhage in mice. J Neuroinflammation. 2020;17:364.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Dai X, Sun Y, Jiang Z. Protective effects of vitamin E against oxidative damage induced by Abeta1-40Cu(II) complexes. Acta Biochimica et Biophysica Sin. 2007;39:123–30.

    Article  CAS  Google Scholar 

  45. Li YH, Yan ZQ, Jensen JS, Tullus K, Brauner A. Activation of nuclear factor kappaB and induction of inducible nitric oxide synthase by Ureaplasma urealyticum in macrophages. Infect Immun. 2000;68:7087–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Shah SA, Khan M, Jo MH, Jo MG, Amin FU, Kim MO. Melatonin stimulates the SIRT 1/Nrf2 signaling pathway counteracting lipopolysaccharide (LPS)‐induced oxidative stress to rescue postnatal rat brain. CNS Neurosci therapeutics. 2017;23:33–44.

    Article  CAS  Google Scholar 

  47. Arifin WN, Zahiruddin WM. Sample size calculation in animal studies using resource equation approach. Malays J Med Sci. 2017;24:101–5.

    PubMed  PubMed Central  Google Scholar 

  48. Mead R, Gilmour SG, Mead A Statistical Principles for the Design of Experiments: Applications to Real Experiments. Cambridge University Press: Cambridge, 2012.

  49. Li W, Ali T, He K, Liu Z, Shah FA, Ren Q, et al. Ibrutinib alleviates LPS-induced neuroinflammation and synaptic defects in a mouse model of depression. Brain, Behav, Immun. 2021;92:10–24.

    Article  CAS  Google Scholar 

  50. Singla B, Holmdahl R, Csanyi G. Editorial: oxidants and redox signaling in inflammation. Front Immunol. 2019;10:545.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Nunnari J, Suomalainen A. Mitochondria: in sickness and in health. Cell. 2012;148:1145–59.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Iwabu M, Yamauchi T, Okada-Iwabu M, Sato K, Nakagawa T, Funata M, et al. Adiponectin and AdipoR1 regulate PGC-1alpha and mitochondria by Ca(2+) and AMPK/SIRT1. Nature. 2010;464:1313–9.

    Article  CAS  PubMed  Google Scholar 

  53. Holmes SE, Scheinost D, Finnema SJ, Naganawa M, Davis MT, DellaGioia N, et al. Lower synaptic density is associated with depression severity and network alterations. Nat Commun. 2019;10:1529.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  54. Duman RS, Aghajanian GK, Sanacora G, Krystal JH. Synaptic plasticity and depression: new insights from stress and rapid-acting antidepressants. Nat Med. 2016;22:238–49.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Li W, Ali T, Zheng C, Liu Z, He K, Shah FA, et al. Fluoxetine regulates eEF2 activity (phosphorylation) via HDAC1 inhibitory mechanism in an LPS-induced mouse model of depression. J Neuroinflammation. 2021;18:38.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Caviedes A, Lafourcade C, Soto C, Wyneken U. BDNF/NF-κB signaling in the neurobiology of depression. Curr Pharm Des. 2017;23:3154–63.

    Article  CAS  PubMed  Google Scholar 

  57. Thundyil J, Pavlovski D, Sobey CG, Arumugam TV. Adiponectin receptor signalling in the brain. Br J Pharmacol. 2012;165:313–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Jo D, Son Y, Yoon G, Song J, Kim OY. Role of adiponectin and brain derived neurotrophic factor in metabolic regulation involved in adiposity and body fat browning. J Clin Med. 2020;10:56.

  59. Shelton RC, Falola M, Li L, Zajecka J, Fava M, Papakostas GI. The pro-inflammatory profile of depressed patients is (partly) related to obesity. J Psychiatr Res. 2015;70:91–97.

    Article  PubMed  PubMed Central  Google Scholar 

  60. Jeong HG, Min BJ, Lim S, Kim TH, Lee JJ, Park JH, et al. Plasma adiponectin elevation in elderly individuals with subsyndromal depression. Psychoneuroendocrinology. 2012;37:948–55.

    Article  CAS  PubMed  Google Scholar 

  61. Diniz BS, Teixeira AL, Campos AC, Miranda AS, Rocha NP, Talib LL, et al. Reduced serum levels of adiponectin in elderly patients with major depression. J Psychiatr Res. 2012;46:1081–5.

    Article  PubMed  Google Scholar 

  62. Liu J, Guo M, Zhang D, Cheng SY, Liu M, Ding J, et al. Adiponectin is critical in determining susceptibility to depressive behaviors and has antidepressant-like activity. Proc Natl Acad Sci USA. 2012;109:12248–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Howren MB, Lamkin DM, Suls J. Associations of depression with C-reactive protein, IL-1, and IL-6: a meta-analysis. Psychosom Med. 2009;71:171–86.

    Article  CAS  PubMed  Google Scholar 

  64. Lamers F, Milaneschi Y, de Jonge P, Giltay EJ, Penninx B. Metabolic and inflammatory markers: associations with individual depressive symptoms. Psychological Med. 2018;48:1102–10.

    Article  CAS  Google Scholar 

  65. Black C, Miller BJ. Meta-analysis of cytokines and chemokines in suicidality: distinguishing suicidal versus nonsuicidal patients. Biol psychiatry. 2015;78:28–37.

    Article  CAS  PubMed  Google Scholar 

  66. Strawbridge R, Arnone D, Danese A, Papadopoulos A, Herane Vives A, Cleare AJ. Inflammation and clinical response to treatment in depression: A meta-analysis. Eur Neuropsychopharmacol: J Eur Coll Neuropsychopharmacol. 2015;25:1532–43.

    Article  CAS  Google Scholar 

  67. Köhler CA, Freitas TH, Maes M, de Andrade NQ, Liu CS, Fernandes BS, et al. Peripheral cytokine and chemokine alterations in depression: a meta-analysis of 82 studies. Acta Psychiatr Scandinavica. 2017;135:373–87.

    Article  CAS  Google Scholar 

  68. Walker AK, Wing EE, Banks WA, Dantzer R. Leucine competes with kynurenine for blood-to-brain transport and prevents lipopolysaccharide-induced depression-like behavior in mice. Mol psychiatry. 2019;24:1523–32.

    Article  CAS  PubMed  Google Scholar 

  69. Tomaz VS, Chaves Filho AJM, Cordeiro RC, Jucá PM, Soares MVR, Barroso PN, et al. Antidepressants of different classes cause distinct behavioral and brain pro- and anti-inflammatory changes in mice submitted to an inflammatory model of depression. J Affect Disord. 2020;268:188–200.

    Article  CAS  PubMed  Google Scholar 

  70. Guo LT, Wang SQ, Su J, Xu LX, Ji ZY, Zhang RY, et al. Baicalin ameliorates neuroinflammation-induced depressive-like behavior through inhibition of toll-like receptor 4 expression via the PI3K/AKT/FoxO1 pathway. J Neuroinflammation. 2019;16:95.

    Article  PubMed  PubMed Central  Google Scholar 

  71. Sakai J, Cammarota E, Wright JA, Cicuta P, Gottschalk RA, Li N, et al. Lipopolysaccharide-induced NF-κB nuclear translocation is primarily dependent on MyD88, but TNFα expression requires TRIF and MyD88. Sci Rep. 2017;7:1428.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  72. Weisz F, Piccinin S, Mango D, Ngomba RT, Mercuri NB, Nicoletti F et al. The role of adiponectin receptors in the regulation of synaptic transmission in the hippocampus. Synapse 2017;71:21964.

  73. Zheng J, Sun Z, Liang F, Xu W, Lu J, Shi L, et al. AdipoRon attenuates neuroinflammation after intracerebral hemorrhage through AdipoR1-AMPK pathway. Neuroscience. 2019;412:116–30.

    Article  CAS  PubMed  Google Scholar 

  74. Koh EH, Park JY, Park HS, Jeon MJ, Ryu JW, Kim M, et al. Essential role of mitochondrial function in adiponectin synthesis in adipocytes. Diabetes. 2007;56:2973–81.

    Article  CAS  PubMed  Google Scholar 

  75. Yamauchi T, Iwabu M, Okada-Iwabu M, Kadowaki T. Adiponectin receptors: a review of their structure, function and how they work. Best Pr Res Clin Endocrinol Metab. 2014;28:15–23.

    Article  CAS  Google Scholar 

  76. Nicolas S, Debayle D, Béchade C, Maroteaux L, Gay AS, Bayer P, et al. Adiporon, an adiponectin receptor agonist acts as an antidepressant and metabolic regulator in a mouse model of depression. Transl Psychiatry. 2018;8:159.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgements

Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, 518055, China. This work was supported by Grants Science and Technology Innovation Committee of Shenzhen No: JCYJ20170810163329510; Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions No: 2019SHIBS0004; Sanming Project of Medicine in Shenzhen (No. SZSM201911003) Shenzhen Key Medical Discipline Construction Fund (No.SZXK06162); Shenzhen bay laboratory NO:SZBL2019062801003.

Author information

Authors and Affiliations

Authors

Contributions

WL designed and performed the experiments, TA data analysis, wrote the manuscript, Chengyou Zheng, Kaiwu He, and Zizhen Liu helped in the experiment; Fawad Ali Shah, Ningning Li, and Zhi-Jian Yu helped in manuscript, experimental tools and supported the study. SL endorsed the study, corresponding authors, reviewed and approved the manuscript, and held all the responsibilities related to this manuscript. All authors reviewed and approved the manuscript.

Corresponding authors

Correspondence to Zhi-Jian Yu or Shupeng Li.

Ethics declarations

Competing interests

The authors declare no competing interests.

Ethical approval and consent to participate

According to the protocols approved by the Institutional Animal Care and Use Committee of Peking University Shenzhen Graduate School, all experimental procedures were carried out.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, W., Ali, T., Zheng, C. et al. Anti-depressive-like behaviors of APN KO mice involve Trkb/BDNF signaling related neuroinflammatory changes. Mol Psychiatry 27, 1047–1058 (2022). https://doi.org/10.1038/s41380-021-01327-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41380-021-01327-3

This article is cited by

Search

Quick links