Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Post-stroke depression: epigenetic and epitranscriptomic modifications and their interplay with gut microbiota

Abstract

Epigenetic and epitranscriptomic modifications that regulate physiological processes of an organism at the DNA and RNA levels, respectively, are novel therapeutic candidates for various neurological diseases. Gut microbiota and its metabolites are known to modulate DNA methylation and histone modifications (epigenetics), as well as RNA methylation especially N6-methyladenosine (epitranscriptomics). As gut microbiota as well as these modifications are highly dynamic across the lifespan of an organism, they are implicated in the pathogenesis of stroke and depression. The lack of specific therapeutic interventions for managing post-stroke depression emphasizes the need to identify novel molecular targets. This review highlights the interaction between the gut microbiota and epigenetic/epitranscriptomic pathways and their interplay in modulating candidate genes that are involved in post-stroke depression. This review further focuses on the three candidates, including brain-derived neurotrophic factor, ten-eleven translocation family proteins, and fat mass and obesity-associated protein based on their prevalence and pathoetiologic role in post-stroke depression.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: PSD prevalence and subsequent risk factors.
Fig. 2: Epigenetic/Epitranscriptomic modifications following stroke.
Fig. 3: Clinical and preclinical data of gut microbiota alteration in stroke and depression research.
Fig. 4: Putative interplay of gut microbiota and epigenetics/epitranscriptomics in the etiology of post-stroke depression.

Similar content being viewed by others

References

  1. Tsao CW, Aday AW, Almarzooq ZI, Alonso A, Beaton AZ, Bittencourt MS, et al. Heart disease and stroke statistics-2022 update: a report from the American Heart Association. Circulation. 2022;145:e153–e639.

    Article  PubMed  Google Scholar 

  2. GBD 2019 Stroke Collaborators Global, regional, and national burden of stroke and its risk factors, 1990-2019: a systematic analysis for the Global Burden of Disease Study 2019. Lancet Neurol. 2021;20:795–820.

    Article  Google Scholar 

  3. Bartoli F, Lillia N, Lax A, Crocamo C, Mantero V, Carrà G, et al. Depression after stroke and risk of mortality: a systematic review and meta-analysis. Stroke Res Treat. 2013;2013:862978.

    PubMed  PubMed Central  Google Scholar 

  4. The National Institute of Neurological Disorders and Stroke rt-PA Stroke Study Group. Tissue plasminogen activator for acute ischemic stroke. N Engl J Med. 1995;333:1581–7.

  5. Kutlubaev MA, Hackett ML, Part II. predictors of depression after stroke and impact of depression on stroke outcome: an updated systematic review of observational studies. Int J Stroke. 2014;9:1026–36.

    Article  PubMed  Google Scholar 

  6. Towfighi A, Ovbiagele B, El Husseini N, Hackett ML, Jorge RE, Kissela BM, et al. Poststroke depression: a scientific statement for healthcare professionals from the American Heart Association/American Stroke Association. Stroke. 2017;48:e30–e43.

    Article  PubMed  Google Scholar 

  7. Hackett ML, Pickles K, Part I. frequency of depression after stroke: an updated systematic review and meta-analysis of observational studies. Int J Stroke. 2014;9:1017–25.

    Article  PubMed  Google Scholar 

  8. Naess H, Waje-Andreassen U, Thomassen L, Nyland H, Myhr KM. Health-related quality of life among young adults with ischemic stroke on long-term follow-up. Stroke. 2006;37:1232–6.

    Article  PubMed  Google Scholar 

  9. Starkstein SE, Robinson RG, Price TR. Comparison of patients with and without poststroke major depression matched for size and location of lesion. Arch Gen Psychiatry. 1988;45:247–52.

    Article  CAS  PubMed  Google Scholar 

  10. Robinson RG, Jorge RE. Post-stroke depression: a review. Am J Psychiatry. 2016;173:221–31.

    Article  PubMed  Google Scholar 

  11. Januar V, Ancelin ML, Ritchie K, Saffery R, Ryan J. BDNF promoter methylation and genetic variation in late-life depression. Transl Psychiatry. 2015;5:e619.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Morris-Blanco KC, Chokkalla AK, Bertogliat MJ, Vemuganti R. TET3 regulates DNA hydroxymethylation of neuroprotective genes following focal ischemia. J Cereb Blood Flow Metab. 2021;41:590–603.

    Article  CAS  PubMed  Google Scholar 

  13. Jang HS, Shin WJ, Lee JE, Do JT. CpG and non-CpG methylation in epigenetic gene regulation and brain function. Genes. 2017;8:148.

  14. Chokkalla AK, Mehta SL, Vemuganti R. Epitranscriptomic regulation by m(6)A RNA methylation in brain development and diseases. J Cereb Blood Flow Metab. 2020;40:2331–49.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Buckley NJ, Johnson R, Zuccato C, Bithell A, Cattaneo E. The role of REST in transcriptional and epigenetic dysregulation in Huntington’s disease. Neurobiol Dis. 2010;39:28–39.

    Article  CAS  PubMed  Google Scholar 

  16. Flamand MN, Meyer KD. The epitranscriptome and synaptic plasticity. Curr Opin Neurobiol. 2019;59:41–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Dauncey MJ. Nutrition, the brain and cognitive decline: insights from epigenetics. Eur J Clin Nutr. 2014;68:1179–85.

    Article  CAS  PubMed  Google Scholar 

  18. Stankiewicz AM, Swiergiel AH, Lisowski P. Epigenetics of stress adaptations in the brain. Brain Res Bull. 2013;98:76–92.

    Article  CAS  PubMed  Google Scholar 

  19. Weber-Stadlbauer U. Epigenetic and transgenerational mechanisms in infection-mediated neurodevelopmental disorders. Transl Psychiatry. 2017;7:e1113.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Allison J, Kaliszewska A, Uceda S, Reiriz M, Arias N. Targeting DNA methylation in the adult brain through diet. Nutrients. 2021;13:3979.

  21. Mosca P, Leheup B, Dreumont N. Nutrigenomics and RNA methylation: Role of micronutrients. Biochimie. 2019;164:53–9.

    Article  CAS  PubMed  Google Scholar 

  22. Yoon KJ, Ming GL, Song H. Epitranscriptomes in the adult mammalian brain: dynamic changes regulate behavior. Neuron. 2018;99:243–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Morais LH, Schreiber HLT, Mazmanian SK. The gut microbiota-brain axis in behaviour and brain disorders. Nat Rev Microbiol. 2021;19:241–55.

    Article  CAS  PubMed  Google Scholar 

  24. Jabs S, Biton A, Bécavin C, Nahori MA, Ghozlane A, Pagliuso A, et al. Impact of the gut microbiota on the m(6)A epitranscriptome of mouse cecum and liver. Nat Commun. 2020;11:1344.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Thomas SP, Denu JM. Short-chain fatty acids activate acetyltransferase p300. eLife. 2021;10:e72171.

  26. Coutinho-Wolino KS, de F Cardozo LFM, de Oliveira Leal V, Mafra D, Stockler-Pinto MB. Can diet modulate trimethylamine N-oxide (TMAO) production? What do we know so far? Eur J Nutr. 2021;60:3567–84.

    Article  CAS  PubMed  Google Scholar 

  27. Romano KA, Martinez-Del Campo A, Kasahara K, Chittim CL, Vivas EI, Amador-Noguez D, et al. Metabolic, epigenetic, and transgenerational effects of gut bacterial choline consumption. Cell Host Microbe. 2017;22:279–.e277.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Hashimoto K. Brain-derived neurotrophic factor as a biomarker for mood disorders: an historical overview and future directions. Psychiatry Clin Neurosci. 2010;64:341–57.

    Article  CAS  PubMed  Google Scholar 

  29. Zhang E, Liao P. Brain-derived neurotrophic factor and post-stroke depression. J Neurosci Res. 2020;98:537–48.

    Article  CAS  PubMed  Google Scholar 

  30. Li J, Zhao YD, Zeng JW, Chen XY, Wang RD, Cheng SY. Serum Brain-derived neurotrophic factor levels in post-stroke depression. J Affect Disord. 2014;168:373–9.

    Article  CAS  PubMed  Google Scholar 

  31. Jin H-J, Pei L, Li Y-N, Zheng H, Yang S, Wan Y, et al. Alleviative effects of fluoxetine on depressive-like behaviors by epigenetic regulation of BDNF gene transcription in mouse model of post-stroke depression. Sci Rep. 2017;7:14926.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Bernstein BE, Meissner A, Lander ES. The mammalian epigenome. Cell. 2007;128:669–81.

    Article  CAS  PubMed  Google Scholar 

  33. Xie S, Qian C. The growing complexity of UHRF1-mediated maintenance DNA methylation. Genes. 2018;9:600.

  34. Huang Y, Chavez L, Chang X, Wang X, Pastor WA, Kang J, et al. Distinct roles of the methylcytosine oxidases Tet1 and Tet2 in mouse embryonic stem cells. Proc Natl Acad Sci USA. 2014;111:1361–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Szwagierczak A, Bultmann S, Schmidt CS, Spada F, Leonhardt H. Sensitive enzymatic quantification of 5-hydroxymethylcytosine in genomic DNA. Nucleic Acids Res. 2010;38:e181.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Zhang Y, Chen K, Sloan SA, Bennett ML, Scholze AR, O’Keeffe S, et al. An RNA-sequencing transcriptome and splicing database of glia, neurons, and vascular cells of the cerebral cortex. J Neurosci. 2014;34:11929–47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Moore LD, Le T, Fan G. DNA methylation and its basic function. Neuropsychopharmacology. 2013;38:23–38.

    Article  CAS  PubMed  Google Scholar 

  38. Martínez-Iglesias O, Carrera I, Carril JC, Fernández-Novoa L, Cacabelos N, Cacabelos R. DNA methylation in neurodegenerative and cerebrovascular disorders. Int J Mol Sci. 2020;21:2220.

  39. Peña CJ, Nestler EJ. Progress in epigenetics of depression. Prog Mol Biol Transl Sci. 2018;157:41–66.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Bannister AJ, Kouzarides T. Regulation of chromatin by histone modifications. Cell Res. 2011;21:381–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Dieker J, Muller S. Epigenetic histone code and autoimmunity. Clin Rev Allergy Immunol. 2010;39:78–84.

    Article  CAS  PubMed  Google Scholar 

  42. Greer EL, Shi Y. Histone methylation: a dynamic mark in health, disease and inheritance. Nat Rev Genet. 2012;13:343–57.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Peter CJ, Akbarian S. Balancing histone methylation activities in psychiatric disorders. Trends Mol Med. 2011;17:372–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Moosavi A, Motevalizadeh Ardekani A. Role of epigenetics in biology and human diseases. Iran Biomed J. 2016;20:246–58.

    PubMed  PubMed Central  Google Scholar 

  45. Morris-Blanco KC, Chokkalla AK, Arruri V, Jeong S, Probelsky SM, Vemuganti R. Epigenetic mechanisms and potential therapeutic targets in stroke. J Cerebral Blood Flow Metab. 2022;42:2000–16.

  46. Santoro M, Siotto M, Germanotta M, Mastrorosa A, Papadopoulou D, Aprile I. Association study of SLC6A4 (5-HTTLPR) polymorphism and its promoter methylation with rehabilitation outcome in patients with subacute stroke. Genes. 2021;12:579.

  47. Kang HJ, Lee EH, Kim JW, Kim SW, Shin IS, Kim JT, et al. Association of SLC6A4 methylation with long-term outcomes after stroke: focus on the interaction with suicidal ideation. Sci Rep. 2021;11:2710.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Choi IA, Lee CS, Kim HY, Choi DH, Lee J. Effect of inhibition of DNA methylation combined with task-specific training on chronic stroke recovery. Int J Mol Sci. 2018;19:2019.

  49. Zhao H, Li G, Wang R, Tao Z, Zhang S, Li F, et al. MiR-424 prevents astrogliosis after cerebral ischemia/reperfusion in elderly mice by enhancing repressive H3K27me3 via NFIA/DNMT1 signaling. FEBS J. 2019;286:4926–36.

    Article  CAS  PubMed  Google Scholar 

  50. Miao Z, He Y, Xin N, Sun M, Chen L, Lin L, et al. Altering 5-hydroxymethylcytosine modification impacts ischemic brain injury. Hum Mol Genet. 2015;24:5855–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Morris-Blanco KC, Kim T, Lopez MS, Bertogliat MJ, Chelluboina B, Vemuganti R. Induction of DNA hydroxymethylation protects the brain after stroke. Stroke. 2019;50:2513–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Demyanenko S, Berezhnaya E, Neginskaya M, Rodkin S, Dzreyan V, Pitinova M. Сlass II histone deacetylases in the post-stroke recovery period-expression, cellular, and subcellular localization-promising targets for neuroprotection. J Cell Biochem. 2019;120:19590–609.

    Article  CAS  PubMed  Google Scholar 

  53. Kassis H, Shehadah A, Li C, Zhang Y, Cui Y, Roberts C, et al. Class IIa histone deacetylases affect neuronal remodeling and functional outcome after stroke. Neurochem Int. 2016;96:24–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Brookes RL, Crichton S, Wolfe CDA, Yi Q, Li L, Hankey GJ, et al. Sodium valproate, a histone deacetylase inhibitor, is associated with reduced stroke risk after previous ischemic stroke or transient ischemic attack. Stroke. 2018;49:54–61.

    Article  CAS  PubMed  Google Scholar 

  55. De Meyer SF, Suidan GL, Fuchs TA, Monestier M, Wagner DD. Extracellular chromatin is an important mediator of ischemic stroke in mice. Arterioscler Thrombosis Vasc Biol. 2012;32:1884–91.

    Article  Google Scholar 

  56. Schweizer S, Harms C, Lerch H, Flynn J, Hecht J, Yildirim F, et al. Inhibition of histone methyltransferases SUV39H1 and G9a leads to neuroprotection in an in vitro model of cerebral ischemia. J Cereb Blood Flow Metab. 2015;35:1640–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Wang J, Zhong W, Cheng Q, Xiao C, Xu J, Su Z, et al. Histone methyltransferase Smyd2 contributes to blood-brain barrier breakdown in stroke. Clin Transl Med. 2022;12:e761.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Bosker FJ, Hartman CA, Nolte IM, Prins BP, Terpstra P, Posthuma D, et al. Poor replication of candidate genes for major depressive disorder using genome-wide association data. Mol Psychiatry. 2011;16:516–32.

    Article  CAS  PubMed  Google Scholar 

  59. Fraga MF, Ballestar E, Paz MF, Ropero S, Setien F, Ballestar ML, et al. Epigenetic differences arise during the lifetime of monozygotic twins. Proc Natl Acad Sci USA. 2005;102:10604–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Gross JA, Pacis A, Chen GG, Drupals M, Lutz PE, Barreiro LB, et al. Gene-body 5-hydroxymethylation is associated with gene expression changes in the prefrontal cortex of depressed individuals. Transl Psychiatry. 2017;7:e1119.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Feng J, Pena CJ, Purushothaman I, Engmann O, Walker D, Brown AN, et al. Tet1 in nucleus accumbens opposes depression- and anxiety-like behaviors. Neuropsychopharmacology. 2017;42:1657–69.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Cheng Y, Sun M, Chen L, Li Y, Lin L, Yao B, et al. Ten-eleven translocation proteins modulate the response to environmental stress in mice. Cell Rep. 2018;25:3194–e3194.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Kang I, Kondo D, Kim J, Lyoo IK, Yurgelun-Todd D, Hwang J, et al. Elevating the level of hypoxia inducible factor may be a new potential target for the treatment of depression. Med Hypotheses. 2021;146:110398.

    Article  CAS  PubMed  Google Scholar 

  64. Rudenko A, Dawlaty MM, Seo J, Cheng AW, Meng J, Le T, et al. Tet1 is critical for neuronal activity-regulated gene expression and memory extinction. Neuron. 2013;79:1109–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Zhang Q, Hu Q, Wang J, Miao Z, Li Z, Zhao Y et al. Stress modulates Ahi1-dependent nuclear localization of ten-eleven translocation protein 2. Hum Mol Genet. 2021;30:2149–60.

  66. Dick A, Chen A. The role of TET proteins in stress-induced neuroepigenetic and behavioural adaptations. Neurobiol Stress. 2021;15:100352.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Antunes C, Da Silva JD, Guerra-Gomes S, Alves ND, Ferreira F, Loureiro-Campos E, et al. Tet3 ablation in adult brain neurons increases anxiety-like behavior and regulates cognitive function in mice. Mol Psychiatry. 2021;26:1445–57.

    Article  CAS  PubMed  Google Scholar 

  68. Gu TP, Guo F, Yang H, Wu HP, Xu GF, Liu W, et al. The role of Tet3 DNA dioxygenase in epigenetic reprogramming by oocytes. Nature. 2011;477:606–10.

    Article  CAS  PubMed  Google Scholar 

  69. Reul JM, Holsboer F. On the role of corticotropin-releasing hormone receptors in anxiety and depression. Dialogues Clin Neurosci. 2002;4:31–46.

    Article  PubMed  PubMed Central  Google Scholar 

  70. Desrosiers R, Friderici K, Rottman F. Identification of methylated nucleosides in messenger RNA from Novikoff hepatoma cells. Proc Natl Acad Sci USA. 1974;71:3971–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Li HB, Tong J, Zhu S, Batista PJ, Duffy EE, Zhao J, et al. m(6)A mRNA methylation controls T cell homeostasis by targeting the IL-7/STAT5/SOCS pathways. Nature. 2017;548:338–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Yoon KJ, Ringeling FR, Vissers C, Jacob F, Pokrass M, Jimenez-Cyrus D, et al. Temporal control of mammalian cortical neurogenesis by m(6)A methylation. Cell. 2017;171:877–e817.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Meyer KD, Patil DP, Zhou J, Zinoviev A, Skabkin MA, Elemento O, et al. 5’ UTR m(6)A promotes cap-independent translation. Cell. 2015;163:999–1010.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Roundtree IA, Evans ME, Pan T, He C. Dynamic RNA modifications in gene expression regulation. Cell. 2017;169:1187–1200.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Molinie B, Giallourakis CC. Genome-wide location analyses of N6-methyladenosine modifications (m(6)A-Seq). Methods Mol Biol. 2017;1562:45–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Zhu L, Liu S, Liao F, Yang J, Liang T, Yang Y, et al. Comprehensive analysis of blood-based m6A methylation in human ischemic stroke. Mol Neurobiol. 2023;60:431–46.

    Article  CAS  PubMed  Google Scholar 

  77. Yi D, Wang Q, Zhao Y, Song Y, You H, Wang J, et al. Alteration of N6 -methyladenosine mRNA methylation in a rat model of cerebral ischemia–reperfusion injury. Front Neurosci. 2021;15:605654.

  78. Chokkalla AK, Mehta SL, Kim T, Chelluboina B, Kim J, Vemuganti R. Transient focal ischemia significantly alters the m(6)A epitranscriptomic tagging of RNAs in the brain. Stroke. 2019;50:2912–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Chokkalla AK, Jeong S, Mehta SL, Davis CK, Morris-Blanco KC, Bathula S, et al. Cerebroprotective role of N(6)-methyladenosine demethylase FTO (fat mass and obesity-associated protein) after experimental stroke. Stroke. 2023;54:245–54.

    Article  CAS  PubMed  Google Scholar 

  80. Xu K, Mo Y, Li D, Yu Q, Wang L, Lin F, et al. N(6)-methyladenosine demethylases Alkbh5/Fto regulate cerebral ischemia-reperfusion injury. Therapeutic Adv chronic Dis. 2020;11:2040622320916024.

    CAS  Google Scholar 

  81. Afari N, Noonan C, Goldberg J, Roy-Byrne P, Schur E, Golnari G, et al. Depression and obesity: do shared genes explain the relationship? Depres Anxiety. 2010;27:799–806.

    Article  Google Scholar 

  82. Luppino FS, de Wit LM, Bouvy PF, Stijnen T, Cuijpers P, Penninx BW, et al. Overweight, obesity, and depression: a systematic review and meta-analysis of longitudinal studies. Arch Gen Psychiatry. 2010;67:220–9.

    Article  PubMed  Google Scholar 

  83. Engel M, Eggert C, Kaplick PM, Eder M, Röh S, Tietze L, et al. The role of m(6)A/m-RNA methylation in stress response regulation. Neuron. 2018;99:389–403.e389.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Samaan Z, Anand SS, Zhang X, Desai D, Rivera M, Pare G, et al. The protective effect of the obesity-associated rs9939609 A variant in fat mass- and obesity-associated gene on depression. Mol Psychiatry. 2013;18:1281–6.

    Article  CAS  PubMed  Google Scholar 

  85. Ho AJ, Stein JL, Hua X, Lee S, Hibar DP, Leow AD, et al. A commonly carried allele of the obesity-related FTO gene is associated with reduced brain volume in the healthy elderly. Proc Natl Acad Sci USA. 2010;107:8404–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Yao Y, Wen Y, Du T, Sun N, Deng H, Ryan J, et al. Meta-analysis indicates that SNP rs9939609 within FTO is not associated with major depressive disorder (MDD) in Asian population. J Affect Disord. 2016;193:27–30.

    Article  CAS  PubMed  Google Scholar 

  87. Milaneschi Y, Lamers F, Mbarek H, Hottenga JJ, Boomsma DI, Penninx BW. The effect of FTO rs9939609 on major depression differs across MDD subtypes. Mol Psychiatry. 2014;19:960–2.

    Article  CAS  PubMed  Google Scholar 

  88. Liu S, Xiu J, Zhu C, Meng K, Li C, Han R, et al. Fat mass and obesity-associated protein regulates RNA methylation associated with depression-like behavior in mice. Nat Commun. 2021;12:6937.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Wang XL, Wei X, Yuan JJ, Mao YY, Wang ZY, Xing N, et al. Downregulation of fat mass and obesity-related protein in the anterior cingulate cortex participates in anxiety- and depression-like behaviors induced by neuropathic pain. Front Cell Neurosci. 2022;16:884296.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Wu PF, Han QQ, Chen FF, Shen TT, Li YH, Cao Y, et al. Erasing m(6)A-dependent transcription signature of stress-sensitive genes triggers antidepressant actions. Neurobiol Stress. 2021;15:100390.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Sun L, Ma L, Zhang H, Cao Y, Wang C, Hou N, et al. Fto deficiency reduces anxiety- and depression-like behaviors in mice via alterations in gut microbiota. Theranostics. 2019;9:721–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Shen J, Yang L, Wei W. Role of Fto on CaMKII/CREB signaling pathway of hippocampus in depressive-like behaviors induced by chronic restraint stress mice. Behav Brain Res. 2021;406:113227.

    Article  CAS  PubMed  Google Scholar 

  93. Hess ME, Hess S, Meyer KD, Verhagen LA, Koch L, Brönneke HS, et al. The fat mass and obesity associated gene (Fto) regulates activity of the dopaminergic midbrain circuitry. Nat Neurosci. 2013;16:1042–8.

    Article  CAS  PubMed  Google Scholar 

  94. Belujon P, Grace AA. Dopamine system dysregulation in major depressive disorders. Int J Neuropsychopharmacol. 2017;20:1036–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Nam HS. Gut microbiota and ischemic stroke: the role of trimethylamine N-oxide. J Stroke. 2019;21:151–9.

    Article  PubMed  PubMed Central  Google Scholar 

  96. Sadler R, Cramer JV, Heindl S, Kostidis S, Betz D, Zuurbier KR, et al. Short-chain fatty acids improve poststroke recovery via immunological mechanisms. J Neurosci. 2020;40:1162–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Chambers ES, Preston T, Frost G, Morrison DJ. Role of gut microbiota-generated short-chain fatty acids in metabolic and cardiovascular health. Curr Nutr Rep. 2018;7:198–206.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Hinnebusch BF, Meng S, Wu JT, Archer SY, Hodin RA. The effects of short-chain fatty acids on human colon cancer cell phenotype are associated with histone hyperacetylation. J Nutr. 2002;132:1012–7.

    Article  CAS  PubMed  Google Scholar 

  99. Müller B, Rasmusson AJ, Just D, Jayarathna S, Moazzami A, Novicic ZK, et al. Fecal short-chain fatty acid ratios as related to gastrointestinal and depressive symptoms in young adults. Psychosom Med. 2021;83:693–9.

    Article  PubMed  PubMed Central  Google Scholar 

  100. Suganya K, Koo BS. Gut-brain axis: role of gut microbiota on neurological disorders and how probiotics/prebiotics beneficially modulate microbial and immune pathways to improve brain functions. Int J Mol Sci. 2020;21:7551.

  101. Tran SM, Mohajeri MH. The role of gut bacterial metabolites in brain development, aging and disease. Nutrients. 2021;13:732.

  102. Ling Y, Gu Q, Zhang J, Gong T, Weng X, Liu J, et al. Structural change of gut microbiota in patients with post-stroke comorbid cognitive impairment and depression and its correlation with clinical features. J Alzheimers Dis JAD. 2020;77:1595–608.

    Article  CAS  PubMed  Google Scholar 

  103. Luo F, Fang C. Association between gut microbiota and post-stroke depression in Chinese population: a meta-analysis. Heliyon. 2022;8:e12605.

    Article  PubMed  PubMed Central  Google Scholar 

  104. Singh V, Roth S, Llovera G, Sadler R, Garzetti D, Stecher B, et al. Microbiota dysbiosis controls the neuroinflammatory response after stroke. J Neurosci. 2016;36:7428–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Xu K, Gao X, Xia G, Chen M, Zeng N, Wang S et al. Rapid gut dysbiosis induced by stroke exacerbates brain infarction in turn. Gut. 2021;70:1486–94.

  106. Krautkramer KA, Kreznar JH, Romano KA, Vivas EI, Barrett-Wilt GA, Rabaglia ME, et al. Diet-microbiota interactions mediate global epigenetic programming in multiple host tissues. Mol Cell. 2016;64:982–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Peh A, O’Donnell JA, Broughton BRS, Marques FZ. Gut microbiota and their metabolites in stroke: a double-edged sword. Stroke. 2022;53:1788–801.

    Article  CAS  PubMed  Google Scholar 

  108. Tan C, Wu Q, Wang H, Gao X, Xu R, Cui Z, et al. Dysbiosis of gut microbiota and short-chain fatty acids in acute ischemic stroke and the subsequent risk for poor functional outcomes. JPEN J Parenter Enter Nutr. 2021;45:518–29.

    Article  CAS  Google Scholar 

  109. Li N, Wang X, Sun C, Wu X, Lu M, Si Y, et al. Change of intestinal microbiota in cerebral ischemic stroke patients. BMC Microbiol. 2019;19:191.

    Article  PubMed  PubMed Central  Google Scholar 

  110. Zhang H, Yao G. Significant correlation between the gut microbiota-derived metabolite trimethylamine-N-oxide and the risk of stroke: evidence based on 23 observational studies. Eur J Clin Nutr. 2022. https://doi.org/10.1038/s41430-022-01104-7. Epub ahead of print.

  111. Benakis C, Brea D, Caballero S, Faraco G, Moore J, Murphy M, et al. Commensal microbiota affects ischemic stroke outcome by regulating intestinal γδ T cells. Nat Med. 2016;22:516–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Winek K, Engel O, Koduah P, Heimesaat MM, Fischer A, Bereswill S, et al. Depletion of cultivatable gut microbiota by broad-spectrum antibiotic pretreatment worsens outcome after murine stroke. Stroke. 2016;47:1354–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Benakis C, Poon C, Lane D, Brea D, Sita G, Moore J, et al. Distinct commensal bacterial signature in the gut is associated with acute and long-term protection from ischemic stroke. Stroke. 2020;51:1844–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Zhu W, Romano KA, Li L, Buffa JA, Sangwan N, Prakash P, et al. Gut microbes impact stroke severity via the trimethylamine N-oxide pathway. Cell Host Microbe. 2021;29:1199–e1195.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Crapser J, Ritzel R, Verma R, Venna VR, Liu F, Chauhan A, et al. Ischemic stroke induces gut permeability and enhances bacterial translocation leading to sepsis in aged mice. Aging. 2016;8:1049–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Spychala MS, Venna VR, Jandzinski M, Doran SJ, Durgan DJ, Ganesh BP, et al. Age-related changes in the gut microbiota influence systemic inflammation and stroke outcome. Ann Neurol. 2018;84:23–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Sherwin E, Rea K, Dinan TG, Cryan JF. A gut (microbiome) feeling about the brain. Curr Opin Gastroenterol. 2016;32:96–102.

    Article  CAS  PubMed  Google Scholar 

  118. Jiang H, Ling Z, Zhang Y, Mao H, Ma Z, Yin Y, et al. Altered fecal microbiota composition in patients with major depressive disorder. Brain Behav Immun. 2015;48:186–94.

    Article  PubMed  Google Scholar 

  119. Zheng P, Zeng B, Zhou C, Liu M, Fang Z, Xu X, et al. Gut microbiome remodeling induces depressive-like behaviors through a pathway mediated by the host’s metabolism. Mol Psychiatry. 2016;21:786–96.

    Article  CAS  PubMed  Google Scholar 

  120. Vreeburg SA, Hoogendijk WJ, van Pelt J, Derijk RH, Verhagen JC, van Dyck R, et al. Major depressive disorder and hypothalamic-pituitary-adrenal axis activity: results from a large cohort study. Arch Gen psychiatry. 2009;66:617–26.

    Article  CAS  PubMed  Google Scholar 

  121. Sudo N, Chida Y, Aiba Y, Sonoda J, Oyama N, Yu XN, et al. Postnatal microbial colonization programs the hypothalamic-pituitary-adrenal system for stress response in mice. J Physiol. 2004;558:263–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Messaoudi M, Lalonde R, Violle N, Javelot H, Desor D, Nejdi A, et al. Assessment of psychotropic-like properties of a probiotic formulation (Lactobacillus helveticus R0052 and Bifidobacterium longum R0175) in rats and human subjects. Br J Nutr. 2011;105:755–64.

    Article  CAS  PubMed  Google Scholar 

  123. Aizawa E, Tsuji H, Asahara T, Takahashi T, Teraishi T, Yoshida S, et al. Possible association of Bifidobacterium and Lactobacillus in the gut microbiota of patients with major depressive disorder. J Affect Disord. 2016;202:254–7.

    Article  PubMed  Google Scholar 

  124. Kelly JR, Borre Y, O' Brien C, Patterson E, El Aidy S, Deane J, et al. Transferring the blues: depression-associated gut microbiota induces neurobehavioural changes in the rat. J Psychiatr Res. 2016;82:109–18.

    Article  PubMed  Google Scholar 

  125. Duan J, Huang Y, Tan X, Chai T, Wu J, Zhang H, et al. Characterization of gut microbiome in mice model of depression with divergent response to escitalopram treatment. Transl Psychiatry. 2021;11:303.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Chevalier G, Siopi E, Guenin-Macé L, Pascal M, Laval T, Rifflet A, et al. Effect of gut microbiota on depressive-like behaviors in mice is mediated by the endocannabinoid system. Nat Commun. 2020;11:6363.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Blier P, El, Mansari M. Serotonin and beyond: therapeutics for major depression. Philos Trans R Soc Lond Ser B Biol Sci. 2013;368:20120536.

    Article  Google Scholar 

  128. Yano JM, Yu K, Donaldson GP, Shastri GG, Ann P, Ma L, et al. Indigenous bacteria from the gut microbiota regulate host serotonin biosynthesis. Cell. 2015;161:264–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. van der Vossen EWJ, Bastos D, Stols-Gonçalves D, de Goffau MC, Davids M, Pereira JPB, et al. Effects of fecal microbiota transplant on DNA methylation in subjects with metabolic syndrome. Gut Microbes. 2021;13:1993513.

    Article  PubMed  PubMed Central  Google Scholar 

  130. Kok DE, Steegenga WT, McKay JA. Folate and epigenetics: why we should not forget bacterial biosynthesis. Epigenomics. 2018;10:1147–50.

    Article  CAS  PubMed  Google Scholar 

  131. Wright AT. Gut commensals make choline too. Nat Microbiol. 2019;4:4–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Blusztajn JK, Mellott TJ. Choline nutrition programs brain development via DNA and histone methylation. Cent Nerv Syst Agents Med Chem. 2012;12:82–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Poupeau A, Garde C, Sulek K, Citirikkaya K, Treebak JT, Arumugam M, et al. Genes controlling the activation of natural killer lymphocytes are epigenetically remodeled in intestinal cells from germ-free mice. FASEB J. 2019;33:2719–31.

    Article  CAS  PubMed  Google Scholar 

  134. Sales VM, Ferguson-Smith AC, Patti ME. Epigenetic mechanisms of transmission of metabolic disease across generations. Cell Metab. 2017;25:559–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Zouggar A, Haebe JR, Benoit YD. Intestinal microbiota influences DNA methylome and susceptibility to colorectal cancer. Genes. 2020; 11:808.

  136. Blaschke K, Ebata KT, Karimi MM, Zepeda-Martínez JA, Goyal P, Mahapatra S, et al. Vitamin C induces Tet-dependent DNA demethylation and a blastocyst-like state in ES cells. Nature. 2013;500:222–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Levenson JM, O’Riordan KJ, Brown KD, Trinh MA, Molfese DL, Sweatt JD. Regulation of histone acetylation during memory formation in the hippocampus. J Biol Chem. 2004;279:40545–59.

    Article  CAS  PubMed  Google Scholar 

  138. Kim HJ, Leeds P, Chuang DM. The HDAC inhibitor, sodium butyrate, stimulates neurogenesis in the ischemic brain. J Neurochem. 2009;110:1226–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Garcez ML, de Carvalho CA, Mina F, Bellettini-Santos T, Schiavo GL, da Silva S, et al. Sodium butyrate improves memory and modulates the activity of histone deacetylases in aged rats after the administration of d-galactose. Exp Gerontol. 2018;113:209–17.

    Article  CAS  PubMed  Google Scholar 

  140. Janke R, Dodson AE, Rine J. Metabolism and epigenetics. Annu Rev Cell Dev Biol. 2015;31:473–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Paul B, Barnes S, Demark-Wahnefried W, Morrow C, Salvador C, Skibola C, et al. Influences of diet and the gut microbiome on epigenetic modulation in cancer and other diseases. Clin Epigenetics. 2015;7:112.

    Article  PubMed  PubMed Central  Google Scholar 

  142. Wang X, Li Y, Chen W, Shi H, Eren AM, Morozov A, et al. Transcriptome-wide reprogramming of N(6)-methyladenosine modification by the mouse microbiome. Cell Res. 2019;29:167–70.

    Article  CAS  PubMed  Google Scholar 

  143. Kim JM, Stewart R, Park MS, Kang HJ, Kim SW, Shin IS, et al. Associations of BDNF genotype and promoter methylation with acute and long-term stroke outcomes in an East Asian cohort. PloS One. 2012;7:e51280.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Liu W, Wang X, O’Connor M, Wang G, Han F. Brain-derived neurotrophic factor and its potential therapeutic role in stroke comorbidities. Neural Plasticity. 2020;2020:1969482.

    Article  PubMed  PubMed Central  Google Scholar 

  145. Béjot Y, Mossiat C, Giroud M, Prigent-Tessier A, Marie C. Circulating and brain BDNF levels in stroke rats. Relevance to clinical studies. PloS one. 2011;6:e29405.

    Article  PubMed  PubMed Central  Google Scholar 

  146. Kokaia Z, Andsberg G, Yan Q, Lindvall O. Rapid alterations of BDNF protein levels in the rat brain after focal ischemia: evidence for increased synthesis and anterograde axonal transport. Exp Neurol. 1998;154:289–301.

    Article  CAS  PubMed  Google Scholar 

  147. Ifergane G, Boyko M, Frank D, Shiyntum HN, Grinshpun J, Kuts R, et al. Biological and behavioral patterns of post-stroke depression in rats. Can J Neurol Sci. 2018;45:451–61.

    Article  PubMed  Google Scholar 

  148. Duman RS, Li N. A neurotrophic hypothesis of depression: role of synaptogenesis in the actions of NMDA receptor antagonists. Philos Trans R Soc Lond B Biol Sci. 2012;367:2475–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Dwivedi Y, Rizavi HS, Conley RR, Roberts RC, Tamminga CA, Pandey GN. Altered gene expression of brain-derived neurotrophic factor and receptor tyrosine kinase B in postmortem brain of suicide subjects. Arch Gen Psychiatry. 2003;60:804–15.

    Article  CAS  PubMed  Google Scholar 

  150. Sen S, Duman R, Sanacora G. Serum brain-derived neurotrophic factor, depression, and antidepressant medications: meta-analyses and implications. Biol Psychiatry. 2008;64:527–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Chen B, Dowlatshahi D, MacQueen GM, Wang JF, Young LT. Increased hippocampal BDNF immunoreactivity in subjects treated with antidepressant medication. Biol Psychiatry. 2001;50:260–5.

    Article  CAS  PubMed  Google Scholar 

  152. Nibuya M, Morinobu S, Duman RS. Regulation of BDNF and trkB mRNA in rat brain by chronic electroconvulsive seizure and antidepressant drug treatments. J Neurosci. 1995;15:7539–47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Roceri M, Cirulli F, Pessina C, Peretto P, Racagni G, Riva MA. Postnatal repeated maternal deprivation produces age-dependent changes of brain-derived neurotrophic factor expression in selected rat brain regions. Biol Psychiatry. 2004;55:708–14.

    Article  CAS  PubMed  Google Scholar 

  154. Taliaz D, Loya A, Gersner R, Haramati S, Chen A, Zangen A. Resilience to chronic stress is mediated by hippocampal brain-derived neurotrophic factor. J Neurosci. 2011;31:4475–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Tsankova NM, Berton O, Renthal W, Kumar A, Neve RL, Nestler EJ. Sustained hippocampal chromatin regulation in a mouse model of depression and antidepressant action. Nat Neurosci. 2006;9:519–25.

    Article  CAS  PubMed  Google Scholar 

  156. Fuchikami M, Yamamoto S, Morinobu S, Takei S, Yamawaki S. Epigenetic regulation of BDNF gene in response to stress. Psychiatry Investig. 2010;7:251–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Ait-Belgnaoui A, Colom A, Braniste V, Ramalho L, Marrot A, Cartier C, et al. Probiotic gut effect prevents the chronic psychological stress-induced brain activity abnormality in mice. Neurogastroenterol Motil. 2014;26:510–20.

    Article  CAS  PubMed  Google Scholar 

  158. Bercik P, Denou E, Collins J, Jackson W, Lu J, Jury J, et al. The intestinal microbiota affect central levels of brain-derived neurotropic factor and behavior in mice. Gastroenterology. 2011;141:599–609. 609.e591-3

    Article  CAS  PubMed  Google Scholar 

  159. Schroeder FA, Lin CL, Crusio WE, Akbarian S. Antidepressant-like effects of the histone deacetylase inhibitor, sodium butyrate, in the mouse. Biol Psychiatry. 2007;62:55–64.

    Article  CAS  PubMed  Google Scholar 

  160. Han A, Sung YB, Chung SY, Kwon MS. Possible additional antidepressant-like mechanism of sodium butyrate: targeting the hippocampus. Neuropharmacology. 2014;81:292–302.

    Article  CAS  PubMed  Google Scholar 

  161. Sun J, Wang F, Hong G, Pang M, Xu H, Li H, et al. Antidepressant-like effects of sodium butyrate and its possible mechanisms of action in mice exposed to chronic unpredictable mild stress. Neurosci Lett. 2016;618:159–66.

    Article  CAS  PubMed  Google Scholar 

  162. Boulle F, van den Hove DL, Jakob SB, Rutten BP, Hamon M, van Os J, et al. Epigenetic regulation of the BDNF gene: implications for psychiatric disorders. Mol Psychiatry. 2012;17:584–96.

    Article  CAS  PubMed  Google Scholar 

  163. Guo JU, Su Y, Zhong C, Ming GL, Song H. Hydroxylation of 5-methylcytosine by TET1 promotes active DNA demethylation in the adult brain. Cell. 2011;145:423–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Wei Y, Melas PA, Wegener G, Mathé AA, Lavebratt C. Antidepressant-like effect of sodium butyrate is associated with an increase in TET1 and in 5-hydroxymethylation levels in the Bdnf gene. Int J Neuropsychopharmacol. 2014;18:pyu032.

  165. Miro-Blanch J, Yanes O. Epigenetic regulation at the interplay between gut microbiota and host metabolism. Front Genet. 2019;10:638.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Bekhbat M, Neigh GN. Sex differences in the neuro-immune consequences of stress: focus on depression and anxiety. Brain Behav Immun. 2018;67:1–12.

    Article  PubMed  Google Scholar 

  167. Eid RS, Gobinath AR, Galea LAM. Sex differences in depression: insights from clinical and preclinical studies. Prog Neurobiol. 2019;176:86–102.

    Article  PubMed  Google Scholar 

  168. Tripp A, Oh H, Guilloux JP, Martinowich K, Lewis DA, Sibille E. Brain-derived neurotrophic factor signaling and subgenual anterior cingulate cortex dysfunction in major depressive disorder. Am J Psychiatry. 2012;169:1194–202.

    Article  PubMed  PubMed Central  Google Scholar 

  169. Kim T, Chelluboina B, Chokkalla AK, Vemuganti R. Age and sex differences in the pathophysiology of acute CNS injury. Neurochem Int. 2019;127:22–28.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Elderman M, Hugenholtz F, Belzer C, Boekschoten M, van Beek A, de Haan B, et al. Sex and strain dependent differences in mucosal immunology and microbiota composition in mice. Biol Sex Differ. 2018;9:26.

    Article  PubMed  PubMed Central  Google Scholar 

  171. Mueller S, Saunier K, Hanisch C, Norin E, Alm L, Midtvedt T, et al. Differences in fecal microbiota in different European study populations in relation to age, gender, and country: a cross-sectional study. Appl Environ Microbiol. 2006;72:1027–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Li M, Wang B, Zhang M, Rantalainen M, Wang S, Zhou H, et al. Symbiotic gut microbes modulate human metabolic phenotypes. Proc Natl Acad Sci USA. 2008;105:2117–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Ding T, Schloss PD. Dynamics and associations of microbial community types across the human body. Nature. 2014;509:357–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Korf JM, Ganesh BP, McCullough LD. Gut dysbiosis and age-related neurological diseases in females. Neurobiol Dis. 2022;168:105695.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Flores R, Shi J, Fuhrman B, Xu X, Veenstra TD, Gail MH, et al. Fecal microbial determinants of fecal and systemic estrogens and estrogen metabolites: a cross-sectional study. J Transl Med. 2012;10:253.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This study was partially supported by NIH grants (RO1 NS101960, RO1 NS109459, and R01 NS130763), US Dept. of Veterans Affairs (VA) grant I01BX005127, American Heart Association grant 898871, and the Department of Neurological Surgery, UW-Madison. Dr. Vemuganti is the recipient of a Research Career Scientist award (IK6BX005690) from the US Department of Veterans Affairs. The authors would like to thank Dr. Suresh L Mehta and Dr. Kahlilia C Morris-Blanco for constructive criticism.

Author information

Authors and Affiliations

Authors

Contributions

RV and SJ contributed to the study conception and design. The initial draft of the manuscript was written by SJ. AKC, CKD and RV helped in the revisions. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Raghu Vemuganti.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jeong, S., Chokkalla, A.K., Davis, C.K. et al. Post-stroke depression: epigenetic and epitranscriptomic modifications and their interplay with gut microbiota. Mol Psychiatry 28, 4044–4055 (2023). https://doi.org/10.1038/s41380-023-02099-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41380-023-02099-8

This article is cited by

Search

Quick links