Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Revisiting tandem repeats in psychiatric disorders from perspectives of genetics, physiology, and brain evolution

Abstract

Genome-wide association studies (GWASs) have revealed substantial genetic components comprised of single nucleotide polymorphisms (SNPs) in the heritable risk of psychiatric disorders. However, genetic risk factors not covered by GWAS also play pivotal roles in these illnesses. Tandem repeats, which are likely functional but frequently overlooked by GWAS, may account for an important proportion in the “missing heritability” of psychiatric disorders. Despite difficulties in characterizing and quantifying tandem repeats in the genome, studies have been carried out in an attempt to describe impact of tandem repeats on gene regulation and human phenotypes. In this review, we have introduced recent research progress regarding the genomic distribution and regulatory mechanisms of tandem repeats. We have also summarized the current knowledge of the genetic architecture and biological underpinnings of psychiatric disorders brought by studies of tandem repeats. These findings suggest that tandem repeats, in candidate psychiatric risk genes or in different levels of linkage disequilibrium (LD) with psychiatric GWAS SNPs and haplotypes, may modulate biological phenotypes related to psychiatric disorders (e.g., cognitive function and brain physiology) through regulating alternative splicing, promoter activity, enhancer activity and so on. In addition, many tandem repeats undergo tight natural selection in the human lineage, and likely exert crucial roles in human brain evolution. Taken together, the putative roles of tandem repeats in the pathogenesis of psychiatric disorders is strongly implicated, and using examples from previous literatures, we wish to call for further attention to tandem repeats in the post-GWAS era of psychiatric disorders.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Positions of tandem repeats in the genome and their functional effects.
Fig. 2

Similar content being viewed by others

References

  1. Fondon JW 3rd, Hammock EA, Hannan AJ, King DG. Simple sequence repeats: genetic modulators of brain function and behavior. Trends Neurosci. 2008;31:328–34.

    Article  CAS  PubMed  Google Scholar 

  2. Gymrek M. A genomic view of short tandem repeats. Curr Opin Genet Dev. 2017;44:9–16.

    Article  CAS  PubMed  Google Scholar 

  3. Hannan AJ. Tandem repeats and repeatomes: delving deeper into the ‘Dark Matter’ of genomes. EBioMedicine. 2018;31:3–4.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Rasekh ME, Hernández Y, Drinan SD, Bass JIF, Benson G. Genome-wide characterization of human minisatellite VNTRs: population-specific alleles and gene expression differences. Nucleic Acids Res. 2021;49:4308–24.

    Article  CAS  Google Scholar 

  5. Course MM, Sulovari A, Gudsnuk K, Eichler EE, Valdmanis PN. Characterizing nucleotide variation and expansion dynamics in human-specific variable number tandem repeats. Genome Res. 2021;31:1313–24.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Grapotte M, Saraswat M, Bessiere C, Menichelli C, Ramilowski JA, Severin J, et al. Discovery of widespread transcription initiation at microsatellites predictable by sequence-based deep neural network. Nat Commun. 2021;12:3297.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Malik I, Kelley CP, Wang ET, Todd PK. Molecular mechanisms underlying nucleotide repeat expansion disorders. Nat Rev Mol Cell Biol. 2021;22:589–607.

    Article  CAS  PubMed  Google Scholar 

  8. Paladin L, Bevilacqua M, Errigo S, Piovesan D, Micetic I, Necci M, et al. RepeatsDB in 2021: improved data and extended classification for protein tandem repeat structures. Nucleic Acids Res. 2021;49:D452–D7.

    Article  CAS  PubMed  Google Scholar 

  9. Boivin M, Deng J, Pfister V, Grandgirard E, Oulad-Abdelghani M, Morlet B, et al. Translation of GGC repeat expansions into a toxic polyglycine protein in NIID defines a novel class of human genetic disorders: the polyG diseases. Neuron 2021;109:1825–35.e5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Contente A, Dittmer A, Koch MC, Roth J, Dobbelstein M. A polymorphic microsatellite that mediates induction of PIG3 by p53. Nat Genet. 2002;30:315–20.

    Article  PubMed  Google Scholar 

  11. Afek A, Schipper JL, Horton J, Gordan R, Lukatsky DB. Protein-DNA binding in the absence of specific base-pair recognition. Proc Natl Acad Sci USA. 2014;111:17140–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Xu T, Cheng D, Zhao YJ, Zhang JL, Zhu XL, Zhang F, et al. Polymorphic tandem DNA repeats activate the human telomerase reverse transcriptase gene. Proc Natl Acad Sci USA. 2021;118:e2019043118.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Evans-Galea MV, Hannan AJ, Carrodus N, Delatycki MB, Saffery R. Epigenetic modifications in trinucleotide repeat diseases. Trends Mol Med. 2013;19:655–63.

    Article  CAS  PubMed  Google Scholar 

  14. Stoger R, Kajimura TM, Brown WT, Laird CD. Epigenetic variation illustrated by DNA methylation patterns of the fragile-X gene FMR1. Hum Mol Genet. 1997;6:1791–801.

    Article  CAS  PubMed  Google Scholar 

  15. Hefferon TW, Groman JD, Yurk CE, Cutting GR. A variable dinucleotide repeat in the CFTR gene contributes to phenotype diversity by forming RNA secondary structures that alter splicing. Proc Natl Acad Sci USA. 2004;101:3504–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Hui J, Hung LH, Heiner M, Schreiner S, Neumuller N, Reither G, et al. Intronic CA-repeat and CA-rich elements: a new class of regulators of mammalian alternative splicing. EMBO J. 2005;24:1988–98.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. De Roeck A, Duchateau L, Van Dongen J, Cacace R, Bjerke M, Van den Bossche T, et al. An intronic VNTR affects splicing of ABCA7 and increases risk of Alzheimer’s disease. Acta Neuropathol. 2018;135:827–37.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Cho DH, Thienes CP, Mahoney SE, Analau E, Filippova GN, Tapscott SJ. Antisense transcription and heterochromatin at the DM1 CTG repeats are constrained by CTCF. Mol Cell. 2005;20:483–9.

    Article  CAS  PubMed  Google Scholar 

  19. Kumari D, Usdin K. Chromatin remodeling in the noncoding repeat expansion diseases. J Biol Chem. 2009;284:7413–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Sun JH, Zhou L, Emerson DJ, Phyo SA, Titus KR, Gong W, et al. Disease-associated short tandem repeats co-localize with chromatin domain boundaries. Cell. 2018;175:224–38.e15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Conlon EG, Lu L, Sharma A, Yamazaki T, Tang T, Shneider NA, et al. The C9ORF72 GGGGCC expansion forms RNA G-quadruplex inclusions and sequesters hnRNP H to disrupt splicing in ALS brains. Elife. 2016;5:e17820.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Rothenburg S, Koch-Nolte F, Rich A, Haag F. A polymorphic dinucleotide repeat in the rat nucleolin gene forms Z-DNA and inhibits promoter activity. Proc Natl Acad Sci USA. 2001;98:8985–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Verstrepen KJ, Jansen A, Lewitter F, Fink GR. Intragenic tandem repeats generate functional variability. Nat Genet. 2005;37:986–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Hammock EA, Young LJ. Microsatellite instability generates diversity in brain and sociobehavioral traits. Science. 2005;308:1630–4.

    Article  CAS  PubMed  Google Scholar 

  25. Chintalaphani SR, Pineda SS, Deveson IW, Kumar KR. An update on the neurological short tandem repeat expansion disorders and the emergence of long-read sequencing diagnostics. Acta Neuropathol Commun. 2021;9:98.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Depienne C, Mandel JL. 30 years of repeat expansion disorders: what have we learned and what are the remaining challenges? Am J Hum Genet. 2021;108:764–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Hannan AJ. Tandem repeats mediating genetic plasticity in health and disease. Nat Rev Genet. 2018;19:286–98.

    Article  CAS  PubMed  Google Scholar 

  28. MacDonald ME, Ambrose CM, Duyao MP, Myers RH, Lin C, Srinidhi L, et al. A novel gene containing a trinucleotide repeat that is expanded and unstable on Huntington’s disease chromosomes. The Huntington’s Disease Collaborative Research Group. Cell. 1993;72:971–83.

    Article  Google Scholar 

  29. Mangiarini L, Sathasivam K, Seller M, Cozens B, Harper A, Hetherington C, et al. Exon 1 of the HD gene with an expanded CAG repeat is sufficient to cause a progressive neurological phenotype in transgenic mice. Cell. 1996;87:493–506.

    Article  CAS  PubMed  Google Scholar 

  30. Ng MY, Levinson DF, Faraone SV, Suarez BK, DeLisi LE, Arinami T, et al. Meta-analysis of 32 genome-wide linkage studies of schizophrenia. Mol Psychiatry. 2009;14:774–85.

    Article  CAS  PubMed  Google Scholar 

  31. DeLisi LE, Shaw SH, Crow TJ, Shields G, Smith AB, Larach VW, et al. A genome-wide scan for linkage to chromosomal regions in 382 sibling pairs with schizophrenia or schizoaffective disorder. Am J Psychiatry. 2002;159:803–12.

    Article  PubMed  Google Scholar 

  32. Bienvenu OJ, Davydow DS, Kendler KS. Psychiatric ‘diseases’ versus behavioral disorders and degree of genetic influence. Psychol Med. 2011;41:33–40.

    Article  CAS  PubMed  Google Scholar 

  33. Chang H, Cai X, Li HJ, Liu WP, Zhao LJ, Zhang CY, et al. Functional genomics identify a regulatory risk variation rs4420550 in the 16p11.2 schizophrenia-associated locus. Biol Psychiatry. 2021;89:246–55.

    Article  CAS  PubMed  Google Scholar 

  34. Yang Z, Zhou D, Li H, Cai X, Liu W, Wang L, et al. The genome-wide risk alleles for psychiatric disorders at 3p21.1 show convergent effects on mRNA expression, cognitive function and mushroom dendritic spine. Mol Psychiatry. 2020;25:48–66.

    Article  CAS  PubMed  Google Scholar 

  35. Wingo TS, Liu Y, Gerasimov ES, Gockley J, Logsdon BA, Duong DM, et al. Brain proteome-wide association study implicates novel proteins in depression pathogenesis. Nat Neurosci. 2021;24:810–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Li S, Li Y, Li X, Liu J, Huo Y, Wang J, et al. Regulatory mechanisms of major depressive disorder risk variants. Mol Psychiatry. 2020;25:1926–45.

    Article  PubMed  Google Scholar 

  37. Huo Y, Li S, Liu J, Li X, Luo XJ. Functional genomics reveal gene regulatory mechanisms underlying schizophrenia risk. Nat Commun. 2019;10:670.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Liu J, Li X, Luo XJ. Proteome-wide association study provides insights into the genetic component of protein abundance in psychiatric disorders. Biol Psychiatry. 2021. https://doi.org/10.1016/j.biopsych.2021.06.022.

  39. Sawaya S, Bagshaw A, Buschiazzo E, Kumar P, Chowdhury S, Black MA, et al. Microsatellite tandem repeats are abundant in human promoters and are associated with regulatory elements. PLoS One. 2013;8:e54710.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Yanez-Cuna JO, Arnold CD, Stampfel G, Boryn LM, Gerlach D, Rath M, et al. Dissection of thousands of cell type-specific enhancers identifies dinucleotide repeat motifs as general enhancer features. Genome Res. 2014;24:1147–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Sawaya SM, Bagshaw AT, Buschiazzo E, Gemmell NJ. Promoter microsatellites as modulators of human gene expression. Adv Exp Med Biol. 2012;769:41–54.

    Article  CAS  PubMed  Google Scholar 

  42. Gymrek M, Willems T, Guilmatre A, Zeng H, Markus B, Georgiev S, et al. Abundant contribution of short tandem repeats to gene expression variation in humans. Nat Genet. 2016;48:22–9.

    Article  CAS  PubMed  Google Scholar 

  43. Bakhtiari M, Park J, Ding YC, Shleizer-Burko S, Neuhausen SL, Halldorsson BV, et al. Variable number tandem repeats mediate the expression of proximal genes. Nat Commun. 2021;12:2075.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Quilez J, Guilmatre A, Garg P, Highnam G, Gymrek M, Erlich Y, et al. Polymorphic tandem repeats within gene promoters act as modifiers of gene expression and DNA methylation in humans. Nucleic Acids Res. 2016;44:3750–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Garg P, Martin-Trujillo A, Rodriguez OL, Gies SJ, Hadelia E, Jadhav B, et al. Pervasive cis effects of variation in copy number of large tandem repeats on local DNA methylation and gene expression. Am J Hum Genet. 2021;108:809–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Giesselmann P, Brandl B, Raimondeau E, Bowen R, Rohrandt C, Tandon R, et al. Analysis of short tandem repeat expansions and their methylation state with nanopore sequencing. Nat Biotechnol. 2019;37:1478–81.

    Article  CAS  PubMed  Google Scholar 

  47. Visscher PM, Wray NR, Zhang Q, Sklar P, McCarthy MI, Brown MA, et al. 10 years of GWAS discovery: biology, function, and translation. Am J Hum Genet. 2017;101:5–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Edwards SL, Beesley J, French JD, Dunning AM. Beyond GWASs: illuminating the dark road from association to function. Am J Hum Genet. 2013;93:779–97.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Sullivan PF, Kendler KS, Neale MC. Schizophrenia as a complex trait: evidence from a meta-analysis of twin studies. Arch Gen Psychiatry. 2003;60:1187–92.

    Article  PubMed  Google Scholar 

  50. Smeland OB, Frei O, Dale AM, Andreassen OA. The polygenic architecture of schizophrenia - rethinking pathogenesis and nosology. Nat Rev Neurol. 2020;16:366–79.

    Article  PubMed  Google Scholar 

  51. Gordovez FJA, McMahon FJ. The genetics of bipolar disorder. Mol Psychiatry. 2020;25:544–59.

    Article  PubMed  Google Scholar 

  52. Zhang C, Xiao X, Li T, Li M. Translational genomics and beyond in bipolar disorder. Mol Psychiatry. 2021;26:186–202.

    Article  PubMed  Google Scholar 

  53. Owen MJ, Williams NM. Explaining the missing heritability of psychiatric disorders. World Psychiatry. 2021;20:294–5.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Manolio TA, Collins FS, Cox NJ, Goldstein DB, Hindorff LA, Hunter DJ, et al. Finding the missing heritability of complex diseases. Nature. 2009;461:747–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Gymrek M, Goren A. Missing heritability may be hiding in repeats. Science. 2021;373:1440–1.

    Article  CAS  PubMed  Google Scholar 

  56. French JD, Edwards SL. The role of noncoding variants in heritable disease. Trends Genet. 2020;36:880–91.

    Article  CAS  PubMed  Google Scholar 

  57. Fotsing SF, Margoliash J, Wang C, Saini S, Yanicky R, Shleizer-Burko S, et al. The impact of short tandem repeat variation on gene expression. Nat Genet. 2019;51:1652–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Nithianantharajah J, Hannan AJ. Dynamic mutations as digital genetic modulators of brain development, function and dysfunction. Bioessays. 2007;29:525–35.

    Article  CAS  PubMed  Google Scholar 

  59. Sun JX, Helgason A, Masson G, Ebenesersdottir SS, Li H, Mallick S, et al. A direct characterization of human mutation based on microsatellites. Nat Genet. 2012;44:1161–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Willems T, Gymrek M, Highnam G, Mittelman D, Erlich Y, Genomes Project C. The landscape of human STR variation. Genome Res. 2014;24:1894–904.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Gymrek M, Willems T, Reich D, Erlich Y. Interpreting short tandem repeat variations in humans using mutational constraint. Nat Genet. 2017;49:1495–501.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Press MO, Carlson KD, Queitsch C. The overdue promise of short tandem repeat variation for heritability. Trends Genet. 2014;30:504–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Comings DE. Polygenic inheritance and micro/minisatellites. Mol Psychiatry. 1998;3:21–31.

    Article  CAS  PubMed  Google Scholar 

  64. Hannan AJ. Tandem repeat polymorphisms: modulators of disease susceptibility and candidates for ‘missing heritability’. Trends Genet. 2010;26:59–65.

    Article  CAS  PubMed  Google Scholar 

  65. Brookes KJ. The VNTR in complex disorders: the forgotten polymorphisms? A functional way forward? Genomics. 2013;101:273–81.

    Article  CAS  PubMed  Google Scholar 

  66. Gardiner SL, van Belzen MJ, Boogaard MW, van Roon-Mom WMC, Rozing MP, van Hemert AM, et al. Huntingtin gene repeat size variations affect risk of lifetime depression. Transl Psychiatry. 2017;7:1277.

    Article  PubMed  PubMed Central  Google Scholar 

  67. Anttila V, Bulik-Sullivan B, Finucane HK, Walters RK, Bras J, Brainstorm Consortium, et al. Analysis of shared heritability in common disorders of the brain. Science. 2018;360:eaap8757.

  68. Grove J, Ripke S, Als TD, Mattheisen M, Walters RK, Won H, et al. Identification of common genetic risk variants for autism spectrum disorder. Nat Genet. 2019;51:431–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Trost B, Engchuan W, Nguyen CM, Thiruvahindrapuram B, Dolzhenko E, Backstrom I, et al. Genome-wide detection of tandem DNA repeats that are expanded in autism. Nature. 2020;586:80–6.

    Article  CAS  PubMed  Google Scholar 

  70. Mitra I, Huang B, Mousavi N, Ma N, Lamkin M, Yanicky R, et al. Patterns of de novo tandem repeat mutations and their role in autism. Nature. 2021;589:246–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Hannan AJ. Repeat DNA expands our understanding of autism spectrum disorder. Nature. 2021;589:200–2.

    Article  CAS  PubMed  Google Scholar 

  72. Vincent JB. Unstable repeat expansion in major psychiatric disorders: two decades on, is dynamic DNA back on the menu? Psychiatr Genet. 2016;26:156–65.

    Article  CAS  PubMed  Google Scholar 

  73. Mojarad BA, Yin Y, Manshaei R, Backstrom I, Costain G, Heung T, et al. Genome sequencing broadens the range of contributing variants with clinical implications in schizophrenia. Transl Psychiatry. 2021;11:84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Fan JB, Sklar P. Meta-analysis reveals association between serotonin transporter gene STin2 VNTR polymorphism and schizophrenia. Mol Psychiatry. 2005;10:891.

    Article  Google Scholar 

  75. Xu FL, Wang BJ, Yao J. Association between the SLC6A4 gene and schizophrenia: an updated meta-analysis. Neuropsychiatr Dis Treat. 2019;15:143–55.

    Article  CAS  PubMed  Google Scholar 

  76. Jiang HY, Qiao F, Xu XF, Yang Y, Bai Y, Jiang LL. Meta-analysis confirms a functional polymorphism (5-HTTLPR) in the serotonin transporter gene conferring risk of bipolar disorder in European populations. Neurosci Lett. 2013;549:191–6.

    Article  CAS  PubMed  Google Scholar 

  77. Gamma F, Faraone SV, Glatt SJ, Yeh YC, Tsuang MT. Meta-analysis shows schizophrenia is not associated with the 40-base-pair repeat polymorphism of the dopamine transporter gene. Schizophr Res. 2005;73:55–8.

    Article  CAS  PubMed  Google Scholar 

  78. Franke B, Hoogman M, Vasquez AA, Heister JGAM, Savelkoul PJ, Naber M, et al. Association of the dopamine transporter (SLC6A3/DAT1) gene 9-6 haplotype with adult ADHD. Am J Med Genet B Neuropsychiatr Genet. 2008;147B:1576–9.

    Article  CAS  PubMed  Google Scholar 

  79. Pinsonneault JK, Han DD, Burdick KE, Kataki M, Bertolino A, Malhotra AK, et al. Dopamine transporter gene variant affecting expression in human brain is associated with bipolar disorder. Neuropsychopharmacology. 2011;36:1644–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Xu FL, Wu X, Zhang JJ, Wang BJ, Yao J. A meta-analysis of data associating DRD4 gene polymorphisms with schizophrenia. Neuropsychiatr Dis Treat. 2018;14:153–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Hattori E, Nakajima M, Yamada K, Iwayama Y, Toyota T, Saitou N, et al. Variable number of tandem repeat polymorphisms of DRD4: re-evaluation of selection hypothesis and analysis of association with schizophrenia. Eur J Hum Genet. 2009;17:793–801.

    Article  CAS  PubMed  Google Scholar 

  82. Bonvicini C, Cortese S, Maj C, Baune BT, Faraone SV, Scassellati C. DRD4 48 bp multiallelic variants as age-population-specific biomarkers in attention-deficit/hyperactivity disorder. Transl Psychiatry. 2020;10:70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Liu Z, Huang L, Luo XJ, Wu L, Li M. MAOA variants and genetic susceptibility to major psychiatric disorders. Mol Neurobiol. 2016;53:4319–27.

    Article  CAS  PubMed  Google Scholar 

  84. Li D, He L. Meta-study on association between the monoamine oxidase A gene (MAOA) and schizophrenia. Am J Med Genet B Neuropsychiatr Genet. 2008;147B:174–8.

    Article  CAS  PubMed  Google Scholar 

  85. Zhang J, Chen Y, Zhang K, Yang H, Sun Y, Fang Y, et al. A cis-phase interaction study of genetic variants within the MAOA gene in major depressive disorder. Biol Psychiatry. 2010;68:795–800.

    Article  CAS  PubMed  Google Scholar 

  86. Tunbridge EM, Narajos M, Harrison CH, Beresford C, Cipriani A, Harrison PJ. Which dopamine polymorphisms are functional? Systematic review and meta-analysis of COMT, DAT, DBH, DDC, DRD1-5, MAOA, MAOB, TH, VMAT1, and VMAT2. Biol Psychiatry. 2019;86:608–20.

    Article  CAS  PubMed  Google Scholar 

  87. Van Tol HH, Bunzow JR, Guan HC, Sunahara RK, Seeman P, Niznik HB, et al. Cloning of the gene for a human dopamine D4 receptor with high affinity for the antipsychotic clozapine. Nature. 1991;350:610–4.

    Article  PubMed  Google Scholar 

  88. Spencer TJ, Biederman J, Faraone SV, Madras BK, Bonab AA, Dougherty DD, et al. Functional genomics of attention-deficit/hyperactivity disorder (ADHD) risk alleles on dopamine transporter binding in ADHD and healthy control subjects. Biol Psychiatry. 2013;74:84–9.

    Article  CAS  PubMed  Google Scholar 

  89. MacKenzie A, Quinn J. A serotonin transporter gene intron 2 polymorphic region, correlated with affective disorders, has allele-dependent differential enhancer-like properties in the mouse embryo. Proc Natl Acad Sci USA. 1999;96:15251–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Ripke S, O’Dushlaine C, Chambert K, Moran JL, Kahler AK, Akterin S, et al. Genome-wide association analysis identifies 13 new risk loci for schizophrenia. Nat Genet. 2013;45:1150–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Schizophrenia Working Group of the Psychiatric Genomics Consortium. Biological insights from 108 schizophrenia-associated genetic loci. Nature. 2014;511:421–7.

    Article  PubMed Central  Google Scholar 

  92. Cross-Disorder Group of the Psychiatric Genomics Consortium. Identification of risk loci with shared effects on five major psychiatric disorders: a genome-wide analysis. Lancet. 2013;381:1371–9.

    Article  PubMed Central  Google Scholar 

  93. Li M, Jaffe AE, Straub RE, Tao R, Shin JH, Wang Y, et al. A human-specific AS3MT isoform and BORCS7 are molecular risk factors in the 10q24.32 schizophrenia-associated locus. Nat Med. 2016;22:649–56.

    Article  CAS  PubMed  Google Scholar 

  94. Cai X, Yang ZH, Li HJ, Xiao X, Li M, Chang H. A human-specific schizophrenia risk tandem repeat affects alternative splicing of a human-unique isoform AS3MTd2d3 and mushroom dendritic spine density. Schizophr Bull. 2021;47:219–27.

    Article  PubMed  Google Scholar 

  95. Takahashi Y, Maynard KR, Tippani M, Jaffe AE, Martinowich K, Kleinman JE et al. Single molecule in situ hybridization reveals distinct localizations of schizophrenia risk-related transcripts SNX19 and AS3MT in human brain. Mol Psychiatry. 2021, https://doi.org/10.1038/s41380-021-01046-9.

  96. Zhang CY, Xiao X, Zhang Z, Hu Z, Li M An alternative splicing hypothesis for neuropathology of schizophrenia: evidence from studies on historical candidate genes and multi-omics data. Mol Psychiatry. 2021, https://doi.org/10.1038/s41380-021-01037-w.

  97. Zhao W, Zhang Q, Chen X, Li Y, Li X, Du B, et al. The VNTR of the AS3MT gene is associated with brain activations during a memory span task and their training-induced plasticity. Psychol Med. 2021;55:1927–32.

    Article  Google Scholar 

  98. Payseur BA, Place M, Weber JL. Linkage disequilibrium between STRPs and SNPs across the human genome. Am J Hum Genet. 2008;82:1039–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Warburton A, Breen G, Rujescu D, Bubb VJ, Quinn JP. Characterization of a REST-regulated internal promoter in the schizophrenia genome-wide associated gene MIR137. Schizophr Bull. 2015;41:698–707.

    Article  PubMed  Google Scholar 

  100. Warburton A, Breen G, Bubb VJ, Quinn JP. A GWAS SNP for schizophrenia is linked to the internal MIR137 promoter and supports differential allele-specific expression. Schizophr Bull. 2016;42:1003–8.

    Article  PubMed  Google Scholar 

  101. Strazisar M, Cammaerts S, van der Ven K, Forero DA, Lenaerts AS, Nordin A, et al. MIR137 variants identified in psychiatric patients affect synaptogenesis and neuronal transmission gene sets. Mol Psychiatry. 2015;20:472–81.

    Article  CAS  PubMed  Google Scholar 

  102. Mamdani M, McMichael GO, Gadepalli V, Williamson V, Parker EK, Haroutunian V, et al. Differential regulation of schizophrenia-associated microRNA gene function by variable number tandem repeats (VNTR) polymorphism. Schizophr Res. 2013;151:284–6.

    Article  PubMed  PubMed Central  Google Scholar 

  103. Pacheco A, Berger R, Freedman R, Law AJ. A VNTR regulates miR-137 expression through novel alternative splicing and contributes to risk for schizophrenia. Sci Rep. 2019;9:11793.

    Article  PubMed  PubMed Central  Google Scholar 

  104. Mahmoudi E, Atkins JR, Quide Y, Reay WR, Cairns HM, Fitzsimmons C, et al. The MIR137 VNTR rs58335419 is associated with cognitive impairment in schizophrenia and altered cortical morphology. Schizophr Bull. 2021;47:495–504.

    Article  PubMed  Google Scholar 

  105. Gonzalez-Giraldo Y, Gonzalez-Reyes RE, Forero DA. A functional variant in MIR137, a candidate gene for schizophrenia, affects Stroop test performance in young adults. Psychiatry Res. 2016;236:202–5.

    Article  CAS  PubMed  Google Scholar 

  106. Song JHT, Lowe CB, Kingsley DM. Characterization of a human-specific tandem repeat associated with bipolar disorder and schizophrenia. Am J Hum Genet. 2018;103:421–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Sulovari A, Li R, Audano PA, Porubsky D, Vollger MR, Logsdon GA, et al. Human-specific tandem repeat expansion and differential gene expression during primate evolution. Proc Natl Acad Sci USA. 2019;116:23243–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Mullins N, Forstner AJ, O’Connell KS, Coombes B, Coleman JRI, Qiao Z, et al. Genome-wide association study of more than 40,000 bipolar disorder cases provides new insights into the underlying biology. Nat Genet. 2021;53:817–29.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Prata DP, Mechelli A, Fu CH, Picchioni M, Toulopoulou T, Bramon E, et al. Epistasis between the DAT 3’ UTR VNTR and the COMT Val158Met SNP on cortical function in healthy subjects and patients with schizophrenia. Proc Natl Acad Sci USA. 2009;106:13600–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Pezawas L, Meyer-Lindenberg A, Goldman AL, Verchinski BA, Chen G, Kolachana BS, et al. Evidence of biologic epistasis between BDNF and SLC6A4 and implications for depression. Mol Psychiatry. 2008;13:709–16.

    Article  CAS  PubMed  Google Scholar 

  111. Pezawas L, Meyer-Lindenberg A, Drabant EM, Verchinski BA, Munoz KE, Kolachana BS, et al. 5-HTTLPR polymorphism impacts human cingulate-amygdala interactions: a genetic susceptibility mechanism for depression. Nat Neurosci. 2005;8:828–34.

    Article  CAS  PubMed  Google Scholar 

  112. Grube S, Gerchen MF, Adamcio B, Pardo LA, Martin S, Malzahn D, et al. A CAG repeat polymorphism of KCNN3 predicts SK3 channel function and cognitive performance in schizophrenia. EMBO Mol Med. 2011;3:309–19.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Schultz JL, Saft C, Nopoulos PC. Association of CAG repeat length in the Huntington gene with cognitive performance in young adults. Neurology. 2021;96:e2407–e13.

    Article  PubMed  Google Scholar 

  114. Lee JK, Conrad A, Epping E, Mathews K, Magnotta V, Dawson JD, et al. Effect of trinucleotide repeats in the Huntington’s gene on intelligence. EBioMedicine. 2018;31:47–53.

    Article  PubMed  PubMed Central  Google Scholar 

  115. Benjamin J, Li L, Patterson C, Greenberg BD, Murphy DL, Hamer DH. Population and familial association between the D4 dopamine receptor gene and measures of novelty seeking. Nat Genet. 1996;12:81–4.

    Article  CAS  PubMed  Google Scholar 

  116. Ebstein RP, Novick O, Umansky R, Priel B, Osher Y, Blaine D, et al. Dopamine D4 receptor (D4DR) exon III polymorphism associated with the human personality trait of novelty seeking. Nat Genet. 1996;12:78–80.

    Article  CAS  PubMed  Google Scholar 

  117. Gelernter J, Kranzler H, Coccaro E, Siever L, New A, Mulgrew CL. D4 dopamine-receptor (DRD4) alleles and novelty seeking in substance-dependent, personality-disorder, and control subjects. Am J Hum Genet. 1997;61:1144–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Prata DP, Mechelli A, Picchioni MM, Fu CH, Toulopoulou T, Bramon E, et al. Altered effect of dopamine transporter 3’UTR VNTR genotype on prefrontal and striatal function in schizophrenia. Arch Gen Psychiatry. 2009;66:1162–72.

    Article  CAS  PubMed  Google Scholar 

  119. Grace AA. Dysregulation of the dopamine system in the pathophysiology of schizophrenia and depression. Nat Rev Neurosci. 2016;17:524–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Howes OD, Kapur S. The dopamine hypothesis of schizophrenia: version III–the final common pathway. Schizophr Bull. 2009;35:549–62.

    Article  PubMed  PubMed Central  Google Scholar 

  121. Shumay E, Wiers CE, Shokri-Kojori E, Kim SW, Hodgkinson CA, Sun H, et al. New repeat polymorphism in the AKT1 gene predicts striatal dopamine D2/D3 receptor availability and stimulant-induced dopamine release in the healthy human brain. J Neurosci. 2017;37:4982–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. D’Ambrosio E, Dahoun T, Pardinas AF, Veronese M, Bloomfield MAP, Jauhar S, et al. The effect of a genetic variant at the schizophrenia associated AS3MT/BORCS7 locus on striatal dopamine function: A PET imaging study. Psychiatry Res Neuroimaging. 2019;291:34–41.

    Article  PubMed  PubMed Central  Google Scholar 

  123. Wedenoja J, Loukola A, Tuulio-Henriksson A, Paunio T, Ekelund J, Silander K, et al. Replication of linkage on chromosome 7q22 and association of the regional Reelin gene with working memory in schizophrenia families. Mol Psychiatry. 2008;13:673–84.

    Article  CAS  PubMed  Google Scholar 

  124. Wedenoja J, Tuulio-Henriksson A, Suvisaari J, Loukola A, Paunio T, Partonen T, et al. Replication of association between working memory and Reelin, a potential modifier gene in schizophrenia. Biol Psychiatry. 2010;67:983–91.

    Article  CAS  PubMed  Google Scholar 

  125. Border R, Smolen A, Corley RP, Stallings MC, Brown SA, Conger RD, et al. Imputation of behavioral candidate gene repeat variants in 486,551 publicly-available UK Biobank individuals. Eur J Hum Genet. 2019;27:963–9.

    Article  PubMed  PubMed Central  Google Scholar 

  126. Martin S, Lazzarini M, Dullin C, Balakrishnan S, Gomes FV, Ninkovic M, et al. SK3 channel overexpression in mice causes hippocampal shrinkage associated with cognitive impairments. Mol Neurobiol. 2017;54:1078–91.

    Article  CAS  PubMed  Google Scholar 

  127. Blank T, Nijholt I, Kye MJ, Radulovic J, Spiess J. Small-conductance, Ca2+-activated K+ channel SK3 generates age-related memory and LTP deficits. Nat Neurosci. 2003;6:911–2.

    Article  CAS  PubMed  Google Scholar 

  128. Chandy KG, Fantino E, Wittekindt O, Kalman K, Tong LL, Ho TH, et al. Isolation of a novel potassium channel gene hSKCa3 containing a polymorphic CAG repeat: a candidate for schizophrenia and bipolar disorder? Mol Psychiatry. 1998;3:32–7.

    Article  CAS  PubMed  Google Scholar 

  129. Bowen T, Guy CA, Craddock N, Cardno AG, Williams NM, Spurlock G, et al. Further support for an association between a polymorphic CAG repeat in the hKCa3 gene and schizophrenia. Mol Psychiatry 1998;3:266–9.

    Article  CAS  PubMed  Google Scholar 

  130. Dror V, Shamir E, Ghanshani S, Kimhi R, Swartz M, Barak Y, et al. hKCa3/KCNN3 potassium channel gene: association of longer CAG repeats with schizophrenia in Israeli Ashkenazi Jews, expression in human tissues and localization to chromosome 1q21. Mol Psychiatry. 1999;4:254–60.

    Article  CAS  PubMed  Google Scholar 

  131. Glatt SJ, Faraone SV, Tsuang MT. CAG-repeat length in exon 1 of KCNN3 does not influence risk for schizophrenia or bipolar disorder: a meta-analysis of association studies. Am J Med Genet B Neuropsychiatr Genet. 2003;121B:14–20.

    Article  PubMed  Google Scholar 

  132. Jansen A, Gemayel R, Verstrepen KJ. Unstable microsatellite repeats facilitate rapid evolution of coding and regulatory sequences. Genome Dyn. 2012;7:108–25.

    Article  CAS  PubMed  Google Scholar 

  133. Mukamel RE, Handsaker RE, Sherman MA, Barton AR, Zheng Y, McCarroll SA et al. Protein-coding repeat polymorphisms strongly shape diverse human phenotypes. bioRxiv. 2021, https://doi.org/10.1101/2021.01.19.427332.

  134. Ellegren H. Microsatellites: Simple sequences with complex evolution. Nat Rev Genet. 2004;5:435–45.

    Article  CAS  PubMed  Google Scholar 

  135. Kashi Y, King DG. Simple sequence repeats as advantageous mutators in evolution. Trends Genet. 2006;22:253–9.

    Article  CAS  PubMed  Google Scholar 

  136. Gemayel R, Vinces MD, Legendre M, Verstrepen KJ. Variable tandem repeats accelerate evolution of coding and regulatory sequences. Annu Rev Genet. 2010;44:445–77.

    Article  CAS  PubMed  Google Scholar 

  137. Course MM, Gudsnuk K, Smukowski SN, Winston K, Desai N, Ross JP, et al. Evolution of a human-specific tandem repeat associated with ALS. Am J Hum Genet. 2020;107:445–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Wang E, Ding YC, Flodman P, Kidd JR, Kidd KK, Grady DL, et al. The genetic architecture of selection at the human dopamine receptor D4 (DRD4) gene locus. Am J Hum Genet. 2004;74:931–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Ding YC, Chi HC, Grady DL, Morishima A, Kidd JR, Kidd KK, et al. Evidence of positive selection acting at the human dopamine receptor D4 gene locus. Proc Natl Acad Sci USA. 2002;99:309–14.

    Article  CAS  PubMed  Google Scholar 

  140. Pheasant M, Mattick JS. Raising the estimate of functional human sequences. Genome Res. 2007;17:1245–53.

    Article  CAS  PubMed  Google Scholar 

  141. Vowles EJ, Amos W. Evidence for widespread convergent evolution around human microsatellites. PLoS Biol. 2004;2:E199.

    Article  PubMed  PubMed Central  Google Scholar 

  142. Vallender EJ, Mekel-Bobrov N, Lahn BT. Genetic basis of human brain evolution. Trends Neurosci. 2008;31:637–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Roth G, Dicke U. Evolution of the brain and intelligence. Trends Cogn Sci. 2005;9:250–7.

    Article  PubMed  Google Scholar 

  144. Sonay TB, Carvalho T, Robinson MD, Greminger MP, Krutzen M, Comas D, et al. Tandem repeat variation in human and great ape populations and its impact on gene expression divergence. Genome Res. 2015;25:1591–9.

    Article  CAS  Google Scholar 

  145. Kim K, Bang S, Yoo D, Kim H, Suzuki S. De novo emergence and potential function of human-specific tandem repeats in brain-related loci. Hum Genet. 2019;138:661–72.

    Article  CAS  PubMed  Google Scholar 

  146. Johansson PA, Brattas PL, Douse CH, Hsieh P, Pontis J, Grassi D. et al. A human-specific structural variation at the ZNF558 locus controls a gene regulatory network during forebrain development. bioRxiv. 2020, https://doi.org/10.1101/2020.08.18.255562.

  147. Namba T, Doczi J, Pinson A, Xing L, Kalebic N, Wilsch-Brauninger M, et al. Human-specific ARHGAP11B acts in mitochondria to expand neocortical progenitors by glutaminolysis. Neuron. 2020;105:867–81.e9.

    Article  CAS  PubMed  Google Scholar 

  148. Yu C, Baune BT, Wong ML, Licinio J. Investigation of short tandem repeats in major depression using whole-genome sequencing data. J Affect Disord. 2018;232:305–9.

    Article  CAS  PubMed  Google Scholar 

  149. Jakubosky D, Smith EN, D’Antonio M, Jan Bonder M, Young Greenwald WW, D’Antonio-Chronowska A, et al. Discovery and quality analysis of a comprehensive set of structural variants and short tandem repeats. Nat Commun. 2020;11:2928.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Tankard RM, Bennett MF, Degorski P, Delatycki MB, Lockhart PJ, Bahlo M. Detecting expansions of tandem repeats in cohorts sequenced with short-read sequencing data. Am J Hum Genet. 2018;103:858–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Mousavi N, Shleizer-Burko S, Yanicky R, Gymrek M. Profiling the genome-wide landscape of tandem repeat expansions. Nucleic Acids Res. 2019;47:e90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Shin G, Grimes SM, Lee H, Lau BT, Xia LC, Ji HP. CRISPR-Cas9-targeted fragmentation and selective sequencing enable massively parallel microsatellite analysis. Nat Commun. 2017;8:14291.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. De Roeck A, De Coster W, Bossaerts L, Cacace R, De Pooter T, Van, Dongen J, et al. NanoSatellite: accurate characterization of expanded tandem repeat length and sequence through whole genome long-read sequencing on PromethION. Genome Biol. 2019;20:239.

    Article  PubMed  PubMed Central  Google Scholar 

  154. Lu TY. The Human Genome Structural Variation Consortium, Chaisson MJP. Profiling variable-number tandem repeat variation across populations using repeat-pangenome graphs. Nat Commun. 2021;12:4250.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Willems T, Zielinski D, Yuan J, Gordon A, Gymrek M, Erlich Y. Genome-wide profiling of heritable and de novo STR variations. Nat Methods. 2017;14:590–2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Mousavi N, Margoliash J, Pusarla N, Saini S, Yanicky R, Gymrek M. TRTools: a toolkit for genome-wide analysis of tandem repeats. Bioinformatics. 2021;37:731–3.

    Article  CAS  PubMed  Google Scholar 

  157. Duitama J, Zablotskaya A, Gemayel R, Jansen A, Belet S, Vermeesch JR, et al. Large-scale analysis of tandem repeat variability in the human genome. Nucleic Acids Res. 2014;42:5728–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Harris RS, Cechova M, Makova KD. Noise-cancelling repeat finder: uncovering tandem repeats in error-prone long-read sequencing data. Bioinformatics. 2019;35:4809–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Genovese LM, Mosca MM, Pellegrini M, Geraci F. Dot2dot: accurate whole-genome tandem repeats discovery. Bioinformatics. 2019;35:914–22.

    Article  CAS  PubMed  Google Scholar 

  160. Saini S, Mitra I, Mousavi N, Fotsing SF, Gymrek M. A reference haplotype panel for genome-wide imputation of short tandem repeats. Nat Commun. 2018;9:4397.

    Article  PubMed  PubMed Central  Google Scholar 

  161. Buckholtz JW, Callicott JH, Kolachana B, Hariri AR, Goldberg TE, Genderson M, et al. Genetic variation in MAOA modulates ventromedial prefrontal circuitry mediating individual differences in human personality. Mol Psychiatry. 2008;13:313–24.

    Article  CAS  PubMed  Google Scholar 

  162. Harneit A, Braun U, Geiger LS, Zang Z, Hakobjan M, van Donkelaar MMJ, et al. MAOA-VNTR genotype affects structural and functional connectivity in distributed brain networks. Hum Brain Mapp. 2019;40:5202–12.

    Article  PubMed  PubMed Central  Google Scholar 

  163. Sambataro F, Podell JE, Murty VP, Das S, Kolachana B, Goldberg TE, et al. A variable number of tandem repeats in the 3’-untranslated region of the dopamine transporter modulates striatal function during working memory updating across the adult age span. Eur J Neurosci. 2015;42:1912–8.

    Article  PubMed  Google Scholar 

  164. Dreher JC, Kohn P, Kolachana B, Weinberger DR, Berman KF. Variation in dopamine genes influences responsivity of the human reward system. Proc Natl Acad Sci USA. 2009;106:617–22.

    Article  CAS  PubMed  Google Scholar 

  165. Hariri AR, Mattay VS, Tessitore A, Kolachana B, Fera F, Goldman D, et al. Serotonin transporter genetic variation and the response of the human amygdala. Science. 2002;297:400–3.

    Article  CAS  PubMed  Google Scholar 

  166. Hariri AR, Drabant EM, Munoz KE, Kolachana BS, Mattay VS, Egan MF, et al. A susceptibility gene for affective disorders and the response of the human amygdala. Arch Gen Psychiatry. 2005;62:146–52.

    Article  CAS  PubMed  Google Scholar 

  167. Heinz A, Smolka MN, Braus DF, Wrase J, Beck A, Flor H, et al. Serotonin transporter genotype (5-HTTLPR): effects of neutral and undefined conditions on amygdala activation. Biol Psychiatry. 2007;61:1011–4.

    Article  CAS  PubMed  Google Scholar 

  168. Lesch KP, Bengel D, Heils A, Sabol SZ, Greenberg BD, Petri S, et al. Association of anxiety-related traits with a polymorphism in the serotonin transporter gene regulatory region. Science. 1996;274:1527–31.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the Strategic Priority Research Program of the Chinese Academy of Sciences (XDPB17), Yunnan Fundamental Research Projects (202101AW070020 to XX), National Natural Science Foundation of China (81971259 to ML, 31872778 to ZH), National Nature Science Foundation of China Key Project (81630030 and 81920108018 to TL), Special Foundation for Brain Research from Science and Technology Program of Guangdong (2018B030334001 to TL), Project for Hangzhou Medical Disciplines of Excellence and Key Project for Hangzhou Medical Disciplines (202004A11 to TL), the Western Light Innovative Research Team of Chinses Academy of Sciences, and the Innovative Research Team of Science and Technology department of Yunnan Province (2019HC004). Zhonghua Hu was also supported by Xiangya Hospital Start-up Research Grants, the innovative team program 2019RS1010 from Department of Science & Technology of Hunan Province, the innovation-driven team project 2020CX016 from Central South University, the Discipline Innovative Engineering Plan (111 Program) of China (B13036), a key laboratory grant from Hunan province (2016TP1006), and Hunan 100 Talents Program. We would like to apologize to those authors whose work were not cited or elaborately represented in this review due to space constraints.

Author information

Authors and Affiliations

Authors

Contributions

XX, CYZ, ZH, ML, and TL conceived and designed the study. ZZ, ML, and TL helped all aspects of manuscript written and results interpretation. XX, ML, CYZ, and ZH drafted the first version of the manuscript. All authors revised the manuscript critically and approved the final version.

Corresponding authors

Correspondence to Zhonghua Hu, Ming Li or Tao Li.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xiao, X., Zhang, CY., Zhang, Z. et al. Revisiting tandem repeats in psychiatric disorders from perspectives of genetics, physiology, and brain evolution. Mol Psychiatry 27, 466–475 (2022). https://doi.org/10.1038/s41380-021-01329-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41380-021-01329-1

This article is cited by

Search

Quick links