Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Effect of BDNF Val66Met polymorphism on hippocampal subfields in multiple sclerosis patients

Abstract

Brain-derived neurotrophic factor (BDNF) Val66Met polymorphism was shown to strongly affect BDNF function, but its role in modulating gray matter damage in multiple sclerosis (MS) patients is still not clear. Given BDNF relevance on the hippocampus, we aimed to explore BDNF Val66Met polymorphism effect on hippocampal subfield volumes and its role in cognitive functioning in MS patients. Using a 3T scanner, we obtained dual-echo and 3DT1-weighted sequences from 50 MS patients and 15 healthy controls (HC) consecutively enrolled. MS patients also underwent genotype analysis of BDNF, neurological and neuropsychological evaluation. Hippocampal subfields were segmented by using Freesurfer. The BDNF Val66Met polymorphism was found in 22 MS patients (44%). Compared to HC, MS patients had lower volume in: bilateral hippocampus-amygdala transition area (HATA); cornus ammonis (CA)1, granule cell layer of dentate gyrus (GCL-DG), CA4 and CA3 of the left hippocampal head; molecular layer (ML) of the left hippocampal body; presubiculum of right hippocampal body and right fimbria. Compared to BDNF Val66Val, Val66Met MS patients had higher volume in bilateral hippocampal tail; CA1, ML, CA3, CA4, and GCL-DG of left hippocampal head; CA1, ML, and CA3 of the left hippocampal body; left HATA and presubiculum of the right hippocampal head. In MS patients, higher lesion burden was associated with lower volume of presubiculum of right hippocampal body; lower volume of left hippocampal tail was associated with worse visuospatial memory performance; lower volume of left hippocampal head with worse performance in semantic fluency. Our findings suggest the BNDF Val66Met polymorphism may have a protective role in MS patients against both hippocampal atrophy and cognitive impairment. BDNF genotype might be a potential biomarker for predicting cognitive prognosis, and an interesting target to study for neuroprotective strategies.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Graphical representation of hippocampal subfields segmentation.

Similar content being viewed by others

Data availability

The dataset used and analyzed during the current study is available from the corresponding Author on reasonable request.

References

  1. Benedict RHB, Amato MP, DeLuca J, Geurts JJG. Cognitive impairment in multiple sclerosis: clinical management, MRI, and therapeutic avenues. Lancet Neurol. 2020;19:860–71.

    Article  PubMed  Google Scholar 

  2. Rocca MA, De Meo E, Filippi M. Functional MRI in investigating cognitive impairment in multiple sclerosis. Acta Neurol Scand. 2016;134:39–46. Suppl 200

    Article  PubMed  Google Scholar 

  3. Murer MG, Yan Q, Raisman-Vozari R. Brain-derived neurotrophic factor in the control human brain, and in Alzheimer’s disease and Parkinson’s disease. Prog Neurobiol. 2001;63:71–124.

    Article  CAS  PubMed  Google Scholar 

  4. Hartmann M, Heumann R, Lessmann V. Synaptic secretion of BDNF after high-frequency stimulation of glutamatergic synapses. EMBO J 2001;20:5887–97.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Park H, Poo MM. Neurotrophin regulation of neural circuit development and function. Nat Rev Neurosci. 2013;14:7–23.

    Article  CAS  PubMed  Google Scholar 

  6. Egan MF, Kojima M, Callicott JH, Goldberg TE, Kolachana BS, Bertolino A, et al. The BDNF val66met polymorphism affects activity-dependent secretion of BDNF and human memory and hippocampal function. Cell 2003;112:257–69.

    Article  CAS  PubMed  Google Scholar 

  7. Chen ZY, Patel PD, Sant G, Meng CX, Teng KK, Hempstead BL, et al. Variant brain-derived neurotrophic factor (BDNF) (Met66) alters the intracellular trafficking and activity-dependent secretion of wild-type BDNF in neurosecretory cells and cortical neurons. J Neurosci 2004;24:4401–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Bimonte-Nelson HA, Hunter CL, Nelson ME, Granholm AC. Frontal cortex BDNF levels correlate with working memory in an animal model of Down syndrome. Behav Brain Res. 2003;139:47–57.

    Article  CAS  PubMed  Google Scholar 

  9. Hariri AR, Goldberg TE, Mattay VS, Kolachana BS, Callicott JH, Egan MF, et al. Brain-derived neurotrophic factor val66met polymorphism affects human memory-related hippocampal activity and predicts memory performance. J Neurosci 2003;23:6690–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Hajek T, Kopecek M, Höschl C. Reduced hippocampal volumes in healthy carriers of brain-derived neurotrophic factor Val66Met polymorphism: meta-analysis. World J Biol Psychiatry. 2012;13:178–87.

    Article  PubMed  Google Scholar 

  11. Stadelmann C, Kerschensteiner M, Misgeld T, Brück W, Hohlfeld R, Lassmann H. BDNF and gp145trkB in multiple sclerosis brain lesions: neuroprotective interactions between immune and neuronal cells? Brain 2002;125:75–85.

    Article  PubMed  Google Scholar 

  12. Ramasamy DP, Ramanathan M, Cox JL, Antulov R, Weinstock-Guttman B, Bergsland N, et al. Effect of Met66 allele of the BDNF rs6265 SNP on regional gray matter volumes in patients with multiple sclerosis: a voxel-based morphometry study. Pathophysiology 2011;18:53–60.

    Article  CAS  PubMed  Google Scholar 

  13. Zivadinov R, Weinstock-Guttman B, Benedict R, Tamaño-Blanco M, Hussein S, Abdelrahman N, et al. Preservation of gray matter volume in multiple sclerosis patients with the Met allele of the rs6265 (Val66Met) SNP of brain-derived neurotrophic factor. Hum Mol Genet. 2007;16:2659–68.

    Article  CAS  PubMed  Google Scholar 

  14. Liguori M, Fera F, Gioia MC, Valentino P, Manna I, Condino F, et al. Investigating the role of brain-derived neurotrophic factor in relapsing-remitting multiple sclerosis. Genes Brain Behav. 2007;6:177–83.

    Article  CAS  PubMed  Google Scholar 

  15. Dinacci D, Tessitore A, Russo A, De Bonis ML, Lavorgna L, Picconi O, et al. BDNF Val66Met polymorphism and brain volumes in multiple sclerosis. Neurological Sci. 2011;32:117–23.

    Article  CAS  Google Scholar 

  16. Geurts JJ, Bö L, Roosendaal SD, Hazes T, Daniëls R, Barkhof F, et al. Extensive hippocampal demyelination in multiple sclerosis. J Neuropathol Exp Neurol 2007;66:819–27.

    Article  PubMed  Google Scholar 

  17. Lublin FD, Reingold SC, Cohen JA, Cutter GR, Sørensen PS, Thompson AJ, et al. Defining the clinical course of multiple sclerosis: the 2013 revisions. Neurology 2014;83:278–86.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Thompson AJ, Banwell BL, Barkhof F, Carroll WM, Coetzee T, Comi G, et al. Diagnosis of multiple sclerosis: 2017 revisions of the McDonald criteria. Lancet Neurol. 2018;17:162–73.

    Article  PubMed  Google Scholar 

  19. Kurtzke JF. Rating neurologic impairment in multiple sclerosis: an expanded disability status scale (EDSS). Neurology 1983;33:1444–52.

    Article  CAS  PubMed  Google Scholar 

  20. Amato MP, Portaccio E, Goretti B, Zipoli V, Ricchiuti L, De Caro MF, et al. The Rao’s Brief Repeatable Battery and Stroop Test: normative values with age, education and gender corrections in an Italian population. Mult Scler. 2006;12:787–93.

    Article  CAS  PubMed  Google Scholar 

  21. Stroop JR. Studies of interference in serial verbal reactions. J Exp Psychol. 1935;18:643.

    Article  Google Scholar 

  22. De Meo E, Portaccio E, Giorgio A, Ruano L, Goretti B, Niccolai C, et al. Identifying the distinct cognitive phenotypes in multiple sclerosis. JAMA Neurol. 2021;78:414–25.

  23. Krupp LB, LaRocca NG, Muir-Nash J, Steinberg AD. The fatigue severity scale. Application to patients with multiple sclerosis and systemic lupus erythematosus. Arch Neurol. 1989;46:1121–3.

    Article  CAS  PubMed  Google Scholar 

  24. Montgomery SA, Asberg M. A new depression scale designed to be sensitive to change. Br J Psychiatry 1979;134:382–9.

    Article  CAS  PubMed  Google Scholar 

  25. Bagnoli S, Nacmias B, Tedde A, Guarnieri BM, Cellini E, Petruzzi C, et al. Brain-derived neurotrophic factor genetic variants are not susceptibility factors to Alzheimer’s disease in Italy. Ann Neurol. 2004;55:447–8.

    Article  CAS  PubMed  Google Scholar 

  26. Chard DT, Jackson JS, Miller DH, Wheeler-Kingshott CA. Reducing the impact of white matter lesions on automated measures of brain gray and white matter volumes. J Magn Reson Imaging 2010;32:223–8.

    Article  PubMed  Google Scholar 

  27. Iglesias JE, Augustinack JC, Nguyen K, Player CM, Player A, Wright M, et al. A computational atlas of the hippocampal formation using ex vivo, ultra-high resolution MRI: Application to adaptive segmentation of in vivo MRI. Neuroimage 2015;115:117–37.

    Article  PubMed  Google Scholar 

  28. Fischl B. FreeSurfer. NeuroImage 2012;62:774–81.

    Article  PubMed  Google Scholar 

  29. Samann PG, Iglesias JE, Gutman B, Grotegerd D, Leenings R, Flint C, et al. FreeSurfer-based segmentation of hippocampal subfields: a review of methods and applications, with a novel quality control procedure for ENIGMA studies and other collaborative efforts. Hum Brain Mapp. 2020;1–27.

  30. Sicotte NL, Kern KC, Giesser BS, Arshanapalli A, Schultz A, Montag M, et al. Regional hippocampal atrophy in multiple sclerosis. Brain 2008;131:1134–41.

    Article  CAS  PubMed  Google Scholar 

  31. Cacciaguerra L, Pagani E, Mesaros S, Dackovic J, Dujmovic-Basuroski I, Drulovic J, et al. Dynamic volumetric changes of hippocampal subfields in clinically isolated syndrome patients: A 2-year MRI study. Mult Scler. 2019;25:1232–42.

    Article  PubMed  Google Scholar 

  32. Rocca MA, Barkhof F, De Luca J, Frisen J, Geurts JJG, Hulst HE, et al. The hippocampus in multiple sclerosis. Lancet Neurol. 2018;17:918–26.

    Article  CAS  PubMed  Google Scholar 

  33. Longoni G, Rocca MA, Pagani E, Riccitelli GC, Colombo B, Rodegher M, et al. Deficits in memory and visuospatial learning correlate with regional hippocampal atrophy in MS. Brain Struct Funct. 2015;220:435–44.

    Article  PubMed  Google Scholar 

  34. Gold SM, Kern KC, O’Connor MF, Montag MJ, Kim A, Yoo YS, et al. Smaller cornu ammonis 2-3/dentate gyrus volumes and elevated cortisol in multiple sclerosis patients with depressive symptoms. Biol Psychiatry. 2010;68:553–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Wang X, Pal R, Chen XW, Limpeanchob N, Kumar KN, Michaelis EK. High intrinsic oxidative stress may underlie selective vulnerability of the hippocampal CA1 region. Brain Res Mol Brain Res. 2005;140:120–6.

    Article  CAS  PubMed  Google Scholar 

  36. Vallejo-Illarramendi A, Domercq M, Pérez-Cerdá F, Ravid R, Matute C. Increased expression and function of glutamate transporters in multiple sclerosis. Neurobiol Dis. 2006;21:154–64.

    Article  CAS  PubMed  Google Scholar 

  37. Papadopoulos D, Dukes S, Patel R, Nicholas R, Vora A, Reynolds R. Substantial archaeocortical atrophy and neuronal loss in multiple sclerosis. Brain Pathol. 2009;19:238–53.

    Article  PubMed  Google Scholar 

  38. Planche V, Koubiyr I, Romero JE, Manjon JV, Coupé P, Deloire M, et al. Regional hippocampal vulnerability in early multiple sclerosis: dynamic pathological spreading from dentate gyrus to CA1. Hum Brain Mapp. 2018;39:1814–24.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Duvernoy H, Cattin F, Risold P-Y Anatomy. In: Duvernoy HM, Cattin F, Risold P-Y, editors. The human hippocampus: functional anatomy, vascularization and serial sections with MRI. Berlin, Heidelberg: Springer Berlin Heidelberg; 2013. p. 39–68.

  40. Haukvik UK, Gurholt TP, Nerland S, Elvsåshagen T, Akudjedu TN, Alda M, et al. In vivo hippocampal subfield volumes in bipolar disorder—A mega-analysis from The Enhancing Neuro Imaging Genetics through Meta-Analysis Bipolar Disorder Working Group. Human Brain Mapping. 2020;1–14.

  41. O’Mara SM, Commins S, Anderson M, Gigg J. The subiculum: a review of form, physiology and function. Prog Neurobiol. 2001;64:129–55.

    Article  PubMed  Google Scholar 

  42. Ishihara Y, Fukuda T. Immunohistochemical investigation of the internal structure of the mouse subiculum. Neuroscience 2016;337:242–66.

    Article  CAS  PubMed  Google Scholar 

  43. Fudge JL, deCampo DM, Becoats KT. Revisiting the hippocampal–amygdala pathway in primates: association with immature-appearing neurons. Neuroscience 2012;212:104–19.

    Article  CAS  PubMed  Google Scholar 

  44. Kishi T, Tsumori T, Yokota S, Yasui Y. Topographical projection from the hippocampal formation to the amygdala: a combined anterograde and retrograde tracing study in the rat. J Comp Neurol. 2006;496:349–68.

    Article  PubMed  Google Scholar 

  45. Toda T, Parylak SL, Linker SB, Gage FH. The role of adult hippocampal neurogenesis in brain health and disease. Mol Psychiatry. 2019;24:67–87.

    Article  CAS  PubMed  Google Scholar 

  46. Kuipers SD, Tiron A, Soule J, Messaoudi E, Trentani A, Bramham CR. Selective survival and maturation of adult-born dentate granule cells expressing the immediate early gene Arc/Arg3.1. PLoS One. 2009;4:e4885.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  47. Katoh-Semba R, Asano T, Ueda H, Morishita R, Takeuchi IK, Inaguma Y, et al. Riluzole enhances expression of brain-derived neurotrophic factor with consequent proliferation of granule precursor cells in the rat hippocampus. Faseb j 2002;16:1328–30.

    Article  CAS  PubMed  Google Scholar 

  48. Sairanen M, Lucas G, Ernfors P, Castrén M, Castrén E. Brain-derived neurotrophic factor and antidepressant drugs have different but coordinated effects on neuronal turnover, proliferation, and survival in the adult dentate gyrus. J Neurosci 2005;25:1089–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Scharfman H, Goodman J, Macleod A, Phani S, Antonelli C, Croll S. Increased neurogenesis and the ectopic granule cells after intrahippocampal BDNF infusion in adult rats. Exp Neurol. 2005;192:348–56.

    Article  CAS  PubMed  Google Scholar 

  50. Schmidt HD, Duman RS. Peripheral BDNF produces antidepressant-like effects in cellular and behavioral models. Neuropsychopharmacology 2010;35:2378–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Shirayama Y, Chen AC, Nakagawa S, Russell DS, Duman RS. Brain-derived neurotrophic factor produces antidepressant effects in behavioral models of depression. J Neurosci 2002;22:3251–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Lu B, Nagappan G, Guan X, Nathan PJ, Wren P. BDNF-based synaptic repair as a disease-modifying strategy for neurodegenerative diseases. Nat Rev Neurosci. 2013;14:401–16.

    Article  CAS  PubMed  Google Scholar 

  53. Chen ZY, Jing D, Bath KG, Ieraci A, Khan T, Siao CJ, et al. Genetic variant BDNF (Val66Met) polymorphism alters anxiety-related behavior. Science 2006;314:140–3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Zivadinov R, Bergsland N, Dolezal O, Hussein S, Seidl Z, Dwyer MG, et al. Evolution of cortical and thalamus atrophy and disability progression in early relapsing-remitting MS during 5 years. AJNR Am J Neuroradiol. 2013;34:1931–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Sarchielli P, Greco L, Stipa A, Floridi A, Gallai V. Brain-derived neurotrophic factor in patients with multiple sclerosis. J Neuroimmunol 2002;132:180–8.

    Article  CAS  PubMed  Google Scholar 

  56. Nociti V, Santoro M, Quaranta D, Losavio FA, De Fino C, Giordano R, et al. BDNF rs6265 polymorphism methylation in Multiple Sclerosis: A possible marker of disease progression. PLoS One. 2018;13:e0206140.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  57. Black IB. Trophic regulation of synaptic plasticity. J Neurobiol 1999;41:108–18.

    Article  CAS  PubMed  Google Scholar 

  58. Narisawa-Saito M, Iwakura Y, Kawamura M, Araki K, Kozaki S, Takei N, et al. Brain-derived neurotrophic factor regulates surface expression of alpha-amino-3-hydroxy-5-methyl-4-isoxazoleproprionic acid receptors by enhancing the N-ethylmaleimide-sensitive factor/GluR2 interaction in developing neocortical neurons. J Biol Chem 2002;277:40901–10.

    Article  CAS  PubMed  Google Scholar 

  59. Lee R, Kermani P, Teng KK, Hempstead BL. Regulation of cell survival by secreted proneurotrophins. Science 2001;294:1945–8.

    Article  CAS  PubMed  Google Scholar 

  60. Hasselmo ME, McClelland JL. Neural models of memory. Curr Opin Neurobiol. 1999;9:184–8.

    Article  CAS  PubMed  Google Scholar 

  61. Naber PA, Witter MP, Lopes, Silva FH. Networks of the hippocampal memory system of the rat. The pivotal role of the subiculum. Ann N. Y Acad Sci. 2000;911:392–403.

    Article  CAS  PubMed  Google Scholar 

  62. El-Gaby M, Shipton OA, Paulsen O. Synaptic plasticity and memory: new insights from hippocampal left-right asymmetries. Neuroscientist 2015;21:490–502.

    Article  CAS  PubMed  Google Scholar 

  63. Prinster A, Quarantelli M, Orefice G, Lanzillo R, Brunetti A, Mollica C, et al. Grey matter loss in relapsing–remitting multiple sclerosis: a voxel-based morphometry study. NeuroImage 2006;29:859–67.

    Article  CAS  PubMed  Google Scholar 

  64. Wolbers T, Dudchenko P, Wood E. Spatial memory—a unique window into healthy and pathological aging. Front in Aging Neurosci. 2014;6:35.

    Article  Google Scholar 

  65. Burgess N, Maguire EA, O’Keefe J. The human hippocampus and spatial and episodic memory. Neuron 2002;35:625–41.

    Article  CAS  PubMed  Google Scholar 

  66. Maguire EA, Burgess N, Donnett JG, Frackowiak RSJ, Frith CD, O’Keefe J. Knowing where and getting there: a human navigation network. Science 1998;280:921–4.

    Article  CAS  PubMed  Google Scholar 

  67. Spiers HJ, Burgess N, Maguire EA, Baxendale SA, Hartley T, Thompson PJ, et al. Unilateral temporal lobectomy patients show lateralized topographical and episodic memory deficits in a virtual town. Brain 2001;124:2476–89.

    Article  CAS  PubMed  Google Scholar 

  68. Doeller CF, King JA, Burgess N. Parallel striatal and hippocampal systems for landmarks and boundaries in spatial memory. Proc Natl Acad Sci. 2008;105:5915.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Iglói K, Doeller CF, Berthoz A, Rondi-Reig L, Burgess N. Lateralized human hippocampal activity predicts navigation based on sequence or place memory. Proc Natl Acad Sci USA. 2010;107:14466–71.

    Article  PubMed  PubMed Central  Google Scholar 

  70. Eichenbaum H. Hippocampus: cognitive processes and neural representations that underlie declarative memory. Neuron 2004;44:109–20.

    Article  CAS  PubMed  Google Scholar 

  71. Hartley T, Maguire EA, Spiers HJ, Burgess N. The well-worn route and the path less traveled: distinct neural bases of route following and wayfinding in humans. Neuron 2003;37:877–88.

    Article  CAS  PubMed  Google Scholar 

  72. Ghaem O, Mellet E, Crivello F, Tzourio N, Mazoyer B, Berthoz A, et al. Mental navigation along memorized routes activates the hippocampus, precuneus, and insula. Neuroreport 1997;8:739–44.

    Article  CAS  PubMed  Google Scholar 

  73. Kumaran D, Maguire EA. Match–mismatch processes underlie human hippocampal responses to associative novelty. J Neurosci. 2007;27:8517–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Nielson DM, Smith TA, Sreekumar V, Dennis S, Sederberg PB. Human hippocampus represents space and time during retrieval of real-world memories. Proc Natl Acad Sci. 2015;112:11078–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Zeidman P, Mullally SL, Maguire EA. Constructing, perceiving, and maintaining scenes: hippocampal activity and connectivity. Cereb Cortex. 2015;25:3836–55.

    Article  PubMed  Google Scholar 

  76. Persson J, Spreng RN, Turner G, Herlitz A, Morell A, Stening E, et al. Sex differences in volume and structural covariance of the anterior and posterior hippocampus. Neuroimage 2014;99:215–25.

    Article  PubMed  Google Scholar 

  77. Suzuki WA, Amaral DG. Perirhinal and parahippocampal cortices of the macaque monkey: cortical afferents. J Comp Neurol 1994;350:497–533.

    Article  CAS  PubMed  Google Scholar 

  78. Moscovitch M, Cabeza R, Winocur G, Nadel L. Episodic memory and beyond: the hippocampus and neocortex in transformation. Annu Rev Psychol. 2016;67:105–34.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank Dr. Raffaello Bonacchi from Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute for revising the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

Ermelinda De Meo contributed to study concept and design, drafting/revising the manuscript, data analysis; Emilio Portaccio contributed to patient recruitment and clinical assessment; Elio Prestipino contributed to patient recruitment, clinical assessment and data analysis; Benedetta Nacmias contributed to genetic analysis; Silvia Bagnoli contributed to genetic analysis; Lorenzo Razzolini contributed to patient recruitment and clinical assessment; Luisa Pastò contributed to patient recruitment and clinical assessment; Claudia Niccolai contributed to neuropsychological assessment; Benedetta Goretti contributed to neuropsychological assessment; Angelo Bellinvia contributed to patient recruitment and clinical assessment; Mattia Fonderico contributed to patient recruitment and clinical assessment; Antonio Giorgio contributed to MRI data analysis; Maria Laura Stromillo contributed to MRI data analysis; Massimo Filippi contributed to study drafting/revising the manuscript; Sandro Sorbi contributed to study drafting/revising the manuscript; Nicola De Stefano contributed to study drafting/revising the manuscript; Maria Pia Amato, MD contributed to study concept and drafting/revising the manuscript.

Corresponding author

Correspondence to Ermelinda De Meo.

Ethics declarations

Competing interests

The authors declare no competing interests.

Ethics approval and consent to participate

Approval was received from Ethics Committee on human experimentation of the University of Florence, and written informed consent was obtained from all participants prior to study enrollment.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

De Meo, E., Portaccio, E., Prestipino, E. et al. Effect of BDNF Val66Met polymorphism on hippocampal subfields in multiple sclerosis patients. Mol Psychiatry 27, 1010–1019 (2022). https://doi.org/10.1038/s41380-021-01345-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41380-021-01345-1

This article is cited by

Search

Quick links