Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Whole-brain resting-state connectivity underlying impaired inhibitory control during early versus longer-term abstinence in cocaine addiction

Abstract

Lapses in inhibitory control have been linked to relapse in human drug addiction. Evidence suggests differences in inhibitory control depending on abstinence duration, but the underlying neural mechanisms remain unknown. We hypothesized that early abstinence (2–5 days) would be characterized by the strongest impairments of inhibitory control and most wide-spread deviations in resting-state functional connectivity of brain networks, while longer-term abstinence (>30 days) would be characterized by weaker impairments as compared to healthy controls. In this laboratory-based cross-sectional study, we compared individuals with Cocaine Use Disorder (iCUD) during early (cocaine urine-positive: N = 19, iCUD+; 32% female; mean age: 46.8 years) and longer-term abstinence (cocaine urine-negative: N = 29, iCUD−; 15% female; mean age: 46.6 years) to healthy controls (N = 33; 24% female; mean age: 40.9 years). We compared the groups on inhibitory control performance (Stop-Signal Task) and, using a whole-brain graph theory analysis (638 region parcellation) of functional magnetic resonance imaging (fMRI) data, we tested for group differences in resting-state brain function (local/global efficiency). We characterized how resting-state brain function was associated with inhibitory control performance within iCUD. Inhibitory control performance was worst in the early abstinence group, and intermediate in the longer-term abstinence group, as compared to the healthy control group (P < 0.01). More recent use of cocaine (CUD+ > CUD− > healthy controls) was characterized by decreased efficiency in fronto-temporal and subcortical networks (primarily in the salience, semantic, and basal ganglia networks) and increased efficiency in visual networks. Importantly, a similar functional connectivity pattern characterized impaired inhibitory control performance within iCUD (all brain analyses P < 0.05, FWE-corrected). Together, we demonstrated that a similar pattern of systematic and widespread deviations in resting-state brain efficiency, extending beyond the networks commonly investigated in human drug addiction, is linked to both abstinence duration and inhibitory control deficits in iCUD.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Inhibitory control performance and craving by abstinence duration.
Fig. 2: Resting-state local/global efficiency.
Fig. 3: Functional topography by spring-embedded networks.

References

  1. Goldstein RZ, Volkow ND. Drug addiction and its underlying neurobiological basis: neuroimaging evidence for the involvement of the frontal cortex. Am J Psychiatry. 2002;159:1642–52.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Goldstein RZ, Volkow ND. Dysfunction of the prefrontal cortex in addiction: neuroimaging findings and clinical implications. Nat Rev Neurosci. 2011;12:652–69.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Zilverstand A, Huang AS, Alia-Klein N, Goldstein RZ. Neuroimaging impaired response inhibition and salience attribution in human drug addiction. A systematic review. Neuron. 2018;98:886–903.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. De Wit H. Impulsivity as a determinant and consequence of drug use: a review of underlying processes. Addict Biol. 2009;14:22–31.

    Article  PubMed  Google Scholar 

  5. Streeter CC, Terhune DB, Whitfield TH, Gruber S, Sarid-Segal O, Silveri MM, et al. Performance on the Stroop predicts treatment compliance in cocaine-dependent individuals. Neuropsychopharmacology. 2008;33:827–36.

    Article  CAS  PubMed  Google Scholar 

  6. Verdejo-garcía A, Betanzos-espinosa P, Lozano OM, Vergara-moragues E. Self-regulation and treatment retention in cocaine dependent individuals: a longitudinal study. Drug Alcohol Depend. 2012;122:142–8.

    Article  PubMed  Google Scholar 

  7. Ashare RL, Falcone M, Lerman C. Cognitive function during nicotine withdrawal: Implications for nicotine dependence treatment. Neuropharmacology. 2014;76:581–91.

    Article  CAS  PubMed  Google Scholar 

  8. Grabski M, Curran HV, Nutt DJ, Husbands SM, Freeman TP, Fluharty M, et al. Behavioural tasks sensitive to acute abstinence and predictive of smoking cessation success: a systematic review and meta-analysis. Addiction. 2016;111:2134–44.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Ferland JMN, Winstanley CA. Risk-preferring rats make worse decisions and show increased incubation of craving after cocaine self-administration. Addict Biol. 2017;22:991–1001.

    Article  CAS  PubMed  Google Scholar 

  10. Winstanley CA, Bachtell RK, Theobald DEH, Laali S, Green TA, Kumar A, et al. Increased impulsivity during withdrawal from cocaine self-administration: role for ΔFosB in the orbitofrontal cortex. Cereb Cortex. 2009;19:435–44.

    Article  PubMed  Google Scholar 

  11. Gawin FH, Kleber HD. Abstinence symptomatology and psychiatric diagnosis in cocaine abusers. Arch Gen Psychiatry. 1986;43:107–13.

    Article  CAS  PubMed  Google Scholar 

  12. Wang G, Shi J, Chen N, Xu L, Li J, Li P, et al. Effects of length of abstinence on decision-making and craving in methamphetamine abusers. PLoS One. 2013;8:1–7.

    Google Scholar 

  13. Jones HW, Dean AC, Price KA, London ED. Increased self-reported impulsivity in methamphetamine users maintaining drug abstinence. Am J Drug Alcohol Abuse. 2016;42:500–6.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Jufer RA, Wstadik A, Walsh SL, Levine BS, Cone EJ. Elimination of cocaine and metabolites in plasma, saliva, and urine following repeated oral administration to human volunteers. J Anal Toxicol. 2000;24:467–77.

    Article  CAS  PubMed  Google Scholar 

  15. Coe MA, Jufer Phipps RA, Cone EJ, Walsh SL. Bioavailability and pharmacokinetics of oral cocaine in humans. J Anal Toxicol. 2018;42:285–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Seeley WW, Menon V, Schatzberg AF, Keller J, Glover GH, Kenna H, et al. Dissociable intrinsic connectivity networks for salience processing and executive control. J Neurosci. 2007;27:2349–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Corbetta M, Patel G, Shulman GL. The reorienting system of the human brain: from environment to theory of mind. Neuron. 2008;58:306–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Corbetta M, Shulman GL. Control of goal-directed and stimulus-driven attention in the brain. Nat Rev Neurosci. 2002;3:215–29.

    Article  Google Scholar 

  19. Dosenbach NUF, Fair DA, Miezin FM, Cohen AL, Wenger KK, Dosenbach RAT, et al. Distinct brain networks for adaptive and stable task control in humans. Proc Natl Acad Sci. 2007;104:11073–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Langner R, Leiberg S, Hoffstaedter F, Eickhoff SB. Towards a human self-regulation system: common and distinct neural signatures of emotional and behavioural control. Neurosci Biobehav Rev. 2018;90:400–10.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Laird AR, Fox PM, Eickhoff SB, Turner JA, Ray KL, McKay DR, et al. Behavioral interpretations of intrinsic connectivity networks. J Cogn Neurosci. 2011;23:4022–37.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Cai W, Ryali S, Chen T, Li C-SR, Menon V. Dissociable roles of right inferior frontal cortex and anterior insula in inhibitory control: evidence from intrinsic and task-related functional parcellation, connectivity, and response profile analyses across multiple datasets. J Neurosci. 2014;34:14652–67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Badre D, Nee DE. Frontal cortex and the hierarchical control of behavior. Trends Cogn Sci. 2018;22:170–88.

    Article  PubMed  Google Scholar 

  24. Miller EK, Cohen JD. An integrative theory of prefrontal cortex function. Annu Rev Neurosci. 2001;24:167–202.

    Article  CAS  PubMed  Google Scholar 

  25. Hasson U, Chen J, Honey CJ. Hierarchical process memory: memory as an integral component of information processing. Trends Cogn Sci. 2015;19:304–13.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Neumann N, Lotze M, Eickhoff SB. Cognitive expertise: An ALE meta-analysis. Hum Brain Mapp. 2016;37:262–72.

    Article  PubMed  Google Scholar 

  27. Rodd JM, Vitello S, Woollams AM, Adank P. Localising semantic and syntactic processing in spoken and written language comprehension: an activation likelihood estimation meta-analysis. Brain Lang. 2015;141:89–102.

    Article  PubMed  Google Scholar 

  28. Hanakawa T. Rostral premotor cortex as a gateway between motor and cognitive networks. Neurosci Res. 2011;70:144–54.

    Article  PubMed  Google Scholar 

  29. Aron AR, Herz DM, Brown P, Forstmann BU, Zaghloul K. Frontosubthalamic circuits for control of action and cognition. J Neurosci. 2016;36:11489–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Kelly AMC, Uddin LQ, Biswal BB, Castellanos FX, Milham MP, Clare Kelly AM, et al. Competition between functional brain networks mediates behavioral variability. Neuroimage. 2008;39:527–37.

    Article  PubMed  Google Scholar 

  31. Luijten M, Machielsen MWJ, Veltman DJ, Hester R, de Haan L, Franken IHA. Systematic review of ERP and fMRI studies investigating inhibitory control and error processing in people with substance dependence and behavioural addictions. J Psychiatry Neurosci. 2014;39:149–69.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Huang AS, Mitchell JA, Haber SN, Alia-Klein N, Goldstein RZ. The thalamus in drug addiction: from rodents to humans. Philos Trans R Soc B Biol Sci. 2018;373:20170028.

    Article  Google Scholar 

  33. Zilverstand A, Parvaz MA, Goldstein RZ. Neuroimaging cognitive reappraisal in clinical populations to define neural targets for enhancing emotion regulation. A systematic review. Neuroimage. 2017;151:105–16.

    Article  PubMed  Google Scholar 

  34. Zilverstand A, Parvaz MA, Moeller SJ, Goldstein RZ. Cognitive interventions for addiction medicine: understanding the underlying neurobiological mechanisms. Prog Brain Res. 2016;224:285–304.

    Article  PubMed  Google Scholar 

  35. Liang X, He Y, Salmeron BJ, Gu H, Stein EA, Yang XY. Interactions between the salience and default-mode networks are disrupted in cocaine addiction. J Neurosci. 2015;35:8081–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Wisner KM, Patzelt EH, Lim KO, MacDonal AW. An intrinsic connectivity network approach to insula-derived dysfunctions among cocaine users dysfunctions among cocaine users. Am J Drug Alcohol Abuse. 2013;39:403–13.

    Article  PubMed  Google Scholar 

  37. Mchugh MJ, Demers CH, Braud J, Briggs R, Adinoff B, Stein EA. Striatal-insula circuits in cocaine addiction: implications for impulsivity and relapse risk. Am J Drug Alcohol Abuse. 2013;39:424–32.

    Article  PubMed  Google Scholar 

  38. Hu Y, Salmeron BJ, Gu H, Stein EA, Yang Y. Impaired functional connectivity within and between frontostriatal circuits and its association with compulsive drug use and trait impulsivity in cocaine addiction. JAMA Psychiatry. 2015;72:584–92.

    Article  PubMed  Google Scholar 

  39. Verdejo-Garcia A, Contreras-Rodríguez O, Fonseca F, Cuenca A, Soriano-Mas C, Rodriguez J, et al. Functional alteration in frontolimbic systems relevant to moral judgment in cocaine-dependent subjects. Addict Biol. 2014;19:272–81.

    Article  PubMed  Google Scholar 

  40. Wilcox CE, Teshiba TM, Merideth F, Ling J, Mayer AR. Enhanced cue reactivity and fronto-striatal functional connectivity in cocaine use disorders. Drug Alcohol Depend. 2011;115:137–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Konova AB, Moeller SJ, Tomasi D, Volkow ND, Goldstein RZ. Effects of methylphenidate on resting-state functional connectivity of the mesocorticolimbic dopamine pathways in cocaine addiction. JAMA Psychiatry. 2013;70:857–68.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Camchong J, MacDonald AW, Nelson B, Bell C, Mueller BA, Specker S, et al. Frontal hyperconnectivity related to discounting and reversal learning in cocaine subjects. Biol Psychiatry. 2011;69:1117–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Konova AB, Moeller SJ, Tomasi D, Goldstein RZ. Effects of chronic and acute stimulants on brain functional connectivity hubs. Brain Res. 2015;1628:147–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Wang Z, Suh J, Li Z, Li Y, Franklin T, O’Brien C, et al. A hyper-connected but less efficient small-world network in the substance-dependent brain. Drug Alcohol Depend. 2015;152:102–8.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Ding X, Lee SW. Cocaine addiction related reproducible brain regions of abnormal default-mode network functional connectivity: a group ICA study with different model orders. Neurosci Lett. 2013;548:110–4.

    Article  CAS  PubMed  Google Scholar 

  46. Gu H, Salmeron BJ, Ross TJ, Geng X, Zhan W, Stein EA, et al. Mesocorticolimbic circuits are impaired in chronic cocaine users as demonstrated by resting-state functional connectivity. Neuroimage. 2010;53:593–601.

    Article  CAS  PubMed  Google Scholar 

  47. Kohno M, Morales AM, Ghahremani DG, Hellemann G, London ED. Risky decision making, prefrontal cortex, and mesocorticolimbic functional connectivity in methamphetamine dependence. JAMA Psychiatry. 2014;71:812–20.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Hobkirk AL, Bell RP, Utevsky AV, Huettel S, Meade CS. Reward and executive control network resting-state functional connectivity is associated with impulsivity during reward-based decision making for cocaine users. Drug Alcohol Depend. 2019;194:32–9.

    Article  CAS  PubMed  Google Scholar 

  49. Mchugh MJ, Demers CH, Salmeron BJ, Devous MD Sr, Stein EA, Adinoff B. Cortico-amygdala coupling as a marker of early relapse risk in cocaine-addicted individuals. Front Psychiatry. 2014;5:1–13.

    Article  Google Scholar 

  50. Adinoff B, Gu H, Merrick C, McHugh M, Jeon-Slaughter H, Lu H, et al. Basal hippocampal activity and its functional connectivity predicts cocaine relapse. Biol Psychiatry. 2015;78:496–504.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Ray S, Gohel SR, Biswal BB. Altered functional connectivity strength in abstinent chronic cocaine smokers compared to healthy controls. Brain Connect. 2015;5:476–86.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Cisler JM, Elton A, Kennedy AP, Young J, Smitherman S, James GA, et al. Altered functional connectivity of the insular cortex across prefrontal networks in cocaine addiction. Psychiatry Res Neuroimaging. 2013;213:39–46.

    Article  CAS  Google Scholar 

  53. McCarthy JM, Zuo CS, Shepherd JM, Dias N, Lukas SE, Janes AC. Reduced interhemispheric executive control network coupling in men during early cocaine abstinence: a pilot study. Drug Alcohol Depend. 2017;181:1–4.

    Article  PubMed  PubMed Central  Google Scholar 

  54. McHugh MJ, Gu H, Yang Y, Adinoff B, Stein EA. Executive control network connectivity strength protects against relapse to cocaine use. Addict Biol. 2016;22:1790–801.

    Article  PubMed  Google Scholar 

  55. Zilverstand A, O’Halloran R, Goldstein RZ. Resting-state and structural brain connectivity in individuals with stimulant addiction. A systematic review. In: Pickard H, Ahmed S, editors. Routledge Handb. Philos. Sci. Addict. Routledge; 2018. p. 362–79.

    Chapter  Google Scholar 

  56. Rubinov M, Sporns O. Complex network measures of brain connectivity: uses and interpretations. Neuroimage. 2010;52:1059–69.

    Article  PubMed  Google Scholar 

  57. Yip SW, Scheinost D, Potenza MN, Carroll KM. Connectome-based prediction of cocaine abstinence. Am J Psychiatry. 2019;176:156–64.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Costumero V, Rosell Negre P, Bustamante JC, Fuentes-Claramonte P, Adrián-Ventura J, Palomar-García MÁ, et al. Distance disintegration characterizes node-level topological dysfunctions in cocaine addiction. Addict Biol. 2021;26:1–10.

    Article  Google Scholar 

  59. Latora V, Marchiori M. Efficient behavior of small-world networks. Phys Rev Lett. 2001;87:198701.

  60. Achard S, Bullmore E. Efficiency and cost of economical brain functional networks. PLoS Comput Biol. 2007;3:e17.

  61. Beck AT, Steer RA, Brown GK. Beck Depression Inventory - Second Edition (BDI-II). San Antonio, TX, USA: The Psychological Corporation; 1996.

  62. First M, Spitzer R, Gibbon M, Williams J. Structured Clinical Interview for DSM-IV Axis I disorders - Patient Edition (SCID-I/P, Version 2.0). New York: Biometrics Research Department New York State Psychiatric Institute; 1996.

  63. Mclellan AT, Kushner H, Metzger D, Peters R, Smith I, Grissom G, et al. The fifth edition of the addiction severity index. J Subst Abuse Treat. 1992;9:199–213.

    Article  CAS  PubMed  Google Scholar 

  64. Tiffany ST, Singleton E, Haertzen CA, Henningfield JE. The development of a cocaine craving questionnaire. Drug Alcohol Depend. 1993;34:19–28.

    Article  CAS  PubMed  Google Scholar 

  65. Kampman KM, Volpicelli JR, McGinnis DE, Alterman AI, Weinrieb RM, Angelo LD, et al. Reliability and validity of the cocaine selective severity assessment. Addict Behav. 1998;23:449–61.

    Article  CAS  PubMed  Google Scholar 

  66. Miller GA, Chapman JP. Misunderstanding analysis of covariance. J Abnorm Psychol. 2001;110:40–8.

    Article  CAS  PubMed  Google Scholar 

  67. Barnett JH, Blackwell AD, Sahakian BJ, Robbins TW. The Paired Associates Learning (PAL) Test: 30 Years of CANTAB Translational Neuroscience from Laboratory to Bedside in Dementia Research. In: Robbins TW, Sahakian BJ, editors. Transl. Neuropsychopharmacol., Cham: Springer International Publishing; 2016. p. 449–74.

  68. Whitfield-Gabrieli S, Nieto-Castanon A. Conn: a functional connectivity toolbox for correlated and anticorrelated brain networks. Brain Connect. 2012;2:125–41.

    Article  PubMed  Google Scholar 

  69. Moeller SJ, Zilverstand A, Konova AB, Kundu P, Parvaz MA, Preston-Campbell R, et al. Neural correlates of drug-biased choice in currently using and abstinent individuals with cocaine use disorder. Biol Psychiatry Cogn Neurosci Neuroimaging. 2018;3:485–94.

    PubMed  Google Scholar 

  70. Ceceli AO, Parvaz MA, King S, Schafer M, Malaker P, Sharma A, et al. Altered prefrontal signaling during inhibitory control in a salient drug context in cocaine use disorder. Cereb Cortex. 2022. March 2022. https://doi.org/10.1093/cercor/bhac087.

  71. Crossley NA, Mechelli A, Scott J, Carletti F, Fox PT, Mcguire P, et al. The hubs of the human connectome are generally implicated in the anatomy of brain disorders. Brain. 2014;137:2382–95.

    Article  PubMed  PubMed Central  Google Scholar 

  72. Tzourio-Mazoyer N, Landeau B, Papathanassiou D, Crivello F, Etard O, Delcroix N, et al. Automated anatomical labeling of activations in SPM using a macroscopic anatomical parcellation of the MNI MRI single-subject brain. Neuroimage. 2002;15:273–89.

    Article  CAS  PubMed  Google Scholar 

  73. Garrison KA, Scheinost D, Finn ES, Shen X, Constable RT. NeuroImage The (in) stability of functional brain network measures across thresholds. Neuroimage. 2015;118:651–61.

    Article  PubMed  Google Scholar 

  74. Bullmore ET, Bassett DS. Brain graphs: graphical models of the human brain connectome. Annu Rev Clin Psychol. 2011;7:113–40.

    Article  PubMed  Google Scholar 

  75. van den Heuvel MP, de Lange SC, Zalesky A, Seguin C, Yeo BTT, Schmidt R. Proportional thresholding in resting-state fMRI functional connectivity networks and consequences for patient-control connectome studies: issues and recommendations. Neuroimage. 2017;152:437–49.

    Article  PubMed  Google Scholar 

  76. Zalesky A, Fornito A, Bullmore ET. Network-based statistic: identifying differences in brain networks. Neuroimage. 2010;53:1197–207.

    Article  PubMed  Google Scholar 

  77. Yan C, Craddock RC, He Y, Milham MP. Addressing head motion dependencies for small-world topologies in functional connectomics. Front Hum Neurosci. 2013;7:1–19.

    Article  Google Scholar 

  78. Xia M, Wang J, He Y. BrainNet viewer: a network visualization tool for human brain connectomics. PLoS One. 2013;8:e68910.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Liluashvili V, Kalayci S, Fluder E, Wilson M, Gabow A, Zeynep HG. iCAVE: an open source tool for visualizing biomolecular networks in 3D, stereoscopic 3D and immersive 3D. Gigascience. 2017;6:1–13.

    Article  PubMed  PubMed Central  Google Scholar 

  80. Ceceli AO, King SG, McClain N, Alia-Klein N, Goldstein RZ. The neural signature of impaired inhibitory control in individuals with heroin use disorder. J Neurosci. 2023;43:173–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Wang Y, Zhao Y, Nie H, Liu C, Chen J. Disrupted brain network efficiency and decreased functional connectivity in multi-sensory modality regions in male patients with alcohol use disorder. Front Hum Neurosci. 2018;12:513.

    Article  PubMed  PubMed Central  Google Scholar 

  82. Lin F, Wu G, Zhu L, Lei H. Altered brain functional networks in heavy smokers. Addict Biol. 2015;20:809–19.

    Article  PubMed  Google Scholar 

  83. Palomero-Gallagher N, Vogt BA, Schleicher A, Mayberg HS, Zilles K. Receptor architecture of human cingulate cortex: evaluation of the four-region neurobiological model. Hum Brain Mapp. 2009;30:2336–55.

    Article  PubMed  Google Scholar 

  84. Volkow ND, Fowler JS, Wolf AP, Hitzemann R, Dewey SL, Bendriem B, et al. Changes in brain glucose metabolism in cocaine dependence and withdrawal changes in brain glucose metabolism in cocaine dependence and withdrawal Volkow, Nora D; Fowler, Joanna S; et al. Am J Psychiatry. 1991;148:621–6.

    CAS  PubMed  Google Scholar 

  85. Lee JH, Telang FW, Springer CS, Volkow ND. Abnormal brain activation to visual stimulation in cocaine abusers. Life Sci. 2003;73:1953–61.

    Article  CAS  PubMed  Google Scholar 

  86. Woicik PA, Moeller SJ, Alia-Klein N, Maloney T, Lukasik TM, Yeliosof O, et al. The neuropsychology of cocaine addiction: recent cocaine use masks impairment. Neuropsychopharmacology. 2009;34:1112–22.

    Article  CAS  PubMed  Google Scholar 

  87. Brewer JA, Worhunsky PD, Carroll KM, Rounsaville BJ, Potenza MN. Pretreatment brain activation during stroop task is associated with outcomes in cocaine-dependent patients. Biol Psychiatry. 2008;64:998–1004.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Parvaz MA, Moeller SJ, Goldstein RZ. Incubation of cue-induced craving in adults addicted to cocaine measured by electroencephalography. JAMA Psychiatry. 2016;73:1127.

    Article  PubMed  PubMed Central  Google Scholar 

  89. Pickens CL, Airavaara M, Theberge F, Fanous S, Hope BT, Shaham Y. Neurobiology of the incubation of drug craving. Trends Neurosci. 2011;34:411–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health.

Funding

This work was supported by the National Institute on Drug Abuse (K01DA043615 to MAP, R01DA051420, R01DA049733, and R21DA048196 to SJM; and 1R01DA041528, R01DA023579, and R21DA034954 to RZG), National Institute of Mental Health (R01MH090134 to NA-K), Netherlands Organisation for Scientific Research Rubicon Grant No.446-14-015 (to AZ), Icahn School of Medicine at Mount Sinai (seed funds to NA-K and RZG) and the Medical Discovery Team on Addiction at the University of Minnesota (seed funds to AZ).

Author information

Authors and Affiliations

Authors

Contributions

AZ: Conceptualization, Methodology, Data Curation, Formal analysis, Writing – Original Draft, Visualization, Funding acquisition. MAP, SJM, PM: Investigation, Writing – Review & Editing. SK: Methodology, Software, Formal Analysis, Writing – Review & Editing. PK: Methodology, Writing – Review & Editing. NA-K: Investigation, Resources, Writing – Review & Editing, Funding acquisition. ZHG: Methodology, Software, Writing – Review & Editing. RZG: Conceptualization, Resources, Writing – Review & Editing, Supervision, Project administration, Funding acquisition.

Corresponding author

Correspondence to Rita Z. Goldstein.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zilverstand, A., Parvaz, M.A., Moeller, S.J. et al. Whole-brain resting-state connectivity underlying impaired inhibitory control during early versus longer-term abstinence in cocaine addiction. Mol Psychiatry 28, 3355–3364 (2023). https://doi.org/10.1038/s41380-023-02199-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41380-023-02199-5

Search

Quick links