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The environment influences brain and mental health, both detrimentally and beneficially. Existing research has emphasised the
individual psychosocial ‘microenvironment’. Less attention has been paid to ‘macroenvironmental’ challenges, including climate
change, pollution, urbanicity, and socioeconomic disparity. Notably, the implications of climate and pollution on brain and mental
health have only recently gained prominence. With the advent of large-scale big-data cohorts and an increasingly dense mapping
of macroenvironmental parameters, we are now in a position to characterise the relation between macroenvironment, brain, and
behaviour across different geographic and cultural locations globally. This review synthesises findings from recent epidemiological
and neuroimaging studies, aiming to provide a comprehensive overview of the existing evidence between the macroenvironment
and the structure and functions of the brain, with a particular emphasis on its implications for mental illness. We discuss putative
underlying mechanisms and address the most common exposures of the macroenvironment. Finally, we identify critical areas for
future research to enhance our understanding of the aetiology of mental illness and to inform effective interventions for healthier
environments and mental health promotion.

Molecular Psychiatry; https://doi.org/10.1038/s41380-024-02557-x

INTRODUCTION
The environment refers to the broader ecological context in which
an individual exists, interacts, and adapts [1], and may have direct
and indirect effects on mental health [2]. It can be broadly divided
into the ‘macroenvironment’, encompassing environmental char-
acteristics at the neighbourhood or larger level, and the
‘microenvironment’, which relates to the individual psychosocial
level [3]. The macroenvironment includes factors such as
urbanisation, climate patterns, geological features, and ecosystem
interactions, as well as socioeconomic disparity—all of which are
undergoing rapid and dynamic changes. Urbanisation continues
at unprecedented rates, with more than 50% of the population
residing in cities [4], involving the expansion of infrastructure and
shifts in land use patterns and population density. These
alterations contribute to increased environmental pollution and
decreased availability of natural spaces [4]. Climate change results
in rising temperatures changed weather patterns, and extreme
weather events [5]. These factors are interconnected, and changes
in one may trigger or amplify changes in another.
Mental disorders ranked among the three leading causes of

health loss globally and consistently contribute to over 14% of
age-standardised years lived with disability during the past three
decades [6]. It has been suggested that adverse macroenviron-
mental factors contribute to an increased risk of mental health
disorders [7–9] and may account for more than 20% of

population attributable risk of mental disorders [10, 11]. While
extensive research has explored the influence of the micro-
environment on brain and mental health, there has been
growing awareness of the significance of the macroenvironment
in recent years with emerging insights and findings that warrant
further exploration. Mental illness may result from accumulated
exposure to single or multiple environmental factors throughout
the individual’s life course. In almost all cases, there is a complex
interplay between risk and protective factors of micro- and
macroenvironment.
In view of these complex dynamics, it is essential to understand

how the macroenvironment contributes to the occurrence of
mental illness and which are the neurobiological underpinnings of
this relationship. In the following sections, we document the
association of the macroenvironment with brain structure and
function and attempt to connect these findings to potential risks
of mental illness. We address the most common macroenviron-
mental exposures that encompass immediate environmental
factors, such as air, noise and light pollution, proximal factors
comprising regional socioeconomic characteristics, and distal
factors, like urbanisation, natural spaces, and climate. These
macroenvironmental exposures are mostly modifiable, presenting
opportunities for interventions and strategies to promote the
structural and functional integrity of the brain and mitigate the
burden of mental illness.

Received: 7 July 2023 Revised: 3 April 2024 Accepted: 8 April 2024

1Centre of Population Neuroscience and Stratified Medicine (PONS), Department of Psychiatry and Clinical Neuroscience CCM, Charité-Universitätsmedizin Berlin, Berlin,
Germany. 2Institute of Geography, Friedrich Schiller University Jena, Jena, Germany. 3Institute of Meteorology, Free University Berlin, Berlin, Germany. 4Department of
Atmospheric and Oceanic Sciences & Institute of Atmospheric Sciences & CMA-FDU Joint Laboratory of Marine Meteorology & IRDR-ICOE on Risk Interconnectivity and
Governance on Weather/Climate Extremes Impact and Public Health, Fudan University, Shanghai, China. 5Centre for Population Neuroscience and Stratified Medicine (PONS),
Institute for Science and Technology of Brain-inspired Intelligence (ISTBI), Fudan University, Shanghai, China. A full list of members and their affiliations appears in the
Supplementary Information. ✉email: elli.polemiti@charite.de; gunter.schumann@charite.de

www.nature.com/mpMolecular Psychiatry

1
2
3
4
5
6
7
8
9
0
()
;,:

http://crossmark.crossref.org/dialog/?doi=10.1038/s41380-024-02557-x&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41380-024-02557-x&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41380-024-02557-x&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41380-024-02557-x&domain=pdf
http://orcid.org/0000-0001-9526-3468
http://orcid.org/0000-0001-9526-3468
http://orcid.org/0000-0001-9526-3468
http://orcid.org/0000-0001-9526-3468
http://orcid.org/0000-0001-9526-3468
http://orcid.org/0000-0002-7740-6469
http://orcid.org/0000-0002-7740-6469
http://orcid.org/0000-0002-7740-6469
http://orcid.org/0000-0002-7740-6469
http://orcid.org/0000-0002-7740-6469
https://doi.org/10.1038/s41380-024-02557-x
mailto:elli.polemiti@charite.de
mailto:gunter.schumann@charite.de
www.nature.com/mp


Ta
bl
e
1.

St
u
d
ie
s
o
n
ai
r
p
o
llu

ti
o
n
an

d
M
R
I-d

et
ec
te
d
al
te
ra
ti
o
n
s
in

b
ra
in

st
ru
ct
u
re

an
d
fu
n
ct
io
n
.

Ex
p
os
ur
e

p
er
io
d

(Y
ea

r)

Ex
p
os
ur
e

d
ur
at
io
n

(Y
ea

r)

Pe
ri
od

at
M
R
I

as
se
ss
m
en

t
(Y
ea

r)

Po
llu

ta
n
t/

M
et
h
od

of
as
se
ss
m
en

t
B
ra
in

al
te
ra
ti
on

s
R
ef
er
en

ce

Li
fe
ti
m
e

Li
fe
ti
m
e

C
h
ild

h
o
o
d

M
ea
n
ag

e
±
SD

:
~
10

.7
±
2.
3
ye
ar
s

2
M
R
I
as
se
ss
m
en

ts
1
ye
ar

ap
ar
t.
M
ea
n

ag
e
±
SD

at
b
as
el
in
e:

~
7.
0
±
0.
6
ye
ar
s

Li
ve

d
in

a
h
ig
h
ly

p
o
llu

te
d
ci
ty

vs
lo
w

p
o
llu

te
d

ci
ty

Pr
ef
ro
n
ta
l
W
M

h
yp

er
se
n
si
ti
vi
ty

↓
W
M

vo
lu
m
es

in
te
m
p
o
ra
l
an

d
p
ar
ie
ta
l
(R
)
lo
b
e
at

1
ye
ar

fo
llo

w
-u
p

am
o
n
g
ch

ild
re
n
re
si
d
in
g
in

a
h
ig
h
ly

p
o
llu

te
d
ci
ty

co
m
p
ar
ed

to
ch

ild
re
n

fr
o
m

a
lo
w

p
o
llu

te
d
ci
ty

[2
50

,2
51

]
M
ex
ic
o
C
it
y

an
d
Po

lo
ti
tl
án

ar
ea

st
u
d
y

n
≈
30

C
h
ild

h
o
o
d

9–
10

ye
ar
s

(2
01

6–
20

18
)

1
ye
ar

(2
01

6)
C
h
ild

h
o
o
d

9–
10

ye
ar
s

(2
01

6–
20

18
)

PM
2.
5

Sp
at
io
te
m
p
o
ra
l
m
o
d
el

↓
SA

in
fr
o
n
ta
l
p
o
le

(R
),
cu

n
eu

s
(L
)

↑
SA

in
la
te
ra
l
o
rb
it
o
fr
o
n
ta
l
(R
)

↓
C
T
in

la
te
ra
lo

rb
it
o
fr
o
n
ta
l(
L)
,s
u
p
er
io
r
fr
o
n
ta
l(
L)
,i
n
fe
ri
o
r
te
m
p
o
ra
l(
R
),

p
ar
ah

ip
p
o
ca
m
p
u
s
(R
),
ro
st
ra
l
an

te
ri
o
r
ci
n
g
u
la
te

(L
),
ca
u
d
al

an
te
ri
o
r

ci
n
g
u
la
te

(L
),
p
o
st
er
io
r
ci
n
g
u
la
te

(L
),
is
th
m
u
s
(L
),
in
su
la

(R
)

↑
C
T
la
te
ra
lo

rb
it
o
fr
o
n
ta
l(
R
),
p
ar
ac
en

tr
al

(R
),
m
id
d
le

te
m
p
o
ra
l(
L)
,r
o
st
ra
l

an
te
ri
o
r
ci
n
g
u
la
te

(R
),
ca
u
d
al

an
te
ri
o
r
ci
n
g
u
la
te

(R
),
p
o
st
er
io
r
ci
n
g
u
la
te

(R
)

↑
vo

lu
m
es

in
ac
cu

m
b
en

s
(L
),
p
al
lid

u
m

(R
),
th
al
am

u
s
(R
)

↓
vo

lu
m
es

in
p
al
lid

u
m

(L
),
p
u
ta
m
en

(L
)

[3
3]

A
B
C
D

st
u
d
y

n
=
10

,3
41

C
h
ild

h
o
o
d

9–
10

ye
ar
s

(2
01

6–
20

18
)

1
ye
ar

(2
01

6)
C
h
ild

h
o
o
d

9–
10

ye
ar
s

(2
01

6–
20

18
)

PM
2.
5

Sp
at
io
te
m
p
o
ra
l
m
o
d
el

↑
rN

0
(n
o
n
lin

ea
r)
in

th
e
ci
n
g
u
lu
m

h
ip
p
o
ca
m
p
al

p
o
rt
io
n
(L
),
u
n
ci
n
at
e

fa
sc
ic
u
lu
s
(L
),
an

d
fo
rn
ix

(L
)

↑
rN

0
(li
n
ea
r)
in

th
e
u
n
ci
n
at
e
fa
sc
ic
u
lu
s
(R
),
th
e
fo
rn
ix

(R
),
su
p
er
io
r

lo
n
g
it
u
d
in
al

fa
sc
ic
u
lu
s
(L
)

↓
M
D

(n
o
n
lin

ea
r)
in

th
e
an

te
ri
o
r
th
al
am

ic
ra
d
ia
ti
o
n
s
(L
),
ci
n
g
u
lu
m

h
ip
p
o
ca
m
p
al

p
o
rt
io
n
(L
),
fo
rn
ix

(L
),
su
p
er
io
r
lo
n
g
it
u
d
in
al

fa
sc
ic
u
lu
s
(L
),

u
n
ci
n
at
e
(L
),
in
fe
ri
o
r
lo
n
g
it
u
d
in
al

fa
sc
ic
u
lu
s
(R
),
an

d
u
n
ci
n
at
e
(R
)

↓
M
D

(li
n
ea
r)
in

th
e
in
fe
ri
o
r
fr
o
n
to
-o
cc
ip
it
al

(L
),
in
fe
ri
o
r
lo
n
g
it
u
d
in
al

fa
sc
ic
u
lu
s
(L
),
ci
n
g
u
lu
m

h
ip
p
o
ca
m
p
al

p
o
rt
io
n
(R
),
fo
rn
ix

(R
)

[3
2]

A
B
C
D

st
u
d
y

n
=
76

02

C
h
ild

h
o
o
d
/

Pr
ea
d
o
le
sc
en

ce
9–

13
ye
ar
s

2
ye
ar
s
p
ri
o
r
to

fi
rs
t
M
R
I

as
se
ss
m
en

t

Pr
ea
d
o
le
sc
en

ce
/

ad
o
le
sc
en

ce
11

–
15

ye
ar
s

2
M
R
I
as
se
ss
m
en

ts
2
ye
ar
s
ap

ar
t

PM
2.
5

Sp
at
io
te
m
p
o
ra
l
m
o
d
el
s

A
t
2
ye
ar
s
fo
llo

w
-u
p
h
ig
h
er

PM
2.
5
ex
p
o
su
re

w
as

as
so
ci
at
ed

w
it
h
th
e

fo
llo

w
in
g
ch

an
g
es
:

↑
W
M

vo
lu
m
e
in

ca
u
d
at
e/
co

rp
u
s
ca
llo

su
m

(L
),
ci
n
g
u
lu
m

(L
),
in
fe
ri
o
r

fr
o
n
to
-o
cc
ip
it
al

fa
sc
ic
u
lu
s,
in
fe
ri
o
r
fr
o
n
ta
l
g
yr
u
s
(R
),
in
fe
ri
o
r
te
m
p
o
ra
l

g
yr
u
s
(R
)

↑
G
M

vo
lu
m
e
in

p
re
ce
n
tr
al

g
yr
u
s
(L
),
ce
re
b
el
lu
m

(L
),
m
ed

ia
l

o
rb
it
o
fr
o
n
ta
l
co

rt
ex

↓
W
M

vo
lu
m
e
in

in
fe
ri
o
r
te
m
p
o
ra
lg

yr
u
s
(L
),
an

g
u
la
r
g
yr
u
s
(L
),
p
o
st
er
io
r

th
al
am

ic
ra
d
ia
ti
o
n
(L
),
m
id
d
le

fr
o
n
ta
l
g
yr
u
s
(L
),
h
ip
p
o
ca
m
p
al

ci
n
g
u
lu
m

(L
),
p
o
st
ce
n
tr
al

g
yr
u
s
(R
)

↓
G
M

vo
lu
m
e
in

in
su
la

(L
),
ci
n
g
u
la
te

g
yr
u
s
(R
),
ca
u
d
at
e
(R
),
ce
re
b
el
lu
m

(L
),
fu
si
fo
rm

g
yr
u
s,
p
re
ce
n
tr
al

g
yr
u
s,
m
id
d
le

fr
o
n
ta
l
g
yr
u
s

[3
4]

Sa
n
Fr
an

ci
sc
o

an
d
Sa
n
Jo
se

B
ay

A
re
a
st
u
d
y

n
=
11

5

Pr
en

at
al

W
h
o
le
p
re
g
n
an

cy
(P
M
2.
5)

48
-h

d
u
ri
n
g
la
st

tr
im

es
te
r
(P
A
H
)

C
h
ild

h
o
o
d
/

A
d
o
le
sc
en

ce
6–

14
ye
ar
s

PM
2.
5,

PA
H

Sp
at
io
te
m
p
o
ra
l
m
o
d
el
s
(P
M
2.
5)

Pe
rs
o
n
al

ai
r
m
o
n
it
o
rs

(P
A
H
)

Ex
p
os
ur
e
to

PM
2.
5

↓
W
M

su
rf
ac
e
in

la
te
ra
l
p
re
/p
ro
ce
n
tr
al

g
yr
u
s,
su
p
er
io
r
fr
o
n
ta
l
g
yr
u
s,

m
id
d
le

fr
o
n
ta
l
g
yr
u
s
(L
),
m
id
d
le

te
m
p
o
ra
l
g
yr
u
s
(L
),
in
fe
ri
o
r
p
ar
ie
ta
l

lo
b
u
le

(L
),
an

te
ri
o
r
ci
n
g
u
la
te

co
rt
ex
,p

o
st
er
io
r
ci
n
g
u
la
te

co
rt
ex

(R
)

↑
W
M

su
rf
ac
e
in

m
ed

ia
l
an

d
d
o
rs
al

p
re
/p
ro
ce
n
tr
al

g
yr
u
s,
m
ed

ia
l

su
p
er
io
r
fr
o
n
ta
l
g
yr
u
s,
la
te
ra
l
su
p
er
io
r
te
m
p
o
ra
l
g
yr
u
s
(R
),
d
o
rs
al

su
p
er
io
r
p
ar
ie
ta
l
g
yr
u
s

↓
C
T
in

su
p
er
io
r
p
ar
ie
ta
l
g
yr
u
s,
p
re
/p
ro
ce
n
tr
al

g
yr
u
s

↑
C
T
in

su
p
er
io
r
fr
o
n
ta
l
g
yr
u
s,
in
fe
ri
o
r
fr
o
n
ta
l
g
yr
u
s
(L
),
su
p
er
io
r

te
m
p
o
ra
l
g
yr
u
s
(L
),
in
fe
ri
o
r
te
m
p
o
ra
l
g
yr
u
s,
m
id
d
le

te
m
p
o
ra
l
g
yr
u
s,

in
fe
ri
o
r
p
ar
ie
ta
ll
o
b
u
le

(L
),
an

te
ri
o
r
ci
n
g
u
la
te

co
rt
ex
,p

o
st
er
io
r
ci
n
g
u
la
te

co
rt
ex

(R
),
fu
si
fo
rm

an
d
lin

g
u
al

g
yr
u
s

↑
FA

in
ca
u
d
at
e,

le
n
ti
cu

la
r
n
u
cl
eu

s,
in
su
la
,b

ra
in
st
em

,
th
al
am

u
s,

ci
n
g
u
la
te

g
yr
u
s,
su
p
er
io
r
co

ro
n
a
ra
d
ia
te

↑
A
D
C
in

in
fe
ri
o
r
fr
o
n
to
-o
cc
ip
it
al

fa
sc
ic
u
lu
s,
an

te
ri
o
r
co

ro
n
a
ra
d
ia
ta
,

ve
rt
ic
al

o
cc
ip
it
al

fa
sc
ic
u
lu
s

Ex
p
os
ur
e
to

PA
H

↓
W
M

su
rf
ac
e
in

in
fe
ri
o
r
te
m
p
o
ra
lg

yr
u
s,
m
id
d
le

te
m
p
o
ra
lg

yr
u
s,
in
fe
ri
o
r

[2
7]

C
C
C
EH

st
u
d
y

n
=
33

2

E. Polemiti et al.

2

Molecular Psychiatry



Ta
bl
e
1.

co
n
ti
n
u
ed

Ex
p
os
ur
e

p
er
io
d

(Y
ea

r)

Ex
p
os
ur
e

d
ur
at
io
n

(Y
ea

r)

Pe
ri
od

at
M
R
I

as
se
ss
m
en

t
(Y
ea

r)

Po
llu

ta
n
t/

M
et
h
od

of
as
se
ss
m
en

t
B
ra
in

al
te
ra
ti
on

s
R
ef
er
en

ce

p
ar
ie
ta
l
lo
b
u
le

(L
),
an

te
ri
o
r
ci
n
g
u
la
te

co
rt
ex

(R
),
p
o
st
er
io
r
ci
n
g
u
la
te

co
rt
ex

(L
)

↑
W
M

su
rf
ac
e
in

p
re
/p
ro
ce
n
tr
al

g
yr
u
s,
su
p
er
io
r
fr
o
n
ta
l
g
yr
u
s,
d
o
rs
al

m
id
d
le

fr
o
n
ta
l
g
yr
u
s,
ve

n
tr
al

fu
si
fo
rm

g
yr
u
s,
ve

n
tr
al

lin
g
u
al

g
yr
u
s

↓
C
T
in

su
p
er
io
r
fr
o
n
ta
lg

yr
u
s,
m
id
d
le
fr
o
n
ta
lg

yr
u
s,
in
fe
ri
o
r
fr
o
n
ta
lg

yr
u
s

(L
),
p
re
/p
ro
ce
n
tr
al

g
yr
u
s,
su
p
er
io
r
te
m
p
o
ra
l
g
yr
u
s
(R
),
m
id
d
le

te
m
p
o
ra
l

g
yr
u
s
(R
)

↑
C
T
in

m
id
d
le

te
m
p
o
ra
lg

yr
u
s
(L
),
an

te
ri
o
r
ci
n
g
u
la
te

co
rt
ex

(R
),
fu
si
fo
rm

an
d
lin

g
u
al

g
yr
u
s

↑
FA

in
m
id
d
le

o
rb
it
o
fr
o
n
ta
l
g
yr
u
s,
ce
re
b
el
lu
m
,
h
ip
p
o
ca
m
p
u
s,
g
lo
b
u
s

p
al
lid

u
s,
p
u
ta
m
en

,
th
al
am

u
s,
co

rp
u
s
ca
llo

su
m
,i
n
te
rn
al

ca
p
su
le

↓
A
D
C
in

in
te
rn
al

ca
p
su
le
,c
o
rp
u
s
ca
llo

su
m

Pr
en

at
al

1s
t,
2n

d
,3

rd
tr
im

es
te
r
an

d
w
h
o
le

p
re
g
n
an

cy

C
h
ild

h
o
o
d
/

Pr
ea
d
o
le
sc
en

ce
8–

12
ye
ar
s

(2
01

2–
20

14
)

PM
2.
5

LU
R
m
o
d
el
s

M
ea
su
re
m
en

ts
fr
o
m

m
o
n
it
o
rs

at
si
te

w
er
e

co
lle
ct
ed

b
et
w
ee

n
O
ct

20
08

an
d
A
p
r
20

11

↓
vo

lu
m
e
in

to
ta
l,
an

te
ri
o
r
an

d
b
o
d
y
co

rp
u
s
ca
llo

su
m

w
it
h
h
ig
h
er

PM
2.
5

ex
p
o
su
re

d
u
ri
n
g
th
e
3r
d
tr
im

es
te
r.
A
ss
o
ci
at
io
n
s
d
id

n
o
t
su
rv
iv
e
fa
ls
e

d
is
co

ve
ry

ra
te

co
rr
ec
ti
o
n
.

N
o
as
so
ci
at
io
n
fo
r
W
M
,G

M
an

d
la
te
ra
l
ve

n
tr
ic
le
s

[2
9]

B
R
EA

TH
n
=
18

6

C
h
ild

h
o
o
d
/

Pr
ea
d
o
le
sc
en

ce
(2
01

2)
7–

11
ye
ar
s

8–
12

ye
ar
s

1
ye
ar

(2
01

2)
C
h
ild

h
o
o
d
/

Pr
ea
d
o
le
sc
en

ce
7–

11
ye
ar
s

8–
12

ye
ar
s

(2
01

2–
20

14
)

N
O
2,

PA
H
,B

PA
,E

C
,c

o
p
p
er

M
o
n
it
o
rs

at
si
te

Tw
o
1-
w
ee

k
p
er
io
d
s
se
p
ar
at
ed

b
y
tw

o
se
m
es
te
rs

Ex
p
os
ur
e
to

PA
H
,
B
PA

an
d
N
O
2

↓
C
au

d
at
e
vo

lu
m
e

N
o
as
so
ci
at
io
n
fo
r
p
u
ta
m
en

an
d
g
lo
b
u
s
p
al
lid

u
s
vo

lu
m
es

Ex
p
os
ur
e
to

EC
N
o
as
so
ci
at
io
n
fo
r
ca
u
d
at
e,

p
u
ta
m
en

,
an

d
g
lo
b
u
s
p
al
lid

u
s
vo

lu
m
es

Ex
p
os
ur
e
to

co
p
p
er

↑
G
M

co
n
ce
n
tr
at
io
n
in

th
e
ca
u
d
at
e
n
u
cl
eu

s
N
o
as
so
ci
at
io
n
fo
r
p
u
ta
m
en

an
d
g
lo
b
u
s
p
al
lid

u
s

↑
FA

p
re
d
o
m
in
an

tl
y
in

ca
u
d
at
e
n
u
cl
eu

s
↓
rs
FC

b
et
w
ee

n
th
e
fr
o
n
ta
l
lo
b
e
o
p
er
cu

la
an

d
th
e
ca
u
d
at
e
n
u
cl
ei
,a

n
d

vi
ce

ve
rs
a

[3
0,

35
,3

6]
B
R
EA

TH
st
u
d
y

n
≈
20

0

C
h
ild

h
o
o
d
/

Pr
ea
d
o
le
sc
en

ce
(2
01

2)
8–

12
ye
ar
s

1
ye
ar

(2
01

2)
C
h
ild

h
o
o
d
/

Pr
ea
d
o
le
sc
en

ce
8–

12
ye
ar
s

Po
llu

ti
o
n
in
d
ex
:w

ei
g
h
te
d
av
er
ag

e
o
f
p
o
o
le
d

in
d
o
o
r
an

d
o
u
td
o
o
r
N
O
2
an

d
EC

M
o
n
it
o
rs

at
si
te

Tw
o
1-
w
ee

k
p
er
io
d
s
se
p
ar
at
ed

b
y
tw

o
se
m
es
te
rs

↓
rs
FC

b
et
w
ee

n
re
g
io
n
s
b
el
o
n
g
in
g
to

th
e
D
M
N

↑r
sF
C
b
et
w
ee

n
th
e
m
ed

ia
l
fr
o
n
ta
l
co

rt
ex

an
d
th
e
fr
o
n
ta
l
o
p
er
cu

lu
m

at
th
e
la
te
ra
l
b
o
u
n
d
ar
y
o
f
th
e
D
M
N

↓
d
ea
ct
iv
at
io
n
in

th
e
su
p
p
le
m
en

ta
ry

m
o
to
r
ar
ea

an
d
so
m
at
o
se
n
so
ry

co
rt
ex

in
th
e
st
u
d
y
d
ea
ct
iv
at
io
n
m
ap

[3
1]

B
R
EA

TH
st
u
d
y

n
=
26

3

Pr
en

at
al

(2
00

1–
20

06
)

W
h
o
le
p
re
g
n
an

cy
C
h
ild

h
o
o
d

6–
10

ye
ar
s

N
O
2,

PM
co

ar
se
,P

M
2.
5,

PM
2.
5a

b
s

LU
R
m
o
d
el
s

2-
w
ee

k
m
ea
su
re
m
en

ts
in

th
re
e
d
iff
er
en

t
se
as
o
n
s
(w

ar
m
,
co

ld
,a

n
d
in
te
rm

ed
ia
te
)
fr
o
m

m
o
n
it
o
rs

at
si
te

b
et
w
ee

n
Fe
b
20

09
an

d
Fe
b

20
10

↓
C
T
in

p
ra
ec
u
n
eu

s
(R
),
p
ar
s
o
p
er
cu

la
ri
s
(R
),
p
ar
s
o
rb
it
al
is
(R
),
ro
st
ra
l

m
id
d
le

fr
o
n
ta
l
(R
),
su
p
er
io
r
fr
o
n
ta
l
(R
),
cu

n
eu

s
(L
)
w
it
h
h
ig
h
er

ex
p
o
su
re

to
PM

2.
5

↓
C
T
in

la
te
ra
l
o
rb
it
o
fr
o
n
ta
l
(R
)
w
it
h
h
ig
h
er

ex
p
o
su
re

to
PM

2.
5c
o
ar
se

↓
C
T
in

fu
si
fo
rm

(L
)
w
it
h
h
ig
h
er

ex
p
o
su
re

to
PM

2.
5a

b
s

[2
2]

G
en

er
at
io
n
R

st
u
d
y

n
=
78

3

Pr
en

at
al

(2
00

1–
20

06
)

W
h
o
le
p
re
g
n
an

cy
Pr
ea
d
o
le
sc
en

ce
9–

12
ye
ar
s

N
O
x,

N
O
2,

PM
10

,P
M
co

ar
se
,P

M
2.
5,

PM
2.
5a

b
s,

PA
H
,O

C
,c

o
p
p
er
,i
ro
n
,
si
lic
o
n
,
zi
n
c,
O
P

LU
R
m
o
d
el
s

2-
w
ee

k
m
ea
su
re
m
en

ts
in

th
re
e
d
iff
er
en

t
se
as
o
n
s
(w

ar
m
,
co

ld
,a

n
d
in
te
rm

ed
ia
te
)
fr
o
m

m
o
n
it
o
rs

at
si
te

b
et
w
ee

n
Fe
b
20

09
an

d
Fe
b

20
10

↑
vo

lu
m
es

o
f
p
u
ta
m
en

an
d
p
al
lid

u
m

w
it
h
h
ig
h
er

ex
p
o
su
re

to
PM

co
ar
se

↑
vo

lu
m
e
o
f
ce
re
b
el
lu
m

w
it
h
h
ig
h
er

ex
p
o
su
re

to
PM

10
,
PM

co
ar
se
,

PM
2.
5,

PM
2.
5a

b
↓
vo

lu
m
e
o
f
h
ip
p
o
ca
m
p
u
s
w
it
h
h
ig
h
er

ex
p
o
su
re

to
PA

H
,c

o
p
p
er

↓
vo

lu
m
e
o
f
am

yg
d
al
a
w
it
h
h
ig
h
er

ex
p
o
su
re

to
O
C
,s
ili
co

n
↓
vo

lu
m
e
o
f
co

rp
u
s
ca
llo

su
m

w
it
h
h
ig
h
er

ex
p
o
su
re

to
O
P

↓
C
T
in

p
o
st
ce
n
tr
al

g
yr
u
s
(R
)
w
it
h
h
ig
h
er

ex
p
o
su
re

to
O
C
(m

ar
g
in
al
ly

n
o
n
si
g
n
ifi
ca
n
t)

↓
C
T
in

ro
st
ra
l
m
id
d
le

fr
o
n
ta
l
g
yr
u
s
(R
)
w
it
h
h
ig
h
er

ex
p
o
su
re

to
co

p
p
er

an
d
PM

2.
5a

b
s
(m

ar
g
in
al
ly

n
o
n
si
g
n
i fi
ca
n
t)

↓
FA

in
fo
rc
ep

s
m
in
o
r,
co

rt
ic
o
sp
in
al

tr
ac
t,
su
p
er
io
r
lo
n
g
it
u
d
in
al

fa
sc
ic
u
lu
s
(R
)
w
it
h
h
ig
h
er

ex
p
o
su
re

to
PM

2.
5

↑
M
D

in
ci
n
g
u
lu
m

b
u
n
d
le
,f
o
rc
ep

s
m
in
o
r,
su
p
er
io
r
lo
n
g
it
u
d
in
al

fa
sc
ic
u
lu
s
(L
),
in
fe
ri
o
r
lo
n
g
it
u
d
in
al
fa
sc
ic
u
lu
s
(L
)w

it
h
h
ig
h
er

ex
p
o
su
re

to
si
lic
o
n

↑
rs
FC

b
et
w
ee

n
b
ra
in

re
g
io
n
s
o
f
th
e
sa
m
e
b
ra
in

h
em

is
p
h
er
e,

p
re
d
o
m
in
an

tl
y
in

th
e
au

d
it
o
ry

as
so
ci
at
io
n
,
d
o
rs
o
la
te
ra
l
p
re
fr
o
n
ta
l,

so
m
at
o
se
n
so
ry

an
d
m
o
to
r,
an

te
ri
o
r
ci
n
g
u
la
te

an
d
m
ed

ia
l
p
re
fr
o
n
ta
l,

d
o
rs
al

st
re
am

vi
su
al
,a

n
d
in
su
la
r
an

d
fr
o
n
ta
l
o
p
er
cu

la
r
co

rt
ic
es

w
it
h

h
ig
h
er

ex
p
o
su
re

to
N
O
2

[2
2]

G
en

er
at
io
n
R

st
u
d
y

n
=
31

33

E. Polemiti et al.

3

Molecular Psychiatry



Ta
bl
e
1.

co
n
ti
n
u
ed

Ex
p
os
ur
e

p
er
io
d

(Y
ea

r)

Ex
p
os
ur
e

d
ur
at
io
n

(Y
ea

r)

Pe
ri
od

at
M
R
I

as
se
ss
m
en

t
(Y
ea

r)

Po
llu

ta
n
t/

M
et
h
od

of
as
se
ss
m
en

t
B
ra
in

al
te
ra
ti
on

s
R
ef
er
en

ce

C
h
ild

h
o
o
d

6–
10

ye
ar
s

1
ye
ar

Pr
ea
d
o
le
sc
en

ce
9–

12
ye
ar
s

N
O
x,

N
O
2,

PM
10

,P
M
co

ar
se
,P

M
2.
5,

PM
2.
5a

b
s,

PA
H
,O

C
,c

o
p
p
er
,i
ro
n
,
si
lic
o
n
,
zi
n
c,
O
P

LU
R
m
o
d
el
s

2-
w
ee

k
m
ea
su
re
m
en

ts
in

th
re
e
d
iff
er
en

t
se
as
o
n
s
(w

ar
m
,
co

ld
,a

n
d
in
te
rm

ed
ia
te
)
fr
o
m

m
o
n
it
o
rs

at
si
te

b
et
w
ee

n
Fe
b
20

09
an

d
Fe
b

20
10

↓
vo

lu
m
e
o
f
h
ip
p
o
ca
m
p
u
s
w
it
h
h
ig
h
er

ex
p
o
su
re

to
PM

co
ar
se
,O

P
↑
vo

lu
m
e
o
f
n
u
cl
eu

s
ac
cu

m
b
en

s
w
it
h
h
ig
h
er

ex
p
o
su
re

to
zi
n
c

↓
vo

lu
m
e
o
f
co

rp
u
s
ca
llo

su
m

w
it
h
h
ig
h
er

ex
p
o
su
re

to
O
C

↓
C
T
in

lin
g
u
al

g
yr
u
s
(L
)
w
it
h
h
ig
h
er

ex
p
o
su
re

to
co

p
p
er

an
d
O
P

(m
ar
g
in
al
ly

n
o
n
si
g
n
ifi
ca
n
t)

↑
SA

in
p
re
ce
n
tr
al

g
yr
u
s
(R
)
w
it
h
h
ig
h
er

ex
p
o
su
re

to
zi
n
c
an

d
O
P

↑S
A
in

p
er
ic
al
ca
ri
n
e
co

rt
ex

(L
)
an

d
p
re
cu

n
eu

s
(L
)
w
it
h
h
ig
h
er

ex
p
o
su
re

to
zi
n
c

↓
SA

in
p
ar
s
tr
ia
n
g
u
la
ri
s
(R
)
w
it
h
h
ig
h
er

ex
p
o
su
re

to
PM

co
ar
se

(m
ar
g
in
al
ly

n
o
n
si
g
n
ifi
ca
n
t)

↓
FA

in
co

rt
ic
o
sp
in
al
tr
ac
t
(L
),
u
n
ci
n
at
ed

fa
sc
ic
u
lu
s,
su
p
er
io
r
lo
n
g
it
u
d
in
al

fa
sc
ic
u
lu
s
(R
),
in
fe
ri
o
r
lo
n
g
it
u
d
in
al
fa
sc
ic
u
lu
s
(R
)w

it
h
h
ig
h
er

ex
p
o
su
re

to
N
O
x

↑
M
D

in
ci
n
g
u
lu
m

b
u
n
d
le

(L
)
w
it
h
h
ig
h
er

ex
p
o
su
re

to
O
P

↑
M
D

in
ci
n
g
u
lu
m

b
u
n
d
le
,f
o
rc
ep

s
m
in
o
r,
su
p
er
io
r
lo
n
g
it
u
d
in
al

fa
sc
ic
u
lu
s,
in
fe
ri
o
r
lo
n
g
it
u
d
in
al

fa
sc
ic
u
lu
s,
u
n
ci
n
at
ed

fa
sc
ic
u
lu
s
w
it
h

h
ig
h
er

ex
p
o
su
re

to
zi
n
c

[2
2]

G
en

er
at
io
n
R

st
u
d
y

n
≈
30

00

Pr
en

at
al

an
d

ch
ild

h
o
o
d

W
h
o
le
p
re
g
n
an

cy
an

d
ch

ild
h
o
o
d
at

p
er
io
d
s:

0–
2
ye
ar
s

2–
5
ye
ar
s

5–
9
ye
ar
s

Pr
ea
d
o
le
sc
en

ce
9–

12
ye
ar
s

N
O
x,

N
O
2,

PM
10

,P
M
co

ar
se
,P

M
2.
5,

PM
2.
5a

b
s

LU
R
m
o
d
el
s

2-
w
ee

k
m
ea
su
re
m
en

ts
in

th
re
e
d
iff
er
en

t
se
as
o
n
s
(w

ar
m
,
co

ld
,a

n
d
in
te
rm

ed
ia
te
)
fr
o
m

m
o
n
it
o
rs

at
si
te

b
et
w
ee

n
Fe
b
20

09
an

d
Fe
b

20
10

Ex
p
os
ur
e
to

N
O
x
fr
om

0–
2
an

d
2–

5
ye

ar
s

↑
rs
FC

in
ar
ea
s
in

au
d
it
o
ry

as
so
ci
at
io
n
,
p
re
m
o
to
r,
o
rb
it
al

an
d
p
o
la
r

fr
o
n
ta
l,
in
fe
ri
o
r
p
ar
ie
ta
l,
an

d
p
o
st
er
io
r
ci
n
g
u
la
te

co
rt
ic
es
,i
n
th
e
ve
n
tr
al

d
ie
n
ce
p
h
al
o
n
,a

n
d
in

th
e
M
T+

co
m
p
le
x
an

d
n
ei
g
h
b
o
u
ri
n
g
vi
su
al

ar
ea
s

Ex
p
os
ur
e
to

N
O
2
d
ur
in
g
p
re
g
n
an

cy
an

d
fr
om

0–
2
ye

ar
s

↑
rs
FC

in
ar
ea
s
in

in
au

d
it
o
ry

as
so
ci
at
io
n
,
ve
n
tr
al

d
ie
n
ce
p
h
al
o
n
,
an

d
in
su
la
r
an

d
fr
o
n
ta
l
co

rt
ic
es

o
p
er
cu

la
r,
so
m
at
o
se
n
so
ry

an
d
m
o
to
r
an

d
ea
rl
y
au

d
it
o
ry
,d

o
rs
al

st
re
am

vi
su
al

an
d
su
p
er
io
r
p
ar
ie
ta
l

Ex
p
os
ur
e
to

PM
co

ar
se

fr
om

2–
5
an

d
5–

9
ye

ar
s

↑
rs
FC

in
ar
ea
s
in

an
te
ri
o
r
ci
n
g
u
la
te

an
d
m
ed

ia
l
p
re
fr
o
n
ta
l
co

rt
ic
es

an
d

in
th
e
M
T+

co
m
p
le
x
an

d
n
ei
g
h
b
o
u
ri
n
g
vi
su
al

ar
ea
s

Ex
p
os
ur
e
to

PM
2.
5a

b
s
fr
om

0–
2
an

d
2–

5
ye

ar
s

↑
rs
FC

in
ar
ea
s
in

in
su
la
r
an

d
fr
o
n
ta
l
o
p
er
cu

la
r,
au

d
it
o
ry

as
so
ci
at
io
n
,

la
te
ra
l
te
m
p
o
ra
l,
so
m
at
o
se
n
so
ry

an
d
m
o
to
r,
an

te
ri
o
r
ci
n
g
u
la
te

an
d

m
ed

ia
l
p
re
fr
o
n
ta
l,
an

d
p
o
st
er
io
r
ci
n
g
u
la
te

co
rt
ic
es
,a

n
d
in

th
e
M
T+

co
m
p
le
x
an

d
n
ei
g
h
b
o
u
ri
n
g
vi
su
al

ar
ea
s

[2
2]

G
en

er
at
io
n
R

st
u
d
y

n
=
21

97

Pr
en

at
al

an
d

ch
ild

h
o
o
d

W
h
o
le
p
re
g
n
an

cy
an

d
ch

ild
h
o
o
d
at

p
er
io
d
s:

0–
3
ye
ar
s

3–
6
ye
ar
s

6
–
ag

e
o
f
M
R
I

Pr
ea
d
o
le
sc
en

ce
9–

12
ye
ar
s

N
O
x,

N
O
2,

PM
10

,P
M
2.
5,

PM
2.
5a

b
s

LU
R
m
o
d
el
s

2-
w
ee

k
m
ea
su
re
m
en

ts
in

th
re
e
d
iff
er
en

t
se
as
o
n
s
(w

ar
m
,
co

ld
,a

n
d
in
te
rm

ed
ia
te
)
fr
o
m

m
o
n
it
o
rs

at
si
te

b
et
w
ee

n
Fe
b
20

09
an

d
Fe
b

20
10

Ex
p
os
ur
e
to

N
O
x
fr
om

3–
6
ye

ar
s

↑
rs
FC

in
re
g
io
n
s
o
f
th
e
vi
su
al
an

d
ta
sk

p
o
si
ti
ve

n
et
w
o
rk
s:
M
T+

co
m
p
le
x

an
d
n
ei
g
h
b
o
u
ri
n
g
vi
su
al

ar
ea
s—

in
fe
ri
o
r
fr
o
n
ta
l
co

rt
ex

an
d
M
T+

co
m
p
le
x
an

d
n
ei
g
h
b
o
u
ri
n
g
vi
su
al

ar
ea
s—

in
su
la
r
an

d
fr
o
n
ta
l
o
p
er
cu

la
r

co
rt
ex

Ex
p
os
ur
e
to

N
O
2
fr
om

0–
3
ye

ar
s

↑
rs
FC

in
re
g
io
n
s
o
f
th
e
vi
su
al
,
au

d
it
o
ry

an
d
ta
sk

p
o
si
ti
ve

n
et
w
o
rk
s:

d
o
rs
al

st
re
am

vi
su
al

co
rt
ex

–
su
p
er
io
r
p
ar
ie
ta
l
co

rt
ex

an
d
au

d
it
o
ry

as
so
ci
at
io
n
co

rt
ex

–
in
su
la
r
an

d
fr
o
n
ta
l
o
p
er
cu

la
r
co

rt
ex

Ex
p
os
ur
e
to

PM
2.
5a

b
s
fr
om

0–
3
ye

ar
s

↑
rs
FC

b
et
w
ee

n
b
ra
in

re
g
io
n
s
o
f
se
ve

ra
l
n
et
w
o
rk
s
(1
9
o
f
22

):
vi
su
al

-
vi
su
al
,
vi
su
al

–
au

d
it
o
ry
,v

is
u
al

–
ta
sk

p
o
si
ti
ve
,v

is
u
al

–
ta
sk

n
eg

at
iv
e,

au
d
it
o
ry

–
ta
sk

p
o
si
ti
ve
,a

u
d
it
o
ry

–
ta
sk

n
eg

at
iv
e,

an
d
ta
sk

n
eg

at
iv
e
–

ta
sk

n
eg

at
iv
e

↓
rs
FC

b
et
w
ee

n
b
ra
in

re
g
io
n
s
o
f
vi
su
al
–
ta
sk

p
o
si
ti
ve

n
et
w
o
rk
s
an

d
ta
sk

p
o
si
ti
ve

–
ta
sk

n
eg

at
iv
e
n
et
w
o
rk
s
(3

o
f
22

):
M
T
+

co
m
p
le
x
an

d
n
ei
g
h
b
o
u
ri
n
g
vi
su
al

ar
ea
s
–
su
p
er
io
r
p
ar
ie
ta
lc
o
rt
ex
,p

o
st
er
io
r
ci
n
g
u
la
te

co
rt
ex

–
su
p
er
io
r
p
ar
ie
ta
l
co

rt
ex
,a

n
d
fr
o
n
ta
l
o
p
er
cu

la
r
co

rt
ex

–
la
te
ra
l

te
m
p
o
ra
l
co

rt
ex

[7
9]

G
en

er
at
io
n
R

st
u
d
y

n
=
21

97

Pr
en

at
al

an
d

ch
ild

h
o
o
d

48
-h

d
u
ri
n
g
la
st

tr
im

es
te
r

5
ye
ar
s
o
f
ag

e

C
h
ild

h
o
o
d

M
ea
n
ag

e
±
SD

:
8.
0
±
1.
3
ye
ar
s

PA
H

Pe
rs
o
n
al

ai
r
m
o
n
it
o
rs

d
u
ri
n
g
la
st

tr
im

es
te
r

U
ri
n
e
sa
m
p
le
s
in

ch
ild

h
o
o
d

Pr
en

at
al

ex
p
os
ur
e
to

PA
H

↓
lo
ca
l
vo

lu
m
e
in

th
e
m
id
d
le

fr
o
n
ta
l
g
yr
u
s,
m
ed

ia
l
o
rb
it
o
fr
o
n
ta
l
g
yr
u
s,

in
fe
ri
o
r
fr
o
n
ta
l
g
yr
u
s,
su
p
er
io
r
fr
o
n
ta
l
g
yr
u
s,
p
re
-c
en

tr
al

g
yr
u
s,
p
o
st
-

ce
n
tr
al

g
yr
u
s,
su
p
ra
m
ar
g
in
al

g
yr
u
s,
m
id
d
le

te
m
p
o
ra
l
g
yr
u
s,
su
p
er
io
r

te
m
p
o
ra
l
g
yr
u
s,
m
es
ia
l
su
p
er
io
r
p
ar
ie
ta
l
g
yr
u
s,
p
ra
ec
u
n
eu

s,
cu

n
eu

s,

[2
6]

C
C
C
EH

st
u
d
y

n
=
40

E. Polemiti et al.

4

Molecular Psychiatry



Ta
bl
e
1.

co
n
ti
n
u
ed

Ex
p
os
ur
e

p
er
io
d

(Y
ea

r)

Ex
p
os
ur
e

d
ur
at
io
n

(Y
ea

r)

Pe
ri
od

at
M
R
I

as
se
ss
m
en

t
(Y
ea

r)

Po
llu

ta
n
t/

M
et
h
od

of
as
se
ss
m
en

t
B
ra
in

al
te
ra
ti
on

s
R
ef
er
en

ce

ci
n
g
u
la
te

g
yr
u
s,
g
yr
u
s
re
ct
u
s
in

th
e
le
ft
h
em

is
p
h
er
e.

↓
W
M

su
rf
ac
e
ex
te
n
d
in
g
th
ro
u
g
h
o
u
t
th
e
le
ft
h
em

is
p
h
er
e.

N
o
as
so
ci
at
io
n
w
it
h
co

rt
ic
al

th
ic
kn

es
s

Po
st
n
at
al

ex
p
os
ur
e
to

PA
H

↓
W
M

su
rf
ac
e
in

d
o
rs
o
la
te
ra
l
p
re
fr
o
n
ta
l
re
g
io
n
s,
es
p
ec
ia
lly

o
ve

r
th
e

su
p
er
io
r
fr
o
n
ta
l
g
yr
i

Li
fe
ti
m
e

Fr
o
m

b
ir
th

(2
00

1–
20

03
)
to

12
ye
ar
s
o
f
ag

e

C
h
ild

h
o
o
d

12
ye
ar
s

EC
(h
ig
h
vs

lo
w

ex
p
o
su
re

g
ro
u
p
)

LU
R
m
o
d
el
s

M
ea
su
re
m
en

ts
fr
o
m

27
m
o
n
it
o
rs

at
si
te

b
et
w
ee

n
20

01
an

d
20

06
,a
n
d
si
m
u
lt
an

eo
u
s
24

-
h
o
u
r
sa
m
p
lin

g
at

4–
5
si
te
s
o
ve

r
d
iff
er
en

t
se
as
o
n
s

↓
C
T
in

th
e
m
ed

ia
l
fr
o
n
ta
l
g
yr
u
s,
ve

n
tr
o
m
ed

ia
l
p
re
fr
o
n
ta
l
co

rt
ex

(R
),

p
ar
ac
en

tr
al

lo
b
u
le
,p

o
st
ce
n
tr
al

g
yr
u
s,
su
p
er
io
r
fr
o
n
ta
l
g
yr
u
s,
p
re
ce
n
tr
al

g
yr
u
s
(L
),
in
fe
ri
o
r
p
ar
ie
ta
ll
o
b
u
le

(L
),
su
p
er
io
r
p
ar
ie
ta
ll
o
b
u
le

(L
),
an

te
ri
o
r

ci
n
g
u
la
te

(L
),
ci
n
g
u
la
te

(R
),
p
re
cu

n
eu

s
(L
),
fu
si
fo
rm

g
yr
u
s
(L
)

↓
G
M

vo
lu
m
e
in

th
e
ce
re
b
el
lu
m
,p

re
ce
n
tr
al
g
yr
u
s,
in
fe
ri
o
r
p
ar
ie
ta
ll
o
b
u
le

[2
8]

C
C
A
A
PS

st
u
d
y

n
=
13

5

A
d
u
lt
h
o
o
d

(1
99

8–
20

01
)

1
ye
ar

(2
00

0)
A
d
u
lt
h
o
o
d

(1
99

9–
20

05
)

≥
60

ye
ar
s

M
ed

ia
n
ag

e
[IQ

R
]:

68
.0

[9
.0
]
ye
ar
s

PM
2.
5

Sp
at
io
te
m
p
o
ra
l
m
o
d
el

↓
to
ta
l
ce
re
b
ra
l
b
ra
in

vo
lu
m
e

N
o
as
so
ci
at
io
n
w
it
h
h
ip
p
o
ca
m
p
al

vo
lu
m
e

[4
0]

Fr
am

in
g
h
am

O
ff
sp
ri
n
g

St
u
d
y

n
=
94

3

A
d
u
lt
h
o
o
d

(2
00

6–
20

10
)

1
ye
ar

(2
01

0)
A
d
u
lt
h
o
o
d

(2
01

4)
44

–
80

ye
ar
s

N
O
x,

N
O
2,

PM
10

,P
M
co

ar
se
,P

M
2.
5

LU
R
m
o
d
el
s

↓
to
ta
l
G
M

vo
lu
m
e
w
it
h
h
ig
h
er

ex
p
o
su
re

to
an

y
o
f
th
e
in
ve

st
ig
at
ed

p
o
llu

ta
n
ts

↓
G
M

vo
lu
m
e
in

th
e
fr
o
n
ta
l
p
o
le

an
d
o
p
er
cu

lu
m

co
rt
ex

(L
)
w
it
h
h
ig
h
er

ex
p
o
su
re

to
PM

10
↓
G
M

vo
lu
m
e
in

th
e
fr
o
n
ta
l
p
o
le
,o

p
er
cu

lu
m

co
rt
ex

(L
),
an

d
o
rb
it
al

co
rt
ex

(R
)
w
it
h
h
ig
h
er

ex
p
o
su
re

to
N
O
x

↓
G
M

vo
lu
m
e
in

th
e
fr
o
n
ta
l
p
o
le

(R
)
an

d
o
p
er
cu

lu
m

co
rt
ex

(L
)
w
it
h

h
ig
h
er

ex
p
o
su
re

to
N
O
2

Ex
p
os
ur
e
to

PM
2.
5

↓
to
ta
l
W
M

vo
lu
m
e

↓
G
M

vo
lu
m
e
in

th
e
fr
o
n
ta
lp

o
le
,o

rb
it
al
co

rt
ex

(R
),
o
p
er
cu

lu
m

co
rt
ex

(L
)

Ex
p
os
ur
e
to

PM
co

ar
se

↓
G
M

vo
lu
m
e
in

th
e
fr
o
n
ta
l
p
o
le

(R
),
su
p
er
io
r
g
yr
u
s
(L
),
o
p
er
cu

lu
m

co
rt
ex

(L
)

↓
vo

lu
m
e
in

th
e
th
al
am

u
s
(L
)

[4
1,

49
,5

1]
U
K
B
io
b
an

k
n
≈
18

,2
90

A
d
u
lt
h
o
o
d

(1
99

9–
20

05
-6
)

3,
8,

an
d
10

ye
ar
s

(1
99

9–
20

05
-6
)

A
d
u
lt
h
o
o
d

(2
00

5–
20

06
)

71
–
89

ye
ar
s

N
O
2,

PM
2.
5,

d
ie
se
l
PM

Sp
at
io
te
m
p
o
ra
l
m
o
d
el

3-
ye

ar
cu

m
ul
at
iv
e
ex

p
os
ur
e
to

N
O
2

↓
G
M

vo
lu
m
es

in
th
e
p
re
fr
o
n
ta
l
co

rt
ex

↓
vo

lu
m
es

in
th
e
an

te
ri
o
r
ci
n
g
u
la
te

g
yr
u
s,
in
su
la
,
am

yg
d
al
a,

lim
b
ic

m
ed

ia
l
te
m
p
o
ra
l
lo
b
e,

b
as
al

g
an

g
lia

3-
ye

ar
cu

m
ul
at
iv
e
ex

p
os
ur
e
to

PM
2.
5

↓
W
M

vo
lu
m
es

in
th
e
an

te
ri
o
r
an

d
p
o
st
er
io
r
ex
tr
em

e/
ex
te
rn
al

ca
p
su
le
,

ca
lc
ar
in
e
g
yr
i

↓
G
M

vo
lu
m
es

in
th
e
su
p
er
io
r,
m
id
d
le
,m

ed
ia
l
fr
o
n
ta
l
g
yr
i,
in
fe
ri
o
r

fr
o
n
ta
l
g
yr
u
s
(L
),
su
p
er
io
r
p
ar
ie
ta
l
lo
b
u
le
,o

cc
ip
it
al

p
o
le
s

↓
vo

lu
m
e
in

th
e
an

te
ri
o
r
ci
n
g
u
la
te

g
yr
u
s

↑
vo

lu
m
es

in
th
e
th
al
am

u
s,
p
u
ta
m
en

,
g
lo
b
u
s
p
al
lid

u
s,
p
o
st
er
io
r
in
su
la

N
o
as
so
ci
at
io
n
w
it
h
vo

lu
m
es

o
f
co

rp
u
s
ca
llo

su
m
,
h
ip
p
o
ca
m
p
u
s,

te
m
p
o
ra
l
lo
b
e

8-
ye

ar
cu

m
ul
at
iv
e
ex

p
os
ur
e
to

PM
2.
5

↓
to
ta
l
W
M

vo
lu
m
e
an

d
in

th
e
fr
o
n
ta
l,
p
ar
ie
ta
l,
te
m
p
o
ra
l
lo
b
es
,c

o
rp
u
s

ca
llo

su
m

N
o
as
so
ci
at
io
n
w
it
h
h
ip
p
o
ca
m
p
al
,
b
as
al

g
an

g
lia

vo
lu
m
es

an
d
G
M

vo
lu
m
es

ac
ro
ss

th
e
ce
re
b
ra
l
co

rt
ex

10
-y
ea

r
cu

m
ul
at
iv
e
ex

p
os
ur
e
to

d
ie
se
l
PM

↑
ve

n
tr
ic
u
la
r
vo

lu
m
e

U
-s
h
ap

ed
as
so
ci
at
io
n
s
w
er
e
o
b
se
rv
ed

fo
r
to
ta
l
W
M

vo
lu
m
es

an
d
in

fr
o
n
ta
l,
p
ar
ie
ta
l
an

d
te
m
p
o
ra
l
lo
b
es

↓
to
ta
l
G
M

vo
lu
m
es

an
d
in

fr
o
n
ta
l,
p
ar
ie
ta
l
an

d
te
m
p
o
ra
l
lo
b
es

[4
2–

44
,5

0,
52

]
W
H
IM

S
n
=
76

4,
14

03
,

13
65

n
=
14

03
(8
-

an
d
10

-y
ea
r

as
se
ss
m
en

t)

E. Polemiti et al.

5

Molecular Psychiatry



Ta
bl
e
1.

co
n
ti
n
u
ed

Ex
p
os
ur
e

p
er
io
d

(Y
ea

r)

Ex
p
os
ur
e

d
ur
at
io
n

(Y
ea

r)

Pe
ri
od

at
M
R
I

as
se
ss
m
en

t
(Y
ea

r)

Po
llu

ta
n
t/

M
et
h
od

of
as
se
ss
m
en

t
B
ra
in

al
te
ra
ti
on

s
R
ef
er
en

ce

A
d
ul
th
o
od

(1
99

0–
19

98
,

19
99

–
20

07
,a

n
d

19
90

–
20

07
)

5–
20

ye
ar
s

as
se
ss
ed

at
th
re
e

8-
ye
ar

p
er
io
d
s

(1
99

0–
19

98
,

19
99

–
20

07
,a

n
d

19
90

–
20

07
)

A
d
u
lt
h
o
o
d

(2
01

1–
20

13
)

M
ea
n
ag

e
±
SD

:
76

.0
±
5.
0
ye
ar
s

PM
10

,
PM

2.
5

Sp
at
io
te
m
p
o
ra
l
m
o
d
el

↓
d
ee

p
-G
M

vo
lu
m
es

↓
vo

lu
m
es

in
to
ta
l
b
ra
in
,f
ro
n
ta
l
an

d
p
ar
ie
ta
l
lo
b
e
in

o
n
e
o
f
th
e
st
u
d
y

ce
n
tr
es

w
it
h
h
ig
h
er

ex
p
o
su
re

to
PM

2.
5

N
o
as
so
ci
at
io
n
w
it
h
h
ip
p
o
ca
m
p
al

vo
lu
m
e

[4
5]

A
R
IC

st
u
d
y

n
=
17

53

A
d
u
lt
h
o
o
d

(2
00

6–
20

08
)

50
–
80

ye
ar
s

2
ye
ar
s

(2
00

6–
20

08
)

A
d
u
lt
h
o
o
d

(2
01

1–
20

15
)

55
–
85

ye
ar
s

N
O
x,

N
O
2,

PM
10

,P
M
2.
5,

PM
2.
5a

b
s

LU
R
m
o
d
el
s

Th
re
e
se
p
ar
at
e
2-
w
ee

k
p
er
io
d
s
(t
o
co

ve
r

d
iff
er
en

t
se
as
o
n
s)

b
et
w
ee

n
O
ct

20
08

an
d
O
ct

20
09

Lo
ca
la
tr
o
p
h
y
in

in
fe
ri
o
r
p
ar
ie
ta
ll
o
b
u
le
(R
)w

it
h
h
ig
h
er

ex
p
o
su
re

to
N
O
x,

PM
10

,
an

d
PM

2.
5

Lo
ca
l
at
ro
p
h
y
in

p
o
st
er
io
r
ci
n
g
u
la
te

co
rt
ex

an
d
p
ra
ec
u
n
eu

s
(R
)
w
it
h

h
ig
h
er

ex
p
o
su
re

to
N
O
x,

N
O
2,

an
d
PM

10
N
o
as
so
ci
at
io
n
w
it
h
lo
ca
l
at
ro
p
h
y
in

th
e
d
o
rs
o
la
te
ra
l
p
re
fr
o
n
ta
l
co

rt
ex

[4
6]

10
00

B
R
A
IN
S

n
≈
61

5

A
d
u
lt
h
o
o
d

(2
00

0–
20

03
)

M
ea
n
ag

e:
56

.1
ye
ar
s

3
ye
ar
s

(2
00

0–
20

03
)

A
d
u
lt
h
o
o
d

(2
01

1–
20

15
)

56
–
85

ye
ar
s

M
ea
n
ag

e:
67

.4
ye
ar
s

N
O
2,

PM
10

,
PM

2.
5,

PM
2.
5a

b
s

LU
R
m
o
d
el
s

Th
re
e
se
p
ar
at
e
2-
w
ee

k
p
er
io
d
s
(t
o
co

ve
r

d
iff
er
en

t
se
as
o
n
s)

b
et
w
ee

n
O
ct

20
08

an
d
O
ct

20
09

↓
In
tr
a-
n
et
w
o
rk

rs
FC

an
d
se
g
re
g
at
io
n
in
d
ex

in
th
e
d
o
rs
al

at
te
n
ti
o
n

n
et
w
o
rk

w
it
h
h
ig
h
er

ex
p
o
su
re

to
N
O
2

↓
In
tr
a-
n
et
w
o
rk

rs
FC

in
th
e
ve

n
tr
al

at
te
n
ti
o
n
n
et
w
o
rk

w
it
h
h
ig
h
er

ex
p
o
su
re

to
PM

10
an

d
PM

2.
5

↑
In
te
r-
n
et
w
o
rk

rs
FC

in
th
e
vi
su
al

n
et
w
o
rk

w
it
h
h
ig
h
er

ex
p
o
su
re

to
PM

2.
5a

b
s

↓
se
g
re
g
at
io
n
in
d
ex

in
th
e
ve

n
tr
al

at
te
n
ti
o
n
n
et
w
o
rk

w
it
h
h
ig
h
er

ex
p
o
su
re

to
PM

2.
5a

b
s

[5
4]

10
00

B
R
A
IN
S

n
=
57

4

A
d
u
lt
h
o
o
d

(2
01

5–
20

19
)

1
ye
ar

A
d
u
lt
h
o
o
d

(2
01

5–
20

19
)

M
ea
n
ag

e
±
SD

:
49

.5
±
13

.3
ye
ar
s

N
O
2,

PM
2.
5,

o
zo
n
e

H
yb

ri
d
kr
ig
in
g
-L
U
R
m
o
d
el
s

↑
vo

lu
m
e
in

ro
st
ra
l
m
id
d
le

fr
o
n
ta
l
(L
),
su
p
ra
m
ar
g
in
al

(L
),
tr
an

sv
er
se

te
m
p
o
ra
l
(L
),
p
ar
s
o
p
ec
u
la
ri
s
(R
)
w
it
h
h
ig
h
er

ex
p
o
su
re

to
N
O
2

↑
vo

lu
m
e
in

p
ar
s
tr
ia
n
g
u
la
ri
s
(L
)
an

d
C
T
in

fu
si
fo
rm

(R
)
w
it
h
h
ig
h
er

ex
p
o
su
re

to
PM

2.
5

↑
p
ar
s
o
rb
it
al
is
vo

lu
m
e
(L
)
w
it
h
h
ig
h
er

ex
p
o
su
re

to
o
zo
n
e

N
o
as
so
ci
at
io
n
w
it
h
W
M

an
d
G
M

vo
lu
m
es

[4
7]

Ta
iw
an

es
e

sl
ee

p
st
u
d
y

n
=
48

66

A
d
u
lt
h
o
o
d

(2
01

4–
20

17
)

5
ye
ar
s
p
ri
o
r
to

th
e
re
cr
u
it
m
en

t
in
te
rv
al
s
(N
O
2,

PM
10

)
(2
01

0–
20

14
,

20
11

–
20

15
,a

n
d

20
12

–
20

16
)

1
ye
ar

(P
M
2.
5)

(2
01

5)

A
d
u
lt
h
o
o
d

(2
01

4–
20

17
)

M
ea
n
ag

e
±
SD

:
67

.3
±
6.
4
ye
ar
s

N
O
2,

PM
10

,
PM

2.
5,

PA
H

m
et
ab

o
lit
es

K
ri
g
in
g
m
o
d
el

A
n
n
u
al

co
n
ce
n
tr
at
io
n
s
o
f
PM

10
an

d
N
O
2
at

m
o
n
it
o
ri
n
g
si
te
s
b
et
w
ee

n
20

01
an

d
20

16
.

Sa
m
e
m
et
h
o
d
u
se
d
fo
r
PM

2.
5

U
ri
n
e
sa
m
p
le
s
(P
A
H
)

Ex
p
os
ur
e
to

N
O
2

↓
vo

lu
m
e
in

ca
u
d
at
e,

p
al
lid

u
m
,
am

yg
d
al
a,

n
u
cl
eu

s
ac
cu

m
b
en

s
↓
C
T
in

th
e
fr
o
n
ta
l
co

rt
ex
,l
at
er
al

te
m
p
o
ra
l
co

rt
ex
,i
n
fe
ri
o
r
p
ar
ie
ta
l

co
rt
ex
,p

o
st
er
io
r
ci
n
g
u
la
te
,i
n
su
la
,
p
ar
ah

ip
p
o
ca
m
p
al

g
yr
i,
fu
si
fo
rm

g
yr
i

↑
C
T
o
cc
ip
it
al

co
rt
ex
,p

o
st
ce
n
tr
al

g
yr
i
(L
)

Ex
p
os
ur
e
to

PM
10

↓
vo

lu
m
e
in

p
al
lid

u
m
,
p
u
ta
m
en

,a
m
yg

d
al
a,

n
u
cl
eu

s
ac
cu

m
b
en

s
↓
C
T
in

th
e
la
te
ra
l
te
m
p
o
ra
l
co

rt
ex
,i
n
fe
ri
o
r
p
ar
ie
ta
l
co

rt
ex
,p

re
fr
o
n
ta
l

co
rt
ex
,p

o
st
er
io
r
ci
n
g
u
la
te
,i
n
su
la
,
p
ar
ah

ip
p
o
ca
m
p
al

g
yr
i,
fu
si
fo
rm

g
yr
i

↑
C
T
o
cc
ip
it
al

co
rt
ex
,p

o
st
ce
n
tr
al

g
yr
i

Ex
p
os
ur
e
to

PM
2.
5

↓
vo

lu
m
e
in

n
u
cl
eu

s
ac
cu

m
b
en

s
↓
C
T
in

th
e
la
te
ra
l
te
m
p
o
ra
l
co

rt
ex
,i
n
fe
ri
o
r
p
ar
ie
ta
l
co

rt
ex
,p

re
fr
o
n
ta
l

co
rt
ex
,i
n
su
la
,
p
ar
ah

ip
p
o
ca
m
p
al

g
yr
i,
fu
si
fo
rm

g
yr
i

↑
C
T
o
cc
ip
it
al

co
rt
ex
,p

o
st
ce
n
tr
al

g
yr
i

Ex
p
os
ur
e
to

PA
H

(h
ig
h
es
t
vs

lo
w
es
t
q
ua

rt
ile

)
↓
C
T
in

p
ar
ie
ta
l,
te
m
p
o
ra
l
an

d
in
su
la
r
lo
b
es

in
m
en

↓
C
T
in

fr
o
n
ta
l
an

d
p
ar
ie
ta
l
lo
b
es

in
w
o
m
en

↓
vo

lu
m
es

in
th
e
ca
u
d
at
e
in

m
en

,
an

d
p
al
lid

u
m

in
w
o
m
en

[4
8,

25
2]

EP
IN
EF

st
u
d
y

n
=
95

7
n
=
52

8
(P
A
H
)

A
d
u
lt
h
o
o
d

(2
01

6)
1
ye
ar

(2
01

5)
A
d
u
lt
h
o
o
d

(2
01

6)
20

–
48

ye
ar
s

N
O
2,

N
O
x,

PM
10

,a
n
d
PM

2.
2

B
er
lin

’s
Se

n
at
e
D
ep

ar
tm

en
t
fo
r
U
rb
an

D
ev

el
o
p
m
en

t
an

d
H
o
u
si
n
g

Ex
p
os
ur
e
to

N
O
2
an

d
N
O
x

N
o
as
so
ci
at
io
n
w
as

o
b
se
rv
ed

Ex
p
os
ur
e
to

PM
2.
5
an

d
PM

10
↓
st
re
ss
-r
el
at
ed

ac
ti
va
ti
o
n
in

fr
o
n
to
in
su
la
r
co

rt
ex
,h

ip
p
o
ca
m
p
u
s,

am
yg

d
al
a,

ve
n
tr
al

st
ri
at
u
m
,
in
fe
ri
o
r
p
ar
ie
ta
l
co

rt
ex
,t
h
al
am

u
s,

p
re
cu

n
eu

s,
p
o
st
er
io
r
ci
n
g
u
la
te

co
rt
ex
,a

n
te
ri
o
r
ci
n
g
u
la
te

co
rt
ex
,

d
o
rs
o
la
te
ra
l,
ve

n
tr
o
la
te
ra
l,
an

d
ve
n
tr
o
m
ed

ia
l
p
re
fr
o
n
ta
l
co

rt
ex
.T

h
e

as
so
ci
at
io
n
s
w
er
e
m
o
re

p
ro
n
o
u
n
ce
d
fo
r
PM

2.
5
th
an

PM
10

[5
6]

B
er
lin

n
eu

ro
im

ag
in
g

st
u
d
y

n
=
42

m
en

E. Polemiti et al.

6

Molecular Psychiatry



SEARCH STRATEGY AND STUDY SELECTION
We conducted a literature search on the association between
modalities of the macroenvironment and magnetic resonance
imaging (MRI)-assessed brain structure and function in PubMed
from January 1, 2010, to April 19, 2023. While different
neuroimaging techniques offer unique advantages and insights,
we focused on MRI studies due to our expertise in this area. We
used predefined search terms (Supplementary Information), with
no restrictions applied except for the filter [Humans]. In short,
MeSH (Medical Subject Headings) terms and title/abstract text
words related to environmental exposures were employed,
including urbanisation, air, noise and light pollution, green space,
blue space, regional socioeconomic factors, climate, weather
extremes, combined with MRI-detected brain changes in structure
and function. The reference lists of relevant systematic reviews
identified in our formal search were hand-searched for relevant
literature. Furthermore, studies known to the authors were added.
The present review is not exhaustive in covering all potential

macroenvironmental factors influencing brain and mental health.
Exclusion criteria were applied to focus on macroenvironmental
factors that are pervasive and modifiable at the general
population level. Publications on animal models and cell lines
were excluded. Studies investigating the association between
indoor air pollution, occupational hazards and neurotoxins with
brain plasticity were further excluded due to their confinement in
specific indoor environments, work-related settings, or lifestyle
contexts. Finally, studies on natural disasters were excluded due to
their sporadic occurrence and localised impact.

AIR POLLUTION
Air pollution arises from natural phenomena, like dust storms or
wildfires, and from human activities, such as industrial processes
and transportation. It includes solid particles and liquid droplets
suspended in the air, referred to as particulate matter (PM), and
gases, like ground-level ozone, sulphur dioxide, nitrogen oxides
(NOx: NO+ NO2), carbon monoxide, polycyclic aromatic hydro-
carbons (PAH) and others [12]. Each of these pollutants may have
independent and potentially synergistic effects; however, the
impact of exposure to a combination of air pollutants on human
health is not well understood [13].
Air pollutants enter the body through the respiratory system,

initiating a cascade of physiological and biochemical responses
affecting different tissues and organs, including the brain [14, 15].
Pollutants can translocate across the blood-brain barrier, a critical
protective barrier of the brain, potentially inducing systemic
inflammation [14] and compromising the permeability of the
blood-brain barrier itself [16]. Air pollution-related neuroinflamma-
tion has been associated with neurotoxicity, oxidative stress, and
impaired control of inflammatory processes [17, 18]. The devel-
oping brain is particularly vulnerable to toxicants during two
critical developmental periods, the foetal and early life, due to the
limited barrier function of the placenta and blood-brain barrier,
and potential toxicant transfer during breastfeeding [19]. This
heightened vulnerability stems from the interference with
fundamental neurodevelopmental processes, including neuronal
growth, formation of synaptic networks, neuronal migration, and
development of receptor numbers. These processes are most
active during foetal and childhood stages, and disruptions due to
pollutant exposure may alter brain development [20].
Prenatal and early childhood exposure to several components

of traffic-related air pollution (TRAP), such as PM, PAH, airborne
copper and organic carbon, appeared to influence brain devel-
opment in later childhood and adolescence [21–29], including the
corpus callosum [22, 29], limbic system [22, 27], nucleus
accumbens (NAc) and cerebellum [22, 28] (see Table 1 for a
detailed description). In addition to these structural changes, TRAP
exposure has been associated with functional connectivity (FC)Ta
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changes. Cross-sectional analyses among children and preadoles-
cents primarily reported these changes in frontocortical areas and
the default mode network (DMN) [30, 31].
Prenatal exposure to fine PM (PM2.5) and PAH was associated

with smaller white matter (WM) volume in parietal lobes [27], and
WM surface reductions in the left hemisphere in later childhood,
mediating the association between air pollutants and conduct
disorder problems [26]. Furthermore, early life exposure to TRAP
was associated with increased frontotemporal cortical thickness in
children and adolescents [22, 27, 28]. Alterations in global WM
microstructure and in several WM microstructure tracts were
documented [22, 27, 30, 32]. Hemispheric asymmetry in WM and
grey matter (GM) volumes across all cortical regions and several
subcortical regions has been observed [30, 33–36] (Table 1). While
brain asymmetry is a typical trait in humans, it can be altered and
has been linked to psychiatric disorders [37–39].
Air pollution’s influence on brain health may extend beyond

early brain development, including later stages of life, as
suggested by cross-sectional and longitudinal assessments
(Table 1). Among adults exposed to different components of air
pollution, studies have reported volume reductions in total
cerebral brain [40], total WM and GM [41–44], deep-GM [45] and
local atrophy mainly in frontocortical areas, insula and subcortical
regions [46–53]. These changes partially mediated the association
between PM2.5 and NO2 with depressive symptoms [52].
Functional neuroimaging studies, including a 10-year prospective
study [54] and a 6-month assessment of air pollution [55], showed
reduced stress-related activation in connectivity networks asso-
ciated with acute stress, such as the salience, DMN, and central
executive networks, in adults with higher exposure to air pollution
[54], and augmented stress-related information transfer across
cortical and subcortical brain networks among participants with a
higher polygenic risk score for depression [55]. Furthermore, a
negative stress-related brain activation was observed in prefrontal
cortex (PFC), frontoinsular cortex, limbic system, inferior parietal
cortex, praecuneus, and cingulate among men living in residential
areas with higher PM2.5 and PM10 levels [56]. Nevertheless,
opposite activation directions than expected were observed in the
amygdala that could not be explained with certainty. Altogether,
these findings suggest that air pollution may increase vulnerability
to mood dysfunction and potentially inhibit an appropriate stress
response.
Taken together, current literature indicates that exposure to air

pollution may have diverse and hemisphere-specific implications
on brain morphology and function in children and adults (Table 1).
Air pollution effects on brain regions appear to vary depending on
the specific pollutant and period of assessment during the
lifespan. It is important to note that while longitudinal studies
assessed air pollution exposure prior to outcome measurement,
they are constrained by the lack of information regarding the
timing of changes in brain morphology and function during the
follow-up period, as only one MRI assessment was conducted.
Although concrete conclusions cannot be made, disruptions were
observed in regions such as PFC, anterior cingulate cortex (ACC),
hippocampus, amygdala, insula, NAc, corpus callosum and
striatum, all of which have been implicated in the risk for major
psychiatric disorders [57, 58], like depression, anxiety [59–62],
substance use disorders [63, 64] and schizophrenia [57, 65].
Epidemiological studies have provided evidence linking air

pollution to mental health disorders in exposed youth and adults
[66]. Recent meta-analyses of observational studies highlighted a
positive association between PM2.5, PM10 and NO2 exposure with
risk for depression [67] and suicide [68]. Furthermore, available
evidence suggests that short- and long-term exposure to PM2.5 is
linked to an increased risk for anxiety, while exposure to PM10,
NO2, and NOx might increase the risk for schizophrenia or
hospitalisation for schizophrenia [69, 70]. By linking epidemiolo-
gical approaches on air pollution with neuroimaging data, future

studies can help elucidate mechanisms by which air pollution-
induced neuroinflammation and other potential biological path-
ways, such as stress response [17] may affect brain, behaviour, and
psychopathology.

NOISE POLLUTION
Noise pollution originates from urban traffic, airports, industries,
and construction sites and can evoke negative emotions and
annoyance. Prolonged exposure to disruptive noise is thought to
induce brain alterations through mechanisms such as sleep
disturbances, which prompt a pro-oxidative environment, predis-
posing to neuroinflammation, and heightened hypothalamic-
pituitary-adrenal (HPA) axis reactivity [71, 72], that might
contribute to mental illness [73, 74]. Residents in a community
impacted by changed flight patterns compared to a demographi-
cally similar non-impacted community, showed a higher risk for
substance use and mental health-related emergency visits among
individuals living in noise-affected communities, particularly in
younger age groups [75]. Meta-analyses have reported increased
odds for depression and anxiety with higher 24-h noise level [76].
Still, the association between noise and mental health is limited
due to high risk-of-bias studies and inconsistent findings across
studies included in the different systematic reviews [76–78].
The relationship between noise pollution and brain structure

and function remains understudied and is also afflicted with
inconsistent findings [79, 80]. A study on 8–12-year-olds exposed
to school road-traffic noise over one year reported enhanced
connectivity in the subcortical auditory pathway [81], indicating
possible enhancement on auditory processing abilities but also
increased sound sensitivity and sensory overload. Whether these
results, along with potential noise-induced chronic stress and
sleep disturbance contribute to anxiety and behavioural problems
in children requires further investigations. Among older adults
participating in a 5-year study, higher noise pollution was
associated with cognitive decline and alterations in brain network
organisation were reported [46, 54]. A small cross-sectional
neuroimaging study involving healthy men did not find an
association between noise pollution at the place of residence and
neurofunctional activation during a social-stress paradigm [56].
Further studies on the behavioural and cognitive consequences of
noise pollution across the lifespan are required to provide robust
evidence and establish explicit mediating brain structures and
functions.

LIGHT POLLUTION
Light pollution, a consequence of human activities, including
outdoor lighting, commercial signage, and illuminated buildings,
produces excessive or misdirected artificial light and disrupts the
natural darkness of the night sky. Exposure to artificial light at
night (ALAN) has become increasingly prevalent, especially in
urban areas. Light is detected by the retina and transmitted
through the intrinsically photosensitive retinal ganglion cells
(ipRGCs) to the suprachiasmatic nucleus in the hypothalamus and
other brain regions involved in regulating circadian rhythms and
sleep-wake cycles [82]. Circadian rhythm disruptions have been
linked to an elevated risk of major depressive disorders, bipolar
disorders, and heightened mood instability [83], potentially
mediated by oscillations in clock genes expression responsive to
light-dark transitions [84]. Light is also projected (via the ipRGCs
and the suprachiasmatic nucleus) to regions involved in mood
regulation, such as the PFC, hippocampus, and amygdala [85, 86],
directly influencing emotional processing and mood functions
[87, 88]. Hence, prolonged and ill-timed ALAN exposures may
precipitate or worsen symptoms of mood disorders.
Cross-sectional analyses reported an increased prevalence of

mood and anxiety disorders in adults and adolescents with higher
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exposure to outdoor ALAN [89–91]. However, residual confound-
ing due to air pollution has likely influenced the results [91]. We
found no studies examining the relationship between ALAN and
brain structure and function. Participants exposed to dim ALAN
during one-night sleep in a polysomnography laboratory exhib-
ited decreased brain activity in the inferior frontal gyrus (IFG)
compared to a night without any light exposure [92]. Decreased
activation in the IFG has been associated with impairments in
executive functions and are reported in clinical populations
afflicted with bipolar disorder, depression, and schizophrenia
[93–96]. Still, further research is needed to elucidate the effects of
light pollution on brain changes.

URBANISATION
Urbanisation is a shared element in global migration patterns over
the past half-century, involving the transition from rural to urban
settlements [4]. Historically, this transition has been linked to
economic growth. Urban dwellers are more likely to benefit from
sustainable infrastructure, essential education, healthcare services,
and more work opportunities than rural residents. Despite these
advantages, the urban environment is inhomogeneous, depicted
by economic, social, and environmental inequalities [4, 97]. Rapid
and unplanned urbanisation increases income inequalities, linked
to disparities in health and education, marginalisation, social
isolation and threat, and environmental pollutants [97–99]. Within
this context the urban environment has been associated with
mental disorders, such as depression, anxiety and schizophrenia
[99–104]. Urban upbringing has been identified as the most
prominent risk factor for schizophrenia [9, 102], possibly stemming
from social characteristics of the urban environment, including
decreased social capital and cohesion, social deprivation and
fragmentation, and affecting neural mechanisms of social stress
processing and positive social interactions [105, 106].
A common underlying mechanism linking urban living stressors

to vulnerability to mental illness has been suggested to be the
dysregulation of the HPA-axis [17, 97, 107, 108], potentially
resulting in cerebral functional and structural changes [109].
Moreover, urban environments may interact with genetic varia-
tions in genes related to stress response and brain structure, such
as neurodegeneration, neural differentiation, and axon growth
[110, 111]. Various neuroimaging studies reported the association
between urban scenery image viewing and functional changes in
brain regions implicated in emotional and stress responses
[112–114].
Current city living and urban upbringing were associated with

increased activity in the amygdala-hippocampus complex and
subgenual ACC, respectively, during a stress task in small
neuroimaging studies of healthy adults [105, 111], suggesting
dysregulation in stress processing. Furthermore, a cross-sectional
study among older healthy adults living in areas with higher
percentage of urban landscape reported a negative association with
GM volume in the perigenual/subgenual ACC, association which
remained significant after adjustment for residential greenness and
other confounders. Contrasting effects on the same brain region
were observed with higher percentage of urban green [115]. The
ACC is a key region for regulating amygdala function, negative
emotions, and stress and has been proposed to mediate the
relationship between medial PFC (mPFC) activity and affective
symptoms [116]. Among urban dwellers a dysregulation of
mesolimbic dopamine system during the desire-reason-dilemma
paradigm [117] has been observed, through which urban environ-
ment may be further linked to an elevated the risk for mental
disorders, including schizophrenia and depression [118].
Urban environment during childhood may alter amygdala and

PFC activation in adulthood by interacting with genes related to
dopamine, anxiety, and stress phenotypes, whereas such effects
were not evident among individuals with a rural or small-town

upbringing [119, 120]. Urban upbringing was associated with
reduced hippocampal and amygdala volumes among adolescents
[121] and GM dorsolateral PFC (dlPFC) and mPFC in adults
[122–124]. Healthy adults with higher urban upbringing scores
were observed to have cortical thinning in the dorsolateral, mPFC,
and parahippocampal cortex [125], although findings are not
consistent [126]. Stress-induced volume reductions in the
observed regions during childhood have been associated with
depression, psychosis, and post-traumatic stress disorders in later
life [127–129], while the identified cortical thinning aligns with
regions implicated in psychiatric conditions, including schizo-
phrenia and bipolar disorders [130]. To what extent brain changes
in these disorders are driven by urbanicity remains to be
determined.
The urban environment encompasses various economic, social,

ambient, and infrastructural characteristics. Current literature
assessed urban living based on a measure of population density
and duration of residency (described in this section) or by using
isolated factors, such as pollution, urban green spaces, and
socioeconomic deprivation, which often co-occur and interact
within individuals’ living environment. A study using a composite
measure of urban living, including night-time lights, green space,
build-up space, water bodies and land use, reported an association
with certain changes in brain structure and function. These changes
included a reduced mPFC volume, increased cerebellum volume,
and decreased functional network connectivity within the mPFC of
the anterior DMN. The findings were consistent across the two
cohorts of young adults residing in Europe and China, as observed
in cross-sectional assessments. The observed neural correlates
mediated the association between urban living and depressive
symptoms [131]. In addition, cross-sectional analyses on a
comprehensive set of factors related to urban living identified
environmental profiles relevant to psychiatric symptoms in a large
cohort of adults living in the UK. In particular, an environmental
profile predominantly characterised by regional deprivation, pollu-
tion and density of urban infrastructure was positively associated
with affective symptoms and mediated by smaller striatum
volumes, while an environment characterised by dense build-up
space and mixed land use was associated with anxiety symptoms
and was mediated by reduced volumes of IFG, amygdala and
cerebellar regions. The associations were moderated by genes
related to stress response regulation, anxiety, and phobia, suggest-
ing that genetic variations may explain individual differences in
response to environmental adversity [110].
Further research is warranted that accounts for the inherent

complexity of the living environment to disentangle the distinct
and interconnected attributes of urban environments that
contribute to brain function and dysfunction.

NATURAL SPACE
Two prominent frameworks have been suggested to explain the
effects of natural environments, such as surrounding green
spaces, forests, or water bodies on mental well-being. The
attention restoration theory (ART) posits that nature facilitates
the restoration of attentional capacity, reduces mental fatigue, and
enhances focus and cognitive functioning, ultimately contributing
to improved mental well-being [113, 132–134]. Simultaneously,
the stress reduction theory (SRT) proposes that nature lowers
physiological and psychological stress and enhances positive
feelings [135, 136]. These effects occur via mechanisms involving
the autonomic nervous system, reflected by lower blood pressure
and improved heart rate, as well as the modulation of the
endocrine system, including reductions in stress hormone
secretion [137, 138]. While both theories acknowledge the
beneficial effects of nature, ART emphasises the cognitive benefits,
particularly regarding attention restoration, while SRT emphasises
the emotional benefits, particularly stress reduction.
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Nature-induced benefits on the central nervous system have
been observed in experimental, intervention and observational
studies, corroborating the notion that contact with nature promotes
mental health. Compared to urban scenes, viewing natural
landscapes in a laboratory setting was linked with cognitive
restoration, reduced visual attention focus [132], and activation of
brain areas associated with positive emotional responses, rewarding
experience, and recollection of positive memories [112, 139–141].
Additionally, nature images evoked enhanced FC between the
DMN, dorsal attention network, ventral attention network, and the
somatomotor network, potentially promoting cognitive coherence
and effortless attentional engagement [142].
A brief walk in nature showed positive effects on brain and

mental health by decreasing PFC activation, which is associated
with sadness and behavioural withdrawal, and reducing rumina-
tion—a pattern linked to depression [143], possibly via the
restorative benefits of nature. Additionally, after a nature walk,
there was a decreased amygdala activation during a social stress-
inducing task, a region responding to fear and stress [144]. Such
benefits were not observed following urban walks [143, 144].
Nevertheless, sex-specific differences in response to natural and
urban environments warrant further investigation [145]. Surround-
ing urban green space, assessed using location tracking for a week
[146] or governmental databases [56], also seemed to have
supportive effects on coping with stress (aligning with the stress
reduction theory), as indicated by activation patterns in emotion-
regulatory brain areas, like the dlPFC, mPFC, insula, ACC, posterior
cingulate, and ventral striatum [56, 146]. Here again, opposite
activation directions than expected were observed in the
amygdala [56].
Higher residential greenness was further associated with

morphological brain changes in cross-sectional [110, 147–149]
and longitudinal studies [150, 151]. The findings encompassed
higher GM and WM volumes in the PFC, premotor cortex, and
cerebellum in children [151], and lower global atrophy, higher GM
orbitofrontal cortical volume, and thicker PFC, insula and
praecuneus in adults [147–150]—structures linked to cognitive
process and psychiatric disorders when reduced [152–156].
Indeed, reduced volumes in frontolimbic and cerebellar regions
were observed in environments characterised by reduced access
to natural spaces that mediated the association between urban
living and affective and anxiety symptoms [110].
Further research is needed regarding the different typologies of

natural spaces and vegetation, which is currently lacking. For
example, among older adults, only neighbourhood forest exposure
seemed to positively affect amygdala integrity, but not urban green
or blue spaces [157]. The presence of green space in the living
environment was associated with reduced risk of depression and
anxiety in cross-sectional studies [158], however, non-consistently,
and similar associations were not supported by longitudinal studies
[101, 159]. These discrepancies possibly arose due to methodolo-
gical shortcomings, such as an inability to assess whether
participants spent time in those environments, and the mediating
effects of air and noise pollution or exercise uptake. Different buffer
areas, which are specific zones established around the location of
participants to indicate distance, were used in the literature. Yet, it
remains unclear which zone size is the most relevant for mental
wellbeing. Furthermore, distance to green areas was typically
calculated with Euclidean distance, which calculates the straight-
line distance between two points, rather than pathways people use
or road connections. This approach might not accurately reflect the
experiences of the local urban population.

REGIONAL SOCIOECONOMIC STATUS
Regional socioeconomic status can significantly influence the
cognitive, emotional, and behavioural development of children
and adolescents, and these effects may persist in adulthood

[160–163]. Youth growing up in disadvantaged neighbourhoods,
marked by poverty, violence, poor housing conditions, or limited
access to educational and healthcare resources [164], are often
exposed to higher levels of chronic stress and unpredictability
[165], and may have difficulties building supportive social
networks [166]. Consequently, they may face a higher risk of
childhood mental disorders [167, 168]. Similarly, living in deprived
neighbourhoods during adulthood has been associated with
pooled mental health disorders, depression, suicidal behaviour,
and self-harm [101, 169–171].
Neighbourhood disadvantage has been linked to HPA-axis

dysregulation and reactivity [172, 173]. Additionally, cross-
sectional studies in youth have shown alterations in neural
development and functioning related to cognitive processes,
rewards, and social threats. For instance, lower neighbourhood
socioeconomic status associated with decreased activation in
regions of the executive system, including the dlPFC, posterior
parietal cortex, praecuneus and cerebellum, during a working
memory task [174]. Neighbourhood poverty may also disrupt self-
control development, measured with inhibition performance task,
via its effect on IFG activation [175]. Furthermore, youth living in
more deprived areas recorded lower activation in caudate,
putamen, accumbens area and pallidum during reward anticipa-
tion [176], and higher amygdala reactivity to threat-related stimuli,
particularly in neighbourhoods where safety and management
norms were more permissive [177]. Altogether, these responses
have been implicated in internalising and externalising symptoms
and psychopathology [178–180].
Cross-sectional studies have further indicated changes in

connectome in youth residing in socioeconomically disadvan-
taged areas suggest that neighbourhood deprivation impede the
developmental progression of brain function in children and
young adults [181], involving reduced fronto-amygdala and
fronto-striatal resting state FC [182–184], and changes in FC
between DMN and dorsal attention network and sensorimotor
systems [185]. The observed connectome alterations were
coupled with internalising symptoms and worse cognition.
Furthermore, increased fronto-striatal FC in newborns living in
deprived neighbourhoods mediated the relationship between
disadvantage and externalising symptoms at age 2 years [186].
Compared to the above findings, different patterns in FC were

observed when community violence and crime were assessed.
Such experiences associated with FC changes in youth and
newborns (exposed prenatally) between regions of the limbic
system, mainly encompassing the hippocampus [187, 188].
Furthermore, youth exposed to community violence demon-
strated FC changes between the hippocampus and insula, with
opposing directions observed across studies [187, 189]. These
discrepancies may be influenced by various factors, including the
specific timing of exposure to community violence, developmen-
tal changes, individual characteristics, or other contextual factors,
such as positive parenting and school environment
[185, 190, 191]. Differential social experiences, such as discrimina-
tion, within similar environments may exert distinct neural
influences on minoritized and discriminated individuals, including
various racial and gender identities, particularly in the domains of
threat, reward and emotional processes [165, 192–194].
Neighbourhood adversity in adolescence may shape neural

responses to social situations, threats, and rewards in adulthood.
Individuals with a disadvantaged upbringing displayed increased
sensitivity in reward-related brain regions like the striatum, NAc,
and ventrolateral PFC. Notably, current income did not mediate
the observed associations, suggesting a potential link between
early experiences and reward anticipation and pursuit in later life
[195]. Furthermore, exposure to neighbourhood disadvantage
during adolescence might influence reward-related processes in
adulthood, via decreased activation in brain regions associated
with cognitive and affective processes, such as amygdala,
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hippocampal and dlPFC [196]. Lastly, neighbourhood quality
might influence neural responses to social stimuli, as observed by
increased activity in the dorsal ACC and prefrontal regions among
individuals with disadvantaged upbringing [197].
Several studies have demonstrated the effect of neighbourhood

disadvantage on brain structure in youth and adults, such as
widespread lower volume of WM and GM [198, 199], including
hippocampus [189, 199–201], amygdala [189], dlPFC and dor-
somedial PFC, superior frontal gyrus [201], IFG and ACC [202]. In
addition, smaller surface area and cortical thinning was observed
in the frontal, parietal, and temporal lobes, cingulate and insula
[203–207]. The majority of these studies employed a cross-
sectional design, with two exceptions [189, 205]. Finally,
neighbourhood disadvantage was linked to atypical neurodeve-
lopmental trajectories during adolescence, indicating delayed
brain development [208, 209]. It is currently unknown whether the
deviations in brain trajectories due to adversity, converge later in
development or if they reflect atypical developmental patterns.
Altogether, neighbourhood disadvantage was associated with

alterations in brain regions involved in emotional processes,
including the amygdala, hippocampus, and dlPFC, and reward-
related regions such as the striatum and NAc. Several studies
accounted for individual or family socioeconomic status as a
confounding variable, demonstrating that regional socioeconomic
status may exert distinct effects on brain and behaviour. Most
studies evaluated neighbourhood disadvantage as a single
measure of neighbourhood violence or poverty, or used a
composite score structured from several measures (e.g., poverty,
unemployment rate, education levels). However, assessing differ-
ent attributes of regional challenges might elucidate distinct
neural correlates to different adversity typologies [210].

WEATHER PATTERNS AND CLIMATE CHANGE
Weather patterns encompass various meteorological factors,
including temperature, precipitation, humidity, and sunlight
duration. Mounting evidence suggests that weather patterns
may influence mood, behaviour, and overall mental well-being.
Higher ambient temperatures have been associated with an
increased suicide or self-harm burden [68, 211, 212], mental
health-related mortality, and morbidity of schizophrenia, mood
disorders, and anxiety disorders [213, 214]. Likewise, higher
humidity has been linked with a greater burden of concurrent
depression and anxiety, increased mental health-related emer-
gency visits [214, 215], and aggravation of the adverse effects of
high temperatures [216]. Regarding precipitation patterns, limited
evidence suggests a possible positive link with mental illness
[217–219]. Studies have reported a negative association between
sunlight exposure and risk of depression and anxiety [158], while
cloudiness and decreased sunshine duration were linked to
increased suicide rates [220]. Furthermore, seasonal changes
directly affect the duration of daylight. Seasonal daylength
fluctuations appear to affect mood and behaviour negatively
and were associated with a higher prevalence of seasonal affective
disorder and earlier onset of bipolar disorder [221]. Here it is
important to acknowledge that many of these findings are
susceptible to bias due to inadequate control of confounders and
the risk of an ecological fallacy—the incorrect inference about
individuals based on aggregated-level data associations [222].
The changes in weather patterns associated with climate

change introduce new challenges that further complicate mental
health outcomes via direct effects of stress and trauma and
indirect mediating factors, including food insecurity, poverty,
climate change-induced violence and forced migration [104].
Extreme weather events include heatwaves, flooding, and
drought. Systematic investigations demonstrated positive associa-
tions between heatwaves and mental health-related morbidity
[213, 223], where greater frequency, duration, and intensity of

heatwave conditions appeared to magnify the observed effects
[213, 224]. Direct exposure to floods was associated with
depression, anxiety, post-traumatic stress disorder, suicidal idea-
tion, and psychological distress [214, 225, 226]. Similarly, droughts
were associated with increased psychological distress, especially
among rural inhabitants and vulnerable populations [227, 228].
The neural circuits linking weather and psychiatric risk are unclear,
as studies investigating the weather and climate change effects on
MRI-detected brain activity are lacking. During simulated
hyperthermia conditions (50 °C, >40 min), there was heightened
activation in the dlPFC and the right intra-parietal sulcus [229].
Additionally, impairments in the FC of the DMN were observed
[230], coupled with prolonged reaction time in cognitive tasks
compared with the control group [229, 230]. A few cross-sectional
studies reported positive associations between day length and
volumes of the hippocampus, amygdala, and brainstem—regions
that exhibited seasonal variations in serotonin signalling [221],
suggesting that changes in volumes of subcortical regions and
neurotransmitter signalling involved in emotional regulation may
be involved in the seasonality of mental disorders.

PERSPECTIVE
The existing literature suggests potential associations between the
macroenvironment and the physiological development and
ageing of the brain. However, reaching definitive conclusions is
challenging due to the limitations in the study designs, which
prevent the establishment of causal inferences or temporal
patterns. Furthermore, current findings are either contradicting
or lack specificity, as multiple regions show an association with
macroenvironmental adversity, particularly in relation to air
pollution. These observations may result from the diverse
selection of regions of interest, the timing and severity of
exposure. The influences of macroenvironmental adversity on
the brain may be more immediate or manifest over time,
depending on the specific exposure and brain region [21, 131],
while the reversibility of unfavourable changes in structure and
function following exposure to factors that contribute to resilience
is unclear [231].
Research investigating the associations of light and noise

pollution, weather patterns and extremes on the brain is notably
limited. Certain brain regions have been consistently reported to
show changes in response to the other macroenvironmental
factors. The common brain areas include regions involved in
emotional regulation, such as PFC, amygdala, hippocampus, and
ACC, similar to the effects observed in microenvironmental
adversity [232], as well as regions related to reward processing,
such as striatum and NAc. More specifically, urbanicity, air
pollution, and regional deprivation demonstrated unfavourable
effects on these brain regions, while natural spaces were
associated with beneficial effects. Furthermore, distinct neural
regions have also been associated with different types of
environmental adversity. For example, current city living was
associated with amygdala activity, while urban upbringing
affected ACC [105]. Similarly, neighbourhood poverty appeared
to impact FC between PFC, amygdala, and striatum, while changes
in FC mainly involving the hippocampus were observed with
exposure to neighbourhood violence.
Environmental influences on the brain can contribute to inter

individual differences in mental health, shaping susceptibility to
conditions like depression, anxiety, and cognitive impairments.
The brain, as a central mediator, plays a pivotal role in processing
environmental stimuli and translating them into neurobiological
responses. It acts as a bridge between macroenvironmental
exposures and mental health outcomes. Neuroplasticity, the
brain’s ability to adapt and reorganise in response to experiences,
may be a key mechanism through which environmental factors
leave lasting imprints on mental health. Moreover, the brain’s
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intricate network of neurotransmitters, hormones, and neural
pathways can modulate emotional states and stress responses,
contributing to mental well-being or susceptibility to mental
disorders. Mental health reflects the cumulative impact of these
environmental and neural processes. It encompasses a spectrum
of emotional, cognitive, and behavioural outcomes, ranging from
resilience and well-being to the manifestation of psychiatric
disorders. This speculative framework highlights the interplay of
environmental, neural, and psychological factors. However, the
brain may also play a role in the selection of specific environ-
ments, which may be partly driven by genetic factors [233]. The
need for comprehensive research to better understand the diverse
pathways involved should be emphasised once again.
Environmental factors may exert their influence on the brain

through shared or different pathophysiological mechanisms.
Often these mechanisms are interrelated, that one is not
considered separately from another. Table 2 provides an overview
of the contributing factors postulated to mediate the effects of the
macroenvironment on brain health. Nevertheless, the list is not
exhaustive, and comprehensive reviews can be found elsewhere
[5, 17, 71, 82, 108, 221, 234]. More mechanistic studies are needed
to elucidate the underlying pathways for the differential links of
various macroenvironmental factors with specific brain regions,
despite eliciting common effects, such as HPA-axis activation and
neuroinflammation.

FUTURE RESEARCH DIRECTIONS
Overcoming the complexity of high dimensional data
The associations between the macroenvironment, brain outcomes
and mental health involve complex interactions between multiple
environmental exposures, individual susceptibility and social
factors. As individuals are typically exposed to multiple stressors
simultaneously, it becomes challenging to quantify the impact of a
specific environmental factor. Furthermore, high correlations are
usually present among the different environmental factors adding
complexity in determining their independent effects. High
collinearity might lead to unstable or imprecise coefficient
estimates [235]. Indeed, most studies have primarily focused on
exploring the relationships between a singular exposure and brain
outcomes or mental health, while investigations incorporating
analyses of multiple exposures have shown that associations
observed with single exposures tend to be less pronounced [22]. A
further constraint in the existing literature, which impedes the
understanding of precise mechanisms, is the insufficient investi-
gation into the mediating role of brain structure and function in
the association between the environment and mental health.
To address these challenges, statistical models are needed that

enable simultaneous modelling of high-dimensional data, aiming
to reduce the complexity and understand underlying patterns by
grouping them based on their shared characteristics and
distinctions. These methods include independent component
analysis, canonical correlation analysis, hierarchical clustering,
latent class analyses, and normative modelling [236]. An example
of such analyses has been demonstrated recently [110]. The
authors analysed a comprehensive set of environmental variables

such as pollution, area deprivation, greenspace and distance to
various facilities, and reduced redundancy by applying
confirmatory-factor analysis. Thereafter, sparce canonical correla-
tion analysis was employed to identify complex living profiles
related to distinct psychiatric symptom groups, while simulta-
neously allowing the qualitative and quantitative assessment of
each factor and their contribution to risk or resilience. Finally,
multiple sparse canonical correlation analysis explored the
mediating role of brain morphology in the observed associations.
These findings lay the groundwork for understanding the

biological processes involved in complex real-life environmental
challenges. Further studies are needed to expand upon and
provide deeper insights into the specific mechanisms and identify
biomarkers for risk and resilience, using deeply phenotyped
datasets. Moreover, the applicability of the findings should be
examined across diverse populations, settings, and environmental
conditions.

Addressing long latency periods
Long latency periods may exist between exposure to environ-
mental hazards and the onset of mental health or brain outcomes,
making it further challenging to establish a clear cause–effect
relationship. Most studies are cross-sectional and are based on a
single MRI measurement. Repeated measurements across the
lifespan could give insights into the temporal relationships and
enable the examination of critical periods of vulnerability,
windows of intervention, and long-term consequences of early-
life exposure on later brain health. Therefore, longitudinal studies
are crucial for examining these long-term trajectories of brain
development, ageing and degeneration related to environmental
exposures. Prominent examples of such studies include IMAGEN
[237], ABCD (Adolescent Brain Cognitive Development) [238],
Generation R [239], along with the ongoing follow-up assessments
in the UK Biobank [240] and the NAKO (German National Cohort)
[241]. Furthermore, longitudinal studies could help to assess pre-
and post-exposure effects on brain outcomes. In this way, the
immediate and delayed effects on the brain can be evaluated, as
well as the potential reversibility or persistence of these effects.

Enhancing macroenvironmental exposure assessment
Current literature relies on assessments of environmental factors
that are based on a few stations or land use regression models
which are spatially and temporally misaligned with the location or
period of interest and may not capture accurately the level of
environmental exposure. This issue is particularly important when
studying susceptibility periods. Environmental exposures often
vary in intensity, duration, and timing, posing additional
challenges in their accurate measurement. Misclassification of
environmental exposures might hinder small but clinically
relevant associations or result in spurious associations. To improve
the accuracy of exposure assessment, an increased granularity in
the spatial and temporal resolution of data collection is required.
Remote sensing satellite data, and integration of multiple data
sources, such as air quality models and meteorological reanalysis
data provide globally standardised environmental measures
enabling the tracing of environmental features spanning back

Table 2. Putative pathophysiological mechanisms involved in the association between macroenvironmental factors and brain health.

Mechanism/ Pathway Associated Macroenvironmental Factors

Inflammation Air Pollution, Noise Pollution, Heat exposure

Hypothalamic-pituitary-adrenal-axis dysregulation/ Stress
response

Noise pollution, Urbanisation, Regional Socioeconomic Factors, Natural spaces

Oxidative stress Air pollution, Noise pollution, Heat exposure

Circadian rhythm disturbances/ Sleep disturbances Light Pollution, Noise pollution, Seasonal daylength fluctuations

Attention Restoration Natural spaces

E. Polemiti et al.

12

Molecular Psychiatry



several decades [242–244]. The wealth of historical environmental
data facilitates global comparative analyses and enables the
assessment of the cumulative effects of environmental exposures.
A recent study among young adults from China and Europe
exemplified the application of several satellite-based measures of
urbanicity to characterise spatiotemporal patterns of mental
disorders risk [131]. Confirmatory factor analysis was performed
to develop a composite urbanicity measure, which was calculated
for each participant from birth to age of recruitment. This
approach allowed to assess the cumulative effects and the
susceptibility periods of lifetime urban exposure on brain and
behaviours.
Measures of urbanicity or other features of macroenvironment

that can be applied to different sociocultural conditions and
geographies are significant, as they might uncover common
associations with brain and behaviour and may assist in global
public health policies and urban planning.

Embracing mobility
Another source of misclassification is the static exposure assess-
ment, disregarding that individuals are exposed to multiple
environments along their daily movements. Considering the high
spatial and temporal variability of some environmental exposures
(e.g., pollutants associated with traffic and industrial production),
the actual environmental exposure should be linked to the
individual movement patterns and residence time to capture
aetiological meaningful associations. Incorporating mobility pat-
terns in data collection, such as daily movements, commuting
behaviours, and residential relocations in combination with
utilisation of geospatial techniques and geographic information
systems will allow more accurate assessment of cumulative
exposures. Furthermore, leveraging technology, such as wearable
devices and mobile applications alongside ecological momentary
assessments to collect real-time data on individuals’ environmental
exposures may be helpful to overcome the ‘static assumption’ errors
[245, 246]. By integrating sensors that measure parameters such as
temperature, humidity, UV radiation, air pollution and activity levels,
wearable devices provide a personalised perspective into the
microclimates that individuals experience throughout their daily
lives, accounting for factors such as indoor and outdoor environ-
ments and personal behaviours. This granular data allow the
identification of patterns and correlations between atmospheric
variables and their impact on mental well-being [247, 248].

Consolidating future directions
To identify complex real-life environmental profiles and establish
their relationship with brain and behaviour, a dataset with
adequate overall power is essential. It can be achieved by
increasing between-participant variations (combining study popu-
lations with heterogeneous macroenvironment and varying
mental illness burden) and decreasing random measurement
error (utilising objective measures of macroenvironment, repeated
measurements and biomarkers). Driven by these objectives, a
concerted effort is being made by the environMENTAL con-
sortium, involving multidisciplinary expertise [236]. Through the
integration of individual cross-sectional and longitudinal cohorts
across Europe and beyond, the consortium aims to leverage the
strength of existing datasets, which can be enriched with remote
sensing, meteorological and air pollution data, and with digital-
health tools enabling real-time data collection (i.e., smart phone
applications and ecological momentary assessments). Further-
more, combining federated analyses, using the COINSTAC plat-
form (Collaborative Informatics and Neuroimaging Suite Toolkit
for Anonymous Computation) [249] with data harmonisation, and
using representational biostatistical models, will enable the
identification of impactful environmental signatures that can be
evaluated for their replicability and generalisability across study
designs, cultural settings, and molecular levels.

CONCLUSIONS
The current review highlights that various macroenvironmental
factors, including air pollution, neighbourhood disadvantage, and
urbanicity, may alter brain structure and function and, conse-
quently, mental health. Exposure to these factors, particularly
during critical periods of development, might have lasting
impacts, resulting in heightened risk for a range of mental
illnesses. Then again, detrimental effects of urban environment
related to higher risk for mental health disorders, like social stress
and air pollution, might be attenuated with exposure to natural
environments through decreased stress-related activation in brain
regions for emotional regulation [144]. Similarly, higher safety
norms may mitigate the harmful effects of regional socioeconomic
adversity on brain and mental health [177].
However, our understanding of these interactions is still

evolving and evidence on specific macroenvironmental factors,
such as climate, noise and light pollution is sparse. The short-term
and long-term effects of the macroenvironment on brain and
mental health are elusive and the need for well-designed
longitudinal analyses is pressing. The exploration of mediating
and moderating factors, that explain these associations, not only
in terms of brain but also, lifestyle and social factors, is essential.
Additionally, there is a notable lack of studies on subpopulations
and vulnerable groups.
By recognising the impact of environmental factors on brain

plasticity processes, policymakers, and healthcare professionals
can work towards creating healthier and more supportive
environments that promote mental well-being and resilience.
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